public class IsotonicRegression extends Estimator<IsotonicRegressionModel> implements IsotonicRegressionBase, DefaultParamsWritable
Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
Uses IsotonicRegression.
| Constructor and Description |
|---|
IsotonicRegression() |
IsotonicRegression(String uid) |
| Modifier and Type | Method and Description |
|---|---|
IsotonicRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
IsotonicRegressionModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static IsotonicRegression |
load(String path) |
static MLReader<T> |
read() |
IsotonicRegression |
setFeatureIndex(int value) |
IsotonicRegression |
setFeaturesCol(String value) |
IsotonicRegression |
setIsotonic(boolean value) |
IsotonicRegression |
setLabelCol(String value) |
IsotonicRegression |
setPredictionCol(String value) |
IsotonicRegression |
setWeightCol(String value) |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitextractWeightedLabeledPoints, featureIndex, getFeatureIndex, getIsotonic, hasWeightCol, isotonic, validateAndTransformSchemafeaturesCol, getFeaturesColgetLabelCol, labelColgetPredictionCol, predictionColgetWeightCol, weightColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningwritesavepublic IsotonicRegression(String uid)
public IsotonicRegression()
public static IsotonicRegression load(String path)
public static MLReader<T> read()
public String uid()
Identifiableuid in interface Identifiablepublic IsotonicRegression setLabelCol(String value)
public IsotonicRegression setFeaturesCol(String value)
public IsotonicRegression setPredictionCol(String value)
public IsotonicRegression setIsotonic(boolean value)
public IsotonicRegression setWeightCol(String value)
public IsotonicRegression setFeatureIndex(int value)
public IsotonicRegression copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<IsotonicRegressionModel>extra - (undocumented)public IsotonicRegressionModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<IsotonicRegressionModel>dataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)