public final class RegressionEvaluator extends Evaluator implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
| Constructor and Description |
|---|
RegressionEvaluator() |
RegressionEvaluator(String uid) |
| Modifier and Type | Method and Description |
|---|---|
RegressionEvaluator |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric.
|
String |
getMetricName() |
boolean |
isLargerBetter()
Indicates whether the metric returned by
evaluate should be maximized (true, default)
or minimized (false). |
static RegressionEvaluator |
load(String path) |
Param<String> |
metricName()
Param for metric name in evaluation.
|
static MLReader<T> |
read() |
RegressionEvaluator |
setLabelCol(String value) |
RegressionEvaluator |
setMetricName(String value) |
RegressionEvaluator |
setPredictionCol(String value) |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetPredictionCol, predictionColgetLabelCol, labelColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesavepublic RegressionEvaluator(String uid)
public RegressionEvaluator()
public static RegressionEvaluator load(String path)
public static MLReader<T> read()
public String uid()
Identifiableuid in interface Identifiablepublic Param<String> metricName()
"rmse" (default): root mean squared error
- "mse": mean squared error
- "r2": R^2^ metric
- "mae": mean absolute error
public String getMetricName()
public RegressionEvaluator setMetricName(String value)
public RegressionEvaluator setPredictionCol(String value)
public RegressionEvaluator setLabelCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
or minimized (false).
A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic RegressionEvaluator copy(ParamMap extra)
ParamsdefaultCopy().