pyspark.pandas.DatetimeIndex¶
- 
class pyspark.pandas.DatetimeIndex[source]¶
- Immutable ndarray-like of datetime64 data. - Parameters
- dataarray-like (1-dimensional), optional
- Optional datetime-like data to construct index with. 
- freqstr or pandas offset object, optional
- One of pandas date offset strings or corresponding objects. The string ‘infer’ can be passed in order to set the frequency of the index as the inferred frequency upon creation. 
- normalizebool, default False
- Normalize start/end dates to midnight before generating date range. 
- closed{‘left’, ‘right’}, optional
- Set whether to include start and end that are on the boundary. The default includes boundary points on either end. 
- ambiguous‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
- When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled. - ‘infer’ will attempt to infer fall dst-transition hours based on order 
- bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) 
- ‘NaT’ will return NaT where there are ambiguous times 
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times. 
 
- dayfirstbool, default False
- If True, parse dates in data with the day first order. 
- yearfirstbool, default False
- If True parse dates in data with the year first order. 
- dtypenumpy.dtype or str, default None
- Note that the only NumPy dtype allowed is ‘datetime64[ns]’. 
- copybool, default False
- Make a copy of input ndarray. 
- namelabel, default None
- Name to be stored in the index. 
 
 - See also - Index
- The base pandas Index type. 
- to_datetime
- Convert argument to datetime. 
 - Examples - >>> ps.DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01']) DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01'], dtype='datetime64[ns]', freq=None) - From a Series: - >>> from datetime import datetime >>> s = ps.Series([datetime(2021, 3, 1), datetime(2021, 3, 2)], index=[10, 20]) >>> ps.DatetimeIndex(s) DatetimeIndex(['2021-03-01', '2021-03-02'], dtype='datetime64[ns]', freq=None) - From an Index: - >>> idx = ps.DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01']) >>> ps.DatetimeIndex(idx) DatetimeIndex(['1970-01-01', '1970-01-01', '1970-01-01'], dtype='datetime64[ns]', freq=None) - Methods - all(*args, **kwargs)- Return whether all elements are True. - any([axis])- Return whether any element is True. - append(other)- Append a collection of Index options together. - argmax()- Return a maximum argument indexer. - argmin()- Return a minimum argument indexer. - asof(label)- Return the label from the index, or, if not present, the previous one. - astype(dtype)- Cast a pandas-on-Spark object to a specified dtype - dtype.- ceil(freq, *args, **kwargs)- Perform ceil operation on the data to the specified freq. - copy([name, deep])- Make a copy of this object. - day_name([locale])- Return the day names of the series with specified locale. - delete(loc)- Make new Index with passed location(-s) deleted. - difference(other[, sort])- Return a new Index with elements from the index that are not in other. - drop(labels)- Make new Index with passed list of labels deleted. - drop_duplicates([keep])- Return Index with duplicate values removed. - droplevel(level)- Return index with requested level(s) removed. - dropna([how])- Return Index or MultiIndex without NA/NaN values - equals(other)- Determine if two Index objects contain the same elements. - factorize([sort, na_sentinel])- Encode the object as an enumerated type or categorical variable. - fillna(value)- Fill NA/NaN values with the specified value. - floor(freq, *args, **kwargs)- Perform floor operation on the data to the specified freq. - get_level_values(level)- Return Index if a valid level is given. - holds_integer()- Whether the type is an integer type. - identical(other)- Similar to equals, but check that other comparable attributes are also equal. - indexer_at_time(time[, asof])- Return index locations of values at particular time of day (example: 9:30AM). - indexer_between_time(start_time, end_time[, …])- Return index locations of values between particular times of day (example: 9:00-9:30AM). - insert(loc, item)- Make new Index inserting new item at location. - intersection(other)- Form the intersection of two Index objects. - is_boolean()- Return if the current index type is a boolean type. - is_categorical()- Return if the current index type is a categorical type. - is_floating()- Return if the current index type is a floating type. - is_integer()- Return if the current index type is an integer type. - is_interval()- Return if the current index type is an interval type. - is_numeric()- Return if the current index type is a numeric