ChiSqSelector¶
- 
class pyspark.ml.feature.ChiSqSelector(*, numTopFeatures: int = 50, featuresCol: str = 'features', outputCol: Optional[str] = None, labelCol: str = 'label', selectorType: str = 'numTopFeatures', percentile: float = 0.1, fpr: float = 0.05, fdr: float = 0.05, fwe: float = 0.05)[source]¶
- Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label. The selector supports different selection methods: numTopFeatures, percentile, fpr, fdr, fwe. - numTopFeatures chooses a fixed number of top features according to a chi-squared test. 
- percentile is similar but chooses a fraction of all features instead of a fixed number. 
- fpr chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection. 
- fdr uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold. 
- fwe chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection. 
 - By default, the selection method is numTopFeatures, with the default number of top features set to 50. - Deprecated since version 3.1.0: Use UnivariateFeatureSelector - New in version 2.0.0. - Examples - >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame( ... [(Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0), ... (Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0), ... (Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0)], ... ["features", "label"]) >>> selector = ChiSqSelector(numTopFeatures=1, outputCol="selectedFeatures") >>> model = selector.fit(df) >>> model.getFeaturesCol() 'features' >>> model.setFeaturesCol("features") ChiSqSelectorModel... >>> model.transform(df).head().selectedFeatures DenseVector([18.0]) >>> model.selectedFeatures [2] >>> chiSqSelectorPath = temp_path + "/chi-sq-selector" >>> selector.save(chiSqSelectorPath) >>> loadedSelector = ChiSqSelector.load(chiSqSelectorPath) >>> loadedSelector.getNumTopFeatures() == selector.getNumTopFeatures() True >>> modelPath = temp_path + "/chi-sq-selector-model" >>> model.save(modelPath) >>> loadedModel = ChiSqSelectorModel.load(modelPath) >>> loadedModel.selectedFeatures == model.selectedFeatures True >>> loadedModel.transform(df).take(1) == model.transform(df).take(1) True - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with the same uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - fit(dataset[, params])- Fits a model to the input dataset with optional parameters. - fitMultiple(dataset, paramMaps)- Fits a model to the input dataset for each param map in paramMaps. - getFdr()- Gets the value of fdr or its default value. - Gets the value of featuresCol or its default value. - getFpr()- Gets the value of fpr or its default value. - getFwe()- Gets the value of fwe or its default value. - Gets the value of labelCol or its default value. - Gets the value of numTopFeatures or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - Gets the value of outputCol or its default value. - getParam(paramName)- Gets a param by its name. - Gets the value of percentile or its default value. - Gets the value of selectorType or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - setFdr(value)- Sets the value of - fdr.- setFeaturesCol(value)- Sets the value of - featuresCol.- setFpr(value)- Sets the value of - fpr.- setFwe(value)- Sets the value of - fwe.- setLabelCol(value)- Sets the value of - labelCol.- setNumTopFeatures(value)- Sets the value of - numTopFeatures.- setOutputCol(value)- Sets the value of - outputCol.- setParams(self, \*[, numTopFeatures, …])- Sets params for this ChiSqSelector. - setPercentile(value)- Sets the value of - percentile.- setSelectorType(value)- Sets the value of - selectorType.- write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → JP¶
- Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- JavaParams
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
fit(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
- Fits a model to the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramsdict or list or tuple, optional
- an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models. 
 
- dataset
- Returns
- :py:class:`Transformer` or a list ofpy:class:Transformer
- fitted model(s) 
 
 
 - 
fitMultiple(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
- Fits a model to the input dataset for each param map in paramMaps. - New in version 2.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset. 
- paramMapscollections.abc.Sequence
- A Sequence of param maps. 
 
- dataset
- Returns
- _FitMultipleIterator
- A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential. 
 
 
 - 
getFdr() → float¶
- Gets the value of fdr or its default value. - New in version 2.2.0. 
 - 
getFeaturesCol() → str¶
- Gets the value of featuresCol or its default value. 
 - 
getFpr() → float¶
- Gets the value of fpr or its default value. - New in version 2.1.0. 
 - 
getFwe() → float¶
- Gets the value of fwe or its default value. - New in version 2.2.0. 
 - 
getLabelCol() → str¶
- Gets the value of labelCol or its default value. 
 - 
getNumTopFeatures() → int¶
- Gets the value of numTopFeatures or its default value. - New in version 2.0.0. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getOutputCol() → str¶
- Gets the value of outputCol or its default value. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getPercentile() → float¶
- Gets the value of percentile or its default value. - New in version 2.1.0. 
 - 
getSelectorType() → str¶
- Gets the value of selectorType or its default value. - New in version 2.1.0. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.util.JavaMLReader[RL]¶
- Returns an MLReader instance for this class. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
setFdr(value: float) → P¶
- Sets the value of - fdr. Only applicable when selectorType = “fdr”.- New in version 2.2.0. 
 - 
setFeaturesCol(value: str) → P¶
- Sets the value of - featuresCol.
 - 
setFpr(value: float) → P¶
- Sets the value of - fpr. Only applicable when selectorType = “fpr”.- New in version 2.1.0. 
 - 
setFwe(value: float) → P¶
- Sets the value of - fwe. Only applicable when selectorType = “fwe”.- New in version 2.2.0. 
 - 
setNumTopFeatures(value: int) → P¶
- Sets the value of - numTopFeatures. Only applicable when selectorType = “numTopFeatures”.- New in version 2.0.0. 
 - 
setParams(self, \*, numTopFeatures=50, featuresCol="features", outputCol=None, labelCol="label", selectorType="numTopFeatures", percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05)[source]¶
- Sets params for this ChiSqSelector. - New in version 2.0.0. 
 - 
setPercentile(value: float) → P¶
- Sets the value of - percentile. Only applicable when selectorType = “percentile”.- New in version 2.1.0. 
 - 
setSelectorType(value: str) → P¶
- Sets the value of - selectorType.- New in version 2.1.0. 
 - 
write() → pyspark.ml.util.JavaMLWriter¶
- Returns an MLWriter instance for this ML instance. 
 - Attributes Documentation - 
fdr= Param(parent='undefined', name='fdr', doc='The upper bound of the expected false discovery rate.')¶
 - 
featuresCol= Param(parent='undefined', name='featuresCol', doc='features column name.')¶
 - 
fpr= Param(parent='undefined', name='fpr', doc='The highest p-value for features to be kept.')¶
 - 
fwe= Param(parent='undefined', name='fwe', doc='The upper bound of the expected family-wise error rate.')¶
 - 
labelCol= Param(parent='undefined', name='labelCol', doc='label column name.')¶
 - 
numTopFeatures= Param(parent='undefined', name='numTopFeatures', doc='Number of features that selector will select, ordered by ascending p-value. If the number of features is < numTopFeatures, then this will select all features.')¶
 - 
outputCol= Param(parent='undefined', name='outputCol', doc='output column name.')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
percentile= Param(parent='undefined', name='percentile', doc='Percentile of features that selector will select, ordered by ascending p-value.')¶
 - 
selectorType= Param(parent='undefined', name='selectorType', doc='The selector type. Supported options: numTopFeatures (default), percentile, fpr, fdr, fwe.')¶