SVMWithSGD¶
- 
class pyspark.mllib.classification.SVMWithSGD[source]¶
- Train a Support Vector Machine (SVM) using Stochastic Gradient Descent. - New in version 0.9.0. - Methods - train(data[, iterations, step, regParam, …])- Train a support vector machine on the given data. - Methods Documentation - 
classmethod train(data: pyspark.rdd.RDD[pyspark.mllib.regression.LabeledPoint], iterations: int = 100, step: float = 1.0, regParam: float = 0.01, miniBatchFraction: float = 1.0, initialWeights: Optional[VectorLike] = None, regType: str = 'l2', intercept: bool = False, validateData: bool = True, convergenceTol: float = 0.001) → pyspark.mllib.classification.SVMModel[source]¶
- Train a support vector machine on the given data. - New in version 0.9.0. - Parameters
- datapyspark.RDD
- The training data, an RDD of - pyspark.mllib.regression.LabeledPoint.
- iterationsint, optional
- The number of iterations. (default: 100) 
- stepfloat, optional
- The step parameter used in SGD. (default: 1.0) 
- regParamfloat, optional
- The regularizer parameter. (default: 0.01) 
- miniBatchFractionfloat, optional
- Fraction of data to be used for each SGD iteration. (default: 1.0) 
- initialWeightspyspark.mllib.linalg.Vectoror convertible, optional
- The initial weights. (default: None) 
- regTypestr, optional
- The type of regularizer used for training our model. Allowed values: - “l1” for using L1 regularization 
- “l2” for using L2 regularization (default) 
- None for no regularization 
 
- interceptbool, optional
- Boolean parameter which indicates the use or not of the augmented representation for training data (i.e. whether bias features are activated or not). (default: False) 
- validateDatabool, optional
- Boolean parameter which indicates if the algorithm should validate data before training. (default: True) 
- convergenceTolfloat, optional
- A condition which decides iteration termination. (default: 0.001) 
 
- data
 
 
- 
classmethod