public class LinearSVCModel extends ClassificationModel<Vector,LinearSVCModel> implements MLWritable
LinearSVC| Modifier and Type | Method and Description |
|---|---|
static IntParam |
aggregationDepth() |
static Params |
clear(Param<?> param) |
Vector |
coefficients() |
LinearSVCModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
static BooleanParam |
fitIntercept() |
static <T> scala.Option<T> |
get(Param<T> param) |
static int |
getAggregationDepth() |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getFeaturesCol() |
static boolean |
getFitIntercept() |
static String |
getLabelCol() |
static int |
getMaxIter() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static String |
getRawPredictionCol() |
static double |
getRegParam() |
static boolean |
getStandardization() |
static double |
getThreshold() |
static double |
getTol() |
static String |
getWeightCol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
double |
intercept() |
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static Param<String> |
labelCol() |
static LinearSVCModel |
load(String path) |
static IntParam |
maxIter() |
int |
numClasses()
Number of classes (values which the label can take).
|
int |
numFeatures()
Returns the number of features the model was trained on.
|
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static Param<String> |
predictionCol() |
static Param<String> |
rawPredictionCol() |
static MLReader<LinearSVCModel> |
read() |
static DoubleParam |
regParam() |
static void |
save(String path) |
static <T> Params |
set(Param<T> param,
T value) |
static M |
setFeaturesCol(String value) |
static M |
setParent(Estimator<M> parent) |
static M |
setPredictionCol(String value) |
static M |
setRawPredictionCol(String value) |
LinearSVCModel |
setThreshold(double value) |
LinearSVCModel |
setWeightCol(double value) |
static BooleanParam |
standardization() |
static DoubleParam |
threshold() |
DoubleParam |
threshold()
Param for threshold in binary classification prediction.
|
static DoubleParam |
tol() |
static String |
toString() |
static Dataset<Row> |
transform(Dataset<?> dataset) |
static Dataset<Row> |
transform(Dataset<?> dataset,
ParamMap paramMap) |
static Dataset<Row> |
transform(Dataset<?> dataset,
ParamPair<?> firstParamPair,
ParamPair<?>... otherParamPairs) |
static Dataset<Row> |
transform(Dataset<?> dataset,
ParamPair<?> firstParamPair,
scala.collection.Seq<ParamPair<?>> otherParamPairs) |
static StructType |
transformSchema(StructType schema) |
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
static Param<String> |
weightCol() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
setRawPredictionCol, transformsetFeaturesCol, setPredictionCol, transformSchematransform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetRawPredictionCol, rawPredictionColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringgetRegParam, regParamgetMaxIter, maxIterfitIntercept, getFitInterceptgetStandardization, standardizationgetWeightCol, weightColaggregationDepth, getAggregationDepthgetThresholdsavegetLabelCol, labelColfeaturesCol, getFeaturesColgetPredictionCol, predictionColinitializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic static MLReader<LinearSVCModel> read()
public static LinearSVCModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Dataset<Row> transform(Dataset<?> dataset, ParamPair<?> firstParamPair, scala.collection.Seq<ParamPair<?>> otherParamPairs)
public static Dataset<Row> transform(Dataset<?> dataset, ParamPair<?> firstParamPair, ParamPair<?>... otherParamPairs)
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final Param<String> labelCol()
public static final String getLabelCol()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static M setFeaturesCol(String value)
public static M setPredictionCol(String value)
public static StructType transformSchema(StructType schema)
public static final Param<String> rawPredictionCol()
public static final String getRawPredictionCol()
public static M setRawPredictionCol(String value)
public static final DoubleParam regParam()
public static final double getRegParam()
public static final IntParam maxIter()
public static final int getMaxIter()
public static final BooleanParam fitIntercept()
public static final boolean getFitIntercept()
public static final DoubleParam tol()
public static final double getTol()
public static final BooleanParam standardization()
public static final boolean getStandardization()
public static final Param<String> weightCol()
public static final String getWeightCol()
public static final IntParam aggregationDepth()
public static final int getAggregationDepth()
public static double getThreshold()
public static final DoubleParam threshold()
public static void save(String path)
throws java.io.IOException
java.io.IOExceptionpublic String uid()
Identifiableuid in interface Identifiablepublic Vector coefficients()
public double intercept()
public int numClasses()
ClassificationModelnumClasses in class ClassificationModel<Vector,LinearSVCModel>public int numFeatures()
PredictionModelnumFeatures in class PredictionModel<Vector,LinearSVCModel>public LinearSVCModel setThreshold(double value)
public LinearSVCModel setWeightCol(double value)
public LinearSVCModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<LinearSVCModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic DoubleParam threshold()
threshold in interface HasThresholdpublic StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.