public final class OneVsRestModel extends Model<OneVsRestModel> implements OneVsRestParams, MLWritable
OneVsRest
.
This stores the models resulting from training k binary classifiers: one for each class.
Each example is scored against all k models, and the model with the highest score
is picked to label the example.
param: labelMetadata Metadata of label column if it exists, or Nominal attribute representing the number of classes in training dataset otherwise. param: models The binary classification models for the reduction. The i-th model is produced by testing the i-th class (taking label 1) vs the rest (taking label 0).
Modifier and Type | Method and Description |
---|---|
OneVsRestModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static OneVsRestModel |
load(String path) |
ClassificationModel[] |
models() |
int |
numClasses() |
int |
numFeatures() |
static MLReader<OneVsRestModel> |
read() |
OneVsRestModel |
setFeaturesCol(String value) |
OneVsRestModel |
setPredictionCol(String value) |
OneVsRestModel |
setRawPredictionCol(String value) |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
classifier, getClassifier
validateAndTransformSchema
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
getRawPredictionCol, rawPredictionCol
getWeightCol, weightCol
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MLReader<OneVsRestModel> read()
public static OneVsRestModel load(String path)
public String uid()
Identifiable
uid
in interface Identifiable
public ClassificationModel[] models()
public int numClasses()
public int numFeatures()
public OneVsRestModel setFeaturesCol(String value)
public OneVsRestModel setPredictionCol(String value)
public OneVsRestModel setRawPredictionCol(String value)
public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public OneVsRestModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<OneVsRestModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable