public class FPGrowthModel extends Model<FPGrowthModel> implements FPGrowthParams, MLWritable
param: freqItemsets frequent itemsets in the format of DataFrame("items"[Array], "freq"[Long])
| Modifier and Type | Method and Description |
|---|---|
Dataset<Row> |
associationRules()
Get association rules fitted using the minConfidence.
|
FPGrowthModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Dataset<Row> |
freqItemsets() |
Param<String> |
itemsCol()
Items column name.
|
static FPGrowthModel |
load(String path) |
DoubleParam |
minConfidence()
Minimal confidence for generating Association Rule.
|
DoubleParam |
minSupport()
Minimal support level of the frequent pattern.
|
IntParam |
numPartitions()
Number of partitions (at least 1) used by parallel FP-growth.
|
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<FPGrowthModel> |
read() |
FPGrowthModel |
setItemsCol(String value) |
FPGrowthModel |
setMinConfidence(double value) |
FPGrowthModel |
setPredictionCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
The transform method first generates the association rules according to the frequent itemsets.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformparamsgetItemsCol, getMinConfidence, getMinSupport, getNumPartitions, validateAndTransformSchemagetPredictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnsave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<FPGrowthModel> read()
public static FPGrowthModel load(String path)
public Param<String> itemsCol()
FPGrowthParamsitemsCol in interface FPGrowthParamspublic DoubleParam minSupport()
FPGrowthParamsminSupport in interface FPGrowthParamspublic IntParam numPartitions()
FPGrowthParamsnumPartitions in interface FPGrowthParamspublic DoubleParam minConfidence()
FPGrowthParamsminConfidence in interface FPGrowthParamspublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic FPGrowthModel setMinConfidence(double value)
public FPGrowthModel setItemsCol(String value)
public FPGrowthModel setPredictionCol(String value)
public Dataset<Row> associationRules()
public Dataset<Row> transform(Dataset<?> dataset)
transform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public FPGrowthModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<FPGrowthModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Object