public class BisectingKMeans extends Estimator<BisectingKMeansModel> implements BisectingKMeansParams, DefaultParamsWritable
k leaf clusters in total or no leaf clusters are divisible.
The bisecting steps of clusters on the same level are grouped together to increase parallelism.
If bisecting all divisible clusters on the bottom level would result more than k leaf clusters,
larger clusters get higher priority.
| Constructor and Description |
|---|
BisectingKMeans() |
BisectingKMeans(String uid) |
| Modifier and Type | Method and Description |
|---|---|
BisectingKMeans |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
distanceMeasure()
Param for The distance measure.
|
Param<String> |
featuresCol()
Param for features column name.
|
BisectingKMeansModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
IntParam |
k()
The desired number of leaf clusters.
|
static BisectingKMeans |
load(String path) |
IntParam |
maxIter()
Param for maximum number of iterations (>= 0).
|
DoubleParam |
minDivisibleClusterSize()
The minimum number of points (if greater than or equal to 1.0) or the minimum proportion
of points (if less than 1.0) of a divisible cluster (default: 1.0).
|
Param<String> |
predictionCol()
Param for prediction column name.
|
static MLReader<T> |
read() |
LongParam |
seed()
Param for random seed.
|
BisectingKMeans |
setDistanceMeasure(String value) |
BisectingKMeans |
setFeaturesCol(String value) |
BisectingKMeans |
setK(int value) |
BisectingKMeans |
setMaxIter(int value) |
BisectingKMeans |
setMinDivisibleClusterSize(double value) |
BisectingKMeans |
setPredictionCol(String value) |
BisectingKMeans |
setSeed(long value) |
BisectingKMeans |
setWeightCol(String value)
Sets the value of param
weightCol. |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
paramsequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetK, getMinDivisibleClusterSize, validateAndTransformSchemagetMaxItergetFeaturesColgetPredictionColgetDistanceMeasuregetWeightColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic BisectingKMeans(String uid)
public BisectingKMeans()
public static BisectingKMeans load(String path)
public static MLReader<T> read()
public final IntParam k()
BisectingKMeansParamsk in interface BisectingKMeansParamspublic final DoubleParam minDivisibleClusterSize()
BisectingKMeansParamsminDivisibleClusterSize in interface BisectingKMeansParamspublic final Param<String> weightCol()
HasWeightColweightCol in interface HasWeightColpublic final Param<String> distanceMeasure()
HasDistanceMeasuredistanceMeasure in interface HasDistanceMeasurepublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic final LongParam seed()
HasSeedpublic final Param<String> featuresCol()
HasFeaturesColfeaturesCol in interface HasFeaturesColpublic final IntParam maxIter()
HasMaxItermaxIter in interface HasMaxIterpublic String uid()
Identifiableuid in interface Identifiablepublic BisectingKMeans copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<BisectingKMeansModel>extra - (undocumented)public BisectingKMeans setFeaturesCol(String value)
public BisectingKMeans setPredictionCol(String value)
public BisectingKMeans setK(int value)
public BisectingKMeans setMaxIter(int value)
public BisectingKMeans setSeed(long value)
public BisectingKMeans setMinDivisibleClusterSize(double value)
public BisectingKMeans setDistanceMeasure(String value)
public BisectingKMeans setWeightCol(String value)
weightCol.
If this is not set or empty, we treat all instance weights as 1.0.
Default is not set, so all instances have weight one.
value - (undocumented)public BisectingKMeansModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<BisectingKMeansModel>dataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)