public class ALS extends Object implements scala.Serializable, Logging
Constructor and Description |
---|
ALS() |
Modifier and Type | Method and Description |
---|---|
MatrixFactorizationModel |
run(JavaRDD<Rating> ratings) |
MatrixFactorizationModel |
run(RDD<Rating> ratings) |
ALS |
setAlpha(double alpha) |
ALS |
setBlocks(int numBlocks) |
ALS |
setCheckpointInterval(int checkpointInterval) |
ALS |
setFinalRDDStorageLevel(StorageLevel storageLevel) |
ALS |
setImplicitPrefs(boolean implicitPrefs) |
ALS |
setIntermediateRDDStorageLevel(StorageLevel storageLevel) |
ALS |
setIterations(int iterations) |
ALS |
setLambda(double lambda) |
ALS |
setNonnegative(boolean b) |
ALS |
setProductBlocks(int numProductBlocks) |
ALS |
setRank(int rank) |
ALS |
setSeed(long seed) |
ALS |
setUserBlocks(int numUserBlocks) |
static MatrixFactorizationModel |
train(RDD<Rating> ratings,
int rank,
int iterations) |
static MatrixFactorizationModel |
train(RDD<Rating> ratings,
int rank,
int iterations,
double lambda) |
static MatrixFactorizationModel |
train(RDD<Rating> ratings,
int rank,
int iterations,
double lambda,
int blocks) |
static MatrixFactorizationModel |
train(RDD<Rating> ratings,
int rank,
int iterations,
double lambda,
int blocks,
long seed) |
static MatrixFactorizationModel |
trainImplicit(RDD<Rating> ratings,
int rank,
int iterations) |
static MatrixFactorizationModel |
trainImplicit(RDD<Rating> ratings,
int rank,
int iterations,
double lambda,
double alpha) |
static MatrixFactorizationModel |
trainImplicit(RDD<Rating> ratings,
int rank,
int iterations,
double lambda,
int blocks,
double alpha) |
static MatrixFactorizationModel |
trainImplicit(RDD<Rating> ratings,
int rank,
int iterations,
double lambda,
int blocks,
double alpha,
long seed) |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static MatrixFactorizationModel train(RDD<Rating> ratings, int rank, int iterations, double lambda, int blocks, long seed)
public static MatrixFactorizationModel train(RDD<Rating> ratings, int rank, int iterations, double lambda, int blocks)
public static MatrixFactorizationModel train(RDD<Rating> ratings, int rank, int iterations, double lambda)
public static MatrixFactorizationModel train(RDD<Rating> ratings, int rank, int iterations)
public static MatrixFactorizationModel trainImplicit(RDD<Rating> ratings, int rank, int iterations, double lambda, int blocks, double alpha, long seed)
public static MatrixFactorizationModel trainImplicit(RDD<Rating> ratings, int rank, int iterations, double lambda, int blocks, double alpha)
public static MatrixFactorizationModel trainImplicit(RDD<Rating> ratings, int rank, int iterations, double lambda, double alpha)
public static MatrixFactorizationModel trainImplicit(RDD<Rating> ratings, int rank, int iterations)
public ALS setBlocks(int numBlocks)
public ALS setUserBlocks(int numUserBlocks)
public ALS setProductBlocks(int numProductBlocks)
public ALS setRank(int rank)
public ALS setIterations(int iterations)
public ALS setLambda(double lambda)
public ALS setImplicitPrefs(boolean implicitPrefs)
public ALS setAlpha(double alpha)
public ALS setSeed(long seed)
public ALS setNonnegative(boolean b)
public ALS setIntermediateRDDStorageLevel(StorageLevel storageLevel)
public ALS setFinalRDDStorageLevel(StorageLevel storageLevel)
public ALS setCheckpointInterval(int checkpointInterval)
public MatrixFactorizationModel run(RDD<Rating> ratings)
public MatrixFactorizationModel run(JavaRDD<Rating> ratings)