public final class OnlineLDAOptimizer extends Object implements LDAOptimizer, Logging
An online optimizer for LDA. The Optimizer implements the Online variational Bayes LDA algorithm, which processes a subset of the corpus on each iteration, and updates the term-topic distribution adaptively.
Original Online LDA paper: Hoffman, Blei and Bach, "Online Learning for Latent Dirichlet Allocation." NIPS, 2010.
| Constructor and Description | 
|---|
| OnlineLDAOptimizer() | 
| Modifier and Type | Method and Description | 
|---|---|
| double | getKappa()Learning rate: exponential decay rate | 
| double | getMiniBatchFraction()Mini-batch fraction, which sets the fraction of document sampled and used in each iteration | 
| boolean | getOptimizeDocConcentration()Optimize docConcentration, indicates whether docConcentration (Dirichlet parameter for
 document-topic distribution) will be optimized during training. | 
| double | getTau0()A (positive) learning parameter that downweights early iterations. | 
| OnlineLDAOptimizer | setKappa(double kappa)Learning rate: exponential decay rate---should be between
 (0.5, 1.0] to guarantee asymptotic convergence. | 
| OnlineLDAOptimizer | setMiniBatchFraction(double miniBatchFraction)Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in
 each iteration. | 
| OnlineLDAOptimizer | setOptimizeDocConcentration(boolean optimizeDocConcentration)Sets whether to optimize docConcentration parameter during training. | 
| OnlineLDAOptimizer | setTau0(double tau0)A (positive) learning parameter that downweights early iterations. | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic double getTau0()
public OnlineLDAOptimizer setTau0(double tau0)
tau0 - (undocumented)public double getKappa()
public OnlineLDAOptimizer setKappa(double kappa)
kappa - (undocumented)public double getMiniBatchFraction()
public OnlineLDAOptimizer setMiniBatchFraction(double miniBatchFraction)
miniBatchFraction - (undocumented)LDA.setMaxIterations()
 so the entire corpus is used.  Specifically, set both so that
 maxIterations * miniBatchFraction is at least 1.
 Default: 0.05, i.e., 5% of total documents.
public boolean getOptimizeDocConcentration()
public OnlineLDAOptimizer setOptimizeDocConcentration(boolean optimizeDocConcentration)
Default: false
optimizeDocConcentration - (undocumented)