pyspark.pandas.get_dummies¶
- 
pyspark.pandas.get_dummies(data: Union[pyspark.pandas.frame.DataFrame, pyspark.pandas.series.Series], prefix: Union[str, List[str], Dict[str, str], None] = None, prefix_sep: str = '_', dummy_na: bool = False, columns: Union[Any, Tuple[Any, …], List[Union[Any, Tuple[Any, …]]], None] = None, sparse: bool = False, drop_first: bool = False, dtype: Union[str, numpy.dtype, pandas.core.dtypes.base.ExtensionDtype, None] = None) → pyspark.pandas.frame.DataFrame[source]¶
- Convert categorical variable into dummy/indicator variables, also known as one hot encoding. - Parameters
- dataarray-like, Series, or DataFrame
- prefixstring, list of strings, or dict of strings, default None
- String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column names to prefixes. 
- prefix_sepstring, default ‘_’
- If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix. 
- dummy_nabool, default False
- Add a column to indicate NaNs, if False NaNs are ignored. 
- columnslist-like, default None
- Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted. 
- sparsebool, default False
- Whether the dummy-encoded columns should be be backed by a - SparseArray(True) or a regular NumPy array (False). In pandas-on-Spark, this value must be “False”.
- drop_firstbool, default False
- Whether to get k-1 dummies out of k categorical levels by removing the first level. 
- dtypedtype, default np.uint8
- Data type for new columns. Only a single dtype is allowed. 
 
- Returns
- dummiesDataFrame
 
 - See also - Examples - >>> s = ps.Series(list('abca')) - >>> ps.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 - >>> df = ps.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}, ... columns=['A', 'B', 'C']) - >>> ps.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 - >>> ps.get_dummies(ps.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 - >>> ps.get_dummies(ps.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 - >>> ps.get_dummies(ps.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0