pyspark.pandas.groupby.GroupBy.prod¶
- 
GroupBy.prod(numeric_only: Optional[bool] = True, min_count: int = 0) → FrameLike[source]¶
- Compute prod of groups. - New in version 3.4.0. - Parameters
- numeric_onlybool, default False
- Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. 
- min_countint, default 0
- The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. 
 
- Returns
- Series or DataFrame
- Computed prod of values within each group. 
 
 - Examples - >>> import numpy as np >>> df = ps.DataFrame( ... { ... "A": [1, 1, 2, 1, 2], ... "B": [np.nan, 2, 3, 4, 5], ... "C": [1, 2, 1, 1, 2], ... "D": [True, False, True, False, True], ... } ... ) - Groupby one column and return the prod of the remaining columns in each group. - >>> df.groupby('A').prod().sort_index() B C D A 1 8.0 2 0 2 15.0 2 1 - >>> df.groupby('A').prod(min_count=3).sort_index() B C D A 1 NaN 2.0 0.0 2 NaN NaN NaN