public class KMeansModel extends Model<KMeansModel> implements MLWritable
param: parentModel a model trained by spark.mllib.clustering.KMeans.
Modifier and Type | Method and Description |
---|---|
protected static <T> T |
$(Param<T> param) |
static Params |
clear(Param<?> param) |
Vector[] |
clusterCenters() |
double |
computeCost(Dataset<?> dataset)
Return the K-means cost (sum of squared distances of points to their nearest center) for this
model on the given data.
|
KMeansModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
protected static <T extends Params> |
copyValues(T to,
ParamMap extra) |
protected static <T extends Params> |
copyValues$default$2() |
protected static <T extends Params> |
defaultCopy(ParamMap extra) |
static java.lang.String |
explainParam(Param<?> param) |
static java.lang.String |
explainParams() |
static ParamMap |
extractParamMap() |
static ParamMap |
extractParamMap(ParamMap extra) |
static Param<java.lang.String> |
featuresCol() |
static <T> scala.Option<T> |
get(Param<T> param) |
static <T> scala.Option<T> |
getDefault(Param<T> param) |
static java.lang.String |
getFeaturesCol() |
static java.lang.String |
getInitMode() |
java.lang.String |
getInitMode() |
static int |
getInitSteps() |
int |
getInitSteps() |
static int |
getK() |
int |
getK() |
static int |
getMaxIter() |
static <T> T |
getOrDefault(Param<T> param) |
static Param<java.lang.Object> |
getParam(java.lang.String paramName) |
static java.lang.String |
getPredictionCol() |
static long |
getSeed() |
static double |
getTol() |
static <T> boolean |
hasDefault(Param<T> param) |
static boolean |
hasParam(java.lang.String paramName) |
static boolean |
hasParent() |
boolean |
hasSummary()
Return true if there exists summary of model.
|
protected static void |
initializeLogIfNecessary(boolean isInterpreter) |
static Param<java.lang.String> |
initMode() |
Param<java.lang.String> |
initMode()
Param for the initialization algorithm.
|
static IntParam |
initSteps() |
IntParam |
initSteps()
Param for the number of steps for the k-means|| initialization mode.
|
static boolean |
isDefined(Param<?> param) |
static boolean |
isSet(Param<?> param) |
protected static boolean |
isTraceEnabled() |
static IntParam |
k() |
IntParam |
k()
Set the number of clusters to create (k).
|
static KMeansModel |
load(java.lang.String path) |
protected static org.slf4j.Logger |
log() |
protected static void |
logDebug(scala.Function0<java.lang.String> msg) |
protected static void |
logDebug(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static void |
logError(scala.Function0<java.lang.String> msg) |
protected static void |
logError(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static void |
logInfo(scala.Function0<java.lang.String> msg) |
protected static void |
logInfo(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static java.lang.String |
logName() |
protected static void |
logTrace(scala.Function0<java.lang.String> msg) |
protected static void |
logTrace(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
protected static void |
logWarning(scala.Function0<java.lang.String> msg) |
protected static void |
logWarning(scala.Function0<java.lang.String> msg,
java.lang.Throwable throwable) |
static IntParam |
maxIter() |
static Param<?>[] |
params() |
static void |
parent_$eq(Estimator<M> x$1) |
static Estimator<M> |
parent() |
static Param<java.lang.String> |
predictionCol() |
static MLReader<KMeansModel> |
read() |
static void |
save(java.lang.String path) |
static LongParam |
seed() |
static <T> Params |
set(Param<T> param,
T value) |
protected static Params |
set(ParamPair<?> paramPair) |
protected static Params |
set(java.lang.String param,
java.lang.Object value) |
protected static <T> Params |
setDefault(Param<T> param,
T value) |
protected static Params |
setDefault(scala.collection.Seq<ParamPair<?>> paramPairs) |
KMeansModel |
setFeaturesCol(java.lang.String value) |
static M |
setParent(Estimator<M> parent) |
KMeansModel |
setPredictionCol(java.lang.String value) |
KMeansSummary |
summary()
Gets summary of model on training set.
|
static DoubleParam |
tol() |
static java.lang.String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
java.lang.String |
uid()
An immutable unique ID for the object and its derivatives.
|
protected static StructType |
validateAndTransformSchema(StructType schema) |
StructType |
validateAndTransformSchema(StructType schema)
Validates and transforms the input schema.
|
static void |
validateParams() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
transformSchema
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn, validateParams
toString
save
public static MLReader<KMeansModel> read()
public static KMeansModel load(java.lang.String path)
public static java.lang.String toString()
public static Param<?>[] params()
public static void validateParams()
public static java.lang.String explainParam(Param<?> param)
public static java.lang.String explainParams()
public static final boolean isSet(Param<?> param)
public static final boolean isDefined(Param<?> param)
public static boolean hasParam(java.lang.String paramName)
public static Param<java.lang.Object> getParam(java.lang.String paramName)
protected static final Params set(java.lang.String param, java.lang.Object value)
public static final <T> scala.Option<T> get(Param<T> param)
public static final <T> T getOrDefault(Param<T> param)
protected static final <T> T $(Param<T> param)
public static final <T> scala.Option<T> getDefault(Param<T> param)
public static final <T> boolean hasDefault(Param<T> param)
public static final ParamMap extractParamMap()
protected static java.lang.String logName()
protected static org.slf4j.Logger log()
protected static void logInfo(scala.Function0<java.lang.String> msg)
protected static void logDebug(scala.Function0<java.lang.String> msg)
protected static void logTrace(scala.Function0<java.lang.String> msg)
protected static void logWarning(scala.Function0<java.lang.String> msg)
protected static void logError(scala.Function0<java.lang.String> msg)
protected static void logInfo(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logDebug(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logTrace(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logWarning(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static void logError(scala.Function0<java.lang.String> msg, java.lang.Throwable throwable)
protected static boolean isTraceEnabled()
protected static void initializeLogIfNecessary(boolean isInterpreter)
public static Estimator<M> parent()
public static void parent_$eq(Estimator<M> x$1)
public static M setParent(Estimator<M> parent)
public static boolean hasParent()
public static final IntParam maxIter()
public static final int getMaxIter()
public static final Param<java.lang.String> featuresCol()
public static final java.lang.String getFeaturesCol()
public static final LongParam seed()
public static final long getSeed()
public static final Param<java.lang.String> predictionCol()
public static final java.lang.String getPredictionCol()
public static final DoubleParam tol()
public static final double getTol()
public static final IntParam k()
public static int getK()
public static final Param<java.lang.String> initMode()
public static java.lang.String getInitMode()
public static final IntParam initSteps()
public static int getInitSteps()
protected static StructType validateAndTransformSchema(StructType schema)
public static void save(java.lang.String path) throws java.io.IOException
java.io.IOException
public java.lang.String uid()
Identifiable
uid
in interface Identifiable
public KMeansModel copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Model<KMeansModel>
extra
- (undocumented)defaultCopy()
public KMeansModel setFeaturesCol(java.lang.String value)
public KMeansModel setPredictionCol(java.lang.String value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Derives the output schema from the input schema.
transformSchema
in class PipelineStage
schema
- (undocumented)public Vector[] clusterCenters()
public double computeCost(Dataset<?> dataset)
dataset
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public boolean hasSummary()
public KMeansSummary summary()
trainingSummary == None
.public IntParam k()
public int getK()
public Param<java.lang.String> initMode()
public java.lang.String getInitMode()
public IntParam initSteps()
public int getInitSteps()
public StructType validateAndTransformSchema(StructType schema)
schema
- input schema