public class LogisticRegressionModel extends ClassificationModel<FeaturesType,M>
LogisticRegression
.Modifier and Type | Method and Description |
---|---|
LogisticRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
intercept() |
int |
numClasses()
Number of classes (values which the label can take).
|
M |
setProbabilityCol(String value) |
LogisticRegressionModel |
setThreshold(double value) |
DataFrame |
transform(DataFrame dataset)
Transforms dataset by reading from
featuresCol , and appending new columns as specified by
parameters:
- predicted labels as predictionCol of type Double
- raw predictions (confidences) as rawPredictionCol of type Vector
- probability of each class as probabilityCol of type Vector . |
String |
uid() |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
Vector |
weights() |
setRawPredictionCol
setFeaturesCol, setPredictionCol, transformSchema
transform, transform, transform
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
clear, copyValues, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, setDefault, shouldOwn, validateParams
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public String uid()
public Vector weights()
public double intercept()
public LogisticRegressionModel setThreshold(double value)
public int numClasses()
ClassificationModel
numClasses
in class ClassificationModel<Vector,LogisticRegressionModel>
public LogisticRegressionModel copy(ParamMap extra)
Params
copy
in interface Params
copy
in class Model<LogisticRegressionModel>
extra
- (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public M setProbabilityCol(String value)
public DataFrame transform(DataFrame dataset)
featuresCol
, and appending new columns as specified by
parameters:
- predicted labels as predictionCol
of type Double
- raw predictions (confidences) as rawPredictionCol
of type Vector
- probability of each class as probabilityCol
of type Vector
.
transform
in class ClassificationModel<FeaturesType,M extends org.apache.spark.ml.classification.ProbabilisticClassificationModel<FeaturesType,M>>
dataset
- input datasetpublic StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema
- input schemafitting
- whether this is in fittingfeaturesDataType
- SQL DataType for FeaturesType.
E.g., VectorUDT
for vector features.