public class GaussianMixtureModel extends Model<GaussianMixtureModel> implements MLWritable
param: weights Weight for each Gaussian distribution in the mixture.
This is a multinomial probability distribution over the k Gaussians,
where weights(i) is the weight for Gaussian i, and weights sum to 1.
param: gaussians Array of MultivariateGaussian where gaussians(i) represents
the Multivariate Gaussian (Normal) Distribution for Gaussian i
| Modifier and Type | Method and Description |
|---|---|
static Params |
clear(Param<?> param) |
GaussianMixtureModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
static String |
explainParam(Param<?> param) |
static String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<String> |
featuresCol() |
MultivariateGaussian[] |
gaussians() |
Dataset<Row> |
gaussiansDF()
Retrieve Gaussian distributions as a DataFrame.
|
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static String |
getFeaturesCol() |
static int |
getK() |
int |
getK() |
static int |
getMaxIter() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<Object> |
getParam(String paramName) |
static String |
getPredictionCol() |
static String |
getProbabilityCol() |
static long |
getSeed() |
static double |
getTol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(String paramName) |
static boolean |
hasParent() |
boolean |
hasSummary()
Return true if there exists summary of model.
|
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
static IntParam |
k() |
IntParam |
k()
Number of independent Gaussians in the mixture model.
|
static GaussianMixtureModel |
load(String path) |
static IntParam |
maxIter() |
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static Param<String> |
predictionCol() |
static Param<String> |
probabilityCol() |
static MLReader<GaussianMixtureModel> |
read() |
static void |
save(String path) |
static LongParam |
seed() |
static <T> Params |
set(Param<T> param,
T value) |
GaussianMixtureModel |
setFeaturesCol(String value) |
static M |
setParent(Estimator<M> parent) |
GaussianMixtureModel |
setPredictionCol(String value) |
GaussianMixtureModel |
setProbabilityCol(String value) |
GaussianMixtureSummary |
summary()
Gets summary of model on training set.
|
static DoubleParam |
tol() |
static String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
StructType |
validateAndTransformSchema(StructType schema)
Validates and transforms the input schema.
|
double[] |
weights() |
MLWriter |
write()
Returns a
MLWriter instance for this ML instance. |
transform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringsavepublic static MLReader<GaussianMixtureModel> read()
public static GaussianMixtureModel load(String path)
public static String toString()
public static Param<?>[] params()
public static String explainParam(Param<?> param)
public static String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(String paramName)
public static Param<Object> getParam(String paramName)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final IntParam maxIter()
public static final int getMaxIter()
public static final Param<String> featuresCol()
public static final String getFeaturesCol()
public static final LongParam seed()
public static final long getSeed()
public static final Param<String> predictionCol()
public static final String getPredictionCol()
public static final Param<String> probabilityCol()
public static final String getProbabilityCol()
public static final DoubleParam tol()
public static final double getTol()
public static final IntParam k()
public static int getK()
public static void save(String path)
throws java.io.IOException
java.io.IOExceptionpublic String uid()
Identifiableuid in interface Identifiablepublic double[] weights()
public MultivariateGaussian[] gaussians()
public GaussianMixtureModel setFeaturesCol(String value)
public GaussianMixtureModel setPredictionCol(String value)
public GaussianMixtureModel setProbabilityCol(String value)
public GaussianMixtureModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<GaussianMixtureModel>extra - (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStageCheck transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public Dataset<Row> gaussiansDF()
root
|-- mean: vector (nullable = true)
|-- cov: matrix (nullable = true)
public MLWriter write()
MLWriter instance for this ML instance.
For GaussianMixtureModel, this does NOT currently save the training summary.
An option to save summary may be added in the future.
write in interface MLWritablepublic boolean hasSummary()
public GaussianMixtureSummary summary()
trainingSummary == None.public IntParam k()
public int getK()
public StructType validateAndTransformSchema(StructType schema)
schema - input schema