type. - is_object()- Return if the current index type is an object type. - is_type_compatible(kind)- Whether the index type is compatible with the provided type. - isin(values)- Check whether values are contained in Series or Index. - isna()- Detect existing (non-missing) values. - isnull()- Detect existing (non-missing) values. - item()- Return the first element of the underlying data as a python scalar. - map(mapper[, na_action])- Map values using input correspondence (a dict, Series, or function). - max()- Return the maximum value of the Index. - min()- Return the minimum value of the Index. - month_name([locale])- Return the month names of the DatetimeIndex with specified locale. - Convert times to midnight. - notna()- Detect existing (non-missing) values. - notnull()- Detect existing (non-missing) values. - nunique([dropna, approx, rsd])- Return number of unique elements in the object. - rename(name[, inplace])- Alter Index or MultiIndex name. - repeat(repeats)- Repeat elements of a Index/MultiIndex. - round(freq, *args, **kwargs)- Perform round operation on the data to the specified freq. - set_names(names[, level, inplace])- Set Index or MultiIndex name. - shift([periods, fill_value])- Shift Series/Index by desired number of periods. - sort(*args, **kwargs)- Use sort_values instead. - sort_values([return_indexer, ascending])- Return a sorted copy of the index, and optionally return the indices that sorted the index itself. - strftime(date_format)- Convert to a string Index using specified date_format. - symmetric_difference(other[, result_name, sort])- Compute the symmetric difference of two Index objects. - take(indices)- Return the elements in the given positional indices along an axis. - to_frame([index, name])- Create a DataFrame with a column containing the Index. - to_list()- Return a list of the values. - to_numpy([dtype, copy])- A NumPy ndarray representing the values in this Index or MultiIndex. - to_pandas()- Return a pandas Index. - to_series([name])- Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index. - tolist()- Return a list of the values. - transpose()- Return the transpose, For index, It will be index itself. - union(other[, sort])- Form the union of two Index objects. - unique([level])- Return unique values in the index. - value_counts([normalize, sort, ascending, …])- Return a Series containing counts of unique values. - view()- this is defined as a copy with the same identity - Attributes - T- Return the transpose, For index, It will be index itself. - asi8- Integer representation of the values. - The days of the datetime. - The day of the week with Monday=0, Sunday=6. - The ordinal day of the year. - The day of the week with Monday=0, Sunday=6. - The ordinal day of the year. - The number of days in the month. - The number of days in the month. - dtype- Return the dtype object of the underlying data. - empty- Returns true if the current object is empty. - has_duplicates- If index has duplicates, return True, otherwise False. - hasnans- Return True if it has any missing values. - The hours of the datetime. - inferred_type- Return a string of the type inferred from the values. - is_all_dates- Return if all data types of the index are datetime. - Boolean indicator if the date belongs to a leap year. - is_monotonic- Return boolean if values in the object are monotonically increasing. - is_monotonic_decreasing- Return boolean if values in the object are monotonically decreasing. - is_monotonic_increasing- Return boolean if values in the object are monotonically increasing. - Indicates whether the date is the last day of the month. - Indicates whether the date is the first day of the month. - Indicator for whether the date is the last day of a quarter. - Indicator for whether the date is the first day of a quarter. - is_unique- Return if the index has unique values. - Indicate whether the date is the last day of the year. - Indicate whether the date is the first day of a year. - The microseconds of the datetime. - The minutes of the datetime. - The month of the timestamp as January = 1 December = 12. - name- Return name of the Index. - names- Return names of the Index. - ndim- Return an int representing the number of array dimensions. - nlevels- Number of levels in Index & MultiIndex. - The quarter of the date. - The seconds of the datetime. - shape- Return a tuple of the shape of the underlying data. - size- Return an int representing the number of elements in this object. - values- Return an array representing the data in the Index. - The week ordinal of the year. - The day of the week with Monday=0, Sunday=6. - The week ordinal of the year. - The year of the datetime.