TrainValidationSplitModel¶
- 
class pyspark.ml.tuning.TrainValidationSplitModel(bestModel: pyspark.ml.base.Model, validationMetrics: Optional[List[float]] = None, subModels: Optional[List[pyspark.ml.base.Model]] = None)[source]¶
- Model from train validation split. - New in version 2.0.0. - Methods - clear(param)- Clears a param from the param map if it has been explicitly set. - copy([extra])- Creates a copy of this instance with a randomly generated uid and some extra params. - explainParam(param)- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. - Returns the documentation of all params with their optionally default values and user-supplied values. - extractParamMap([extra])- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Gets the value of estimator or its default value. - Gets the value of estimatorParamMaps or its default value. - Gets the value of evaluator or its default value. - getOrDefault(param)- Gets the value of a param in the user-supplied param map or its default value. - getParam(paramName)- Gets a param by its name. - getSeed()- Gets the value of seed or its default value. - Gets the value of trainRatio or its default value. - hasDefault(param)- Checks whether a param has a default value. - hasParam(paramName)- Tests whether this instance contains a param with a given (string) name. - isDefined(param)- Checks whether a param is explicitly set by user or has a default value. - isSet(param)- Checks whether a param is explicitly set by user. - load(path)- Reads an ML instance from the input path, a shortcut of read().load(path). - read()- Returns an MLReader instance for this class. - save(path)- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. - set(param, value)- Sets a parameter in the embedded param map. - transform(dataset[, params])- Transforms the input dataset with optional parameters. - write()- Returns an MLWriter instance for this ML instance. - Attributes - Returns all params ordered by name. - Methods Documentation - 
clear(param: pyspark.ml.param.Param) → None¶
- Clears a param from the param map if it has been explicitly set. 
 - 
copy(extra: Optional[ParamMap] = None) → TrainValidationSplitModel[source]¶
- Creates a copy of this instance with a randomly generated uid and some extra params. This copies the underlying bestModel, creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over. And, this creates a shallow copy of the validationMetrics. It does not copy the extra Params into the subModels. - New in version 2.0.0. - Parameters
- extradict, optional
- Extra parameters to copy to the new instance 
 
- Returns
- TrainValidationSplitModel
- Copy of this instance 
 
 
 - 
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶
- Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string. 
 - 
explainParams() → str¶
- Returns the documentation of all params with their optionally default values and user-supplied values. 
 - 
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶
- Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra. - Parameters
- extradict, optional
- extra param values 
 
- Returns
- dict
- merged param map 
 
 
 - 
getEstimator() → pyspark.ml.base.Estimator¶
- Gets the value of estimator or its default value. - New in version 2.0.0. 
 - 
getEstimatorParamMaps() → List[ParamMap]¶
- Gets the value of estimatorParamMaps or its default value. - New in version 2.0.0. 
 - 
getEvaluator() → pyspark.ml.evaluation.Evaluator¶
- Gets the value of evaluator or its default value. - New in version 2.0.0. 
 - 
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
- Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set. 
 - 
getParam(paramName: str) → pyspark.ml.param.Param¶
- Gets a param by its name. 
 - 
getSeed() → int¶
- Gets the value of seed or its default value. 
 - 
getTrainRatio() → float¶
- Gets the value of trainRatio or its default value. - New in version 2.0.0. 
 - 
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param has a default value. 
 - 
hasParam(paramName: str) → bool¶
- Tests whether this instance contains a param with a given (string) name. 
 - 
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user or has a default value. 
 - 
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
- Checks whether a param is explicitly set by user. 
 - 
classmethod load(path: str) → RL¶
- Reads an ML instance from the input path, a shortcut of read().load(path). 
 - 
classmethod read() → pyspark.ml.tuning.TrainValidationSplitModelReader[source]¶
- Returns an MLReader instance for this class. - New in version 2.3.0. 
 - 
save(path: str) → None¶
- Save this ML instance to the given path, a shortcut of ‘write().save(path)’. 
 - 
set(param: pyspark.ml.param.Param, value: Any) → None¶
- Sets a parameter in the embedded param map. 
 - 
transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶
- Transforms the input dataset with optional parameters. - New in version 1.3.0. - Parameters
- datasetpyspark.sql.DataFrame
- input dataset 
- paramsdict, optional
- an optional param map that overrides embedded params. 
 
- dataset
- Returns
- pyspark.sql.DataFrame
- transformed dataset 
 
 
 - 
write() → pyspark.ml.util.MLWriter[source]¶
- Returns an MLWriter instance for this ML instance. - New in version 2.3.0. 
 - Attributes Documentation - 
estimator= Param(parent='undefined', name='estimator', doc='estimator to be cross-validated')¶
 - 
estimatorParamMaps= Param(parent='undefined', name='estimatorParamMaps', doc='estimator param maps')¶
 - 
evaluator= Param(parent='undefined', name='evaluator', doc='evaluator used to select hyper-parameters that maximize the validator metric')¶
 - 
params¶
- Returns all params ordered by name. The default implementation uses - dir()to get all attributes of type- Param.
 - 
seed= Param(parent='undefined', name='seed', doc='random seed.')¶
 - 
trainRatio: pyspark.ml.param.Param[float] = Param(parent='undefined', name='trainRatio', doc='Param for ratio between train and validation data. Must be between 0 and 1.')¶
 
-