public class AFTSurvivalRegression extends Estimator<AFTSurvivalRegressionModel> implements AFTSurvivalRegressionParams, DefaultParamsWritable, Logging
| Constructor and Description |
|---|
AFTSurvivalRegression() |
AFTSurvivalRegression(String uid) |
| Modifier and Type | Method and Description |
|---|---|
AFTSurvivalRegression |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
AFTSurvivalRegressionModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static AFTSurvivalRegression |
load(String path) |
static MLReader<T> |
read() |
AFTSurvivalRegression |
setAggregationDepth(int value)
Suggested depth for treeAggregate (greater than or equal to 2).
|
AFTSurvivalRegression |
setCensorCol(String value) |
AFTSurvivalRegression |
setFeaturesCol(String value) |
AFTSurvivalRegression |
setFitIntercept(boolean value)
Set if we should fit the intercept
Default is true.
|
AFTSurvivalRegression |
setLabelCol(String value) |
AFTSurvivalRegression |
setMaxIter(int value)
Set the maximum number of iterations.
|
AFTSurvivalRegression |
setPredictionCol(String value) |
AFTSurvivalRegression |
setQuantileProbabilities(double[] value) |
AFTSurvivalRegression |
setQuantilesCol(String value) |
AFTSurvivalRegression |
setTol(double value)
Set the convergence tolerance of iterations.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitcensorCol, getCensorCol, getQuantileProbabilities, getQuantilesCol, hasQuantilesCol, quantileProbabilities, quantilesCol, validateAndTransformSchemafeaturesCol, getFeaturesColgetLabelCol, labelColgetPredictionCol, predictionColgetMaxIter, maxIterfitIntercept, getFitInterceptaggregationDepth, getAggregationDepthclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningwritesavepublic AFTSurvivalRegression(String uid)
public AFTSurvivalRegression()
public static AFTSurvivalRegression load(String path)
public static MLReader<T> read()
public String uid()
Identifiableuid in interface Identifiablepublic AFTSurvivalRegression setFeaturesCol(String value)
public AFTSurvivalRegression setLabelCol(String value)
public AFTSurvivalRegression setCensorCol(String value)
public AFTSurvivalRegression setPredictionCol(String value)
public AFTSurvivalRegression setQuantileProbabilities(double[] value)
public AFTSurvivalRegression setQuantilesCol(String value)
public AFTSurvivalRegression setFitIntercept(boolean value)
value - (undocumented)public AFTSurvivalRegression setMaxIter(int value)
value - (undocumented)public AFTSurvivalRegression setTol(double value)
value - (undocumented)public AFTSurvivalRegression setAggregationDepth(int value)
value - (undocumented)public AFTSurvivalRegressionModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<AFTSurvivalRegressionModel>dataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public AFTSurvivalRegression copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<AFTSurvivalRegressionModel>extra - (undocumented)