public class VarianceThresholdSelectorModel extends Model<VarianceThresholdSelectorModel> implements VarianceThresholdSelectorParams, MLWritable
VarianceThresholdSelector.| Modifier and Type | Method and Description |
|---|---|
VarianceThresholdSelectorModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
featuresCol()
Param for features column name.
|
static VarianceThresholdSelectorModel |
load(String path) |
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<VarianceThresholdSelectorModel> |
read() |
int[] |
selectedFeatures() |
VarianceThresholdSelectorModel |
setFeaturesCol(String value) |
VarianceThresholdSelectorModel |
setOutputCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
DoubleParam |
varianceThreshold()
Param for variance threshold.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformparamsgetVarianceThresholdgetFeaturesColgetOutputColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnsave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic static MLReader<VarianceThresholdSelectorModel> read()
public static VarianceThresholdSelectorModel load(String path)
public final DoubleParam varianceThreshold()
VarianceThresholdSelectorParamsvarianceThreshold in interface VarianceThresholdSelectorParamspublic final Param<String> outputCol()
HasOutputColoutputCol in interface HasOutputColpublic final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic String uid()
Identifiableuid in interface Identifiablepublic int[] selectedFeatures()
public VarianceThresholdSelectorModel setFeaturesCol(String value)
public VarianceThresholdSelectorModel setOutputCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public VarianceThresholdSelectorModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<VarianceThresholdSelectorModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Object