public class IDFModel extends Model<IDFModel> implements IDFBase, MLWritable
IDF
.Modifier and Type | Method and Description |
---|---|
IDFModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
long[] |
docFreq()
Returns the document frequency
|
Vector |
idf()
Returns the IDF vector.
|
Param<String> |
inputCol()
Param for input column name.
|
static IDFModel |
load(String path) |
IntParam |
minDocFreq()
The minimum number of documents in which a term should appear.
|
long |
numDocs()
Returns number of documents evaluated to compute idf
|
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<IDFModel> |
read() |
IDFModel |
setInputCol(String value) |
IDFModel |
setOutputCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
params
getMinDocFreq, validateAndTransformSchema
getInputCol
getOutputCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
save
initializeForcefully, initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static IDFModel load(String path)
public final IntParam minDocFreq()
IDFBase
minDocFreq
in interface IDFBase
public final Param<String> outputCol()
HasOutputCol
outputCol
in interface HasOutputCol
public final Param<String> inputCol()
HasInputCol
inputCol
in interface HasInputCol
public String uid()
Identifiable
uid
in interface Identifiable
public IDFModel setInputCol(String value)
public IDFModel setOutputCol(String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public IDFModel copy(ParamMap extra)
Params
defaultCopy()
.public Vector idf()
public long[] docFreq()
public long numDocs()
public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public String toString()
toString
in interface Identifiable
toString
in class Object