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This document shows how to write C++ code that reads and writes OpenEXR image files. The text assumes
that  the  reader  is  familiar  with  OpenEXR terms  like  "channel",  "attribute",  or  "data  window".  For  an
explanation of those terms see the Technical Introduction to OpenEXR document.  The OpenEXR source
distribution contains a subdirectory, IlmImfExamples, with most of the code examples below. A Makefile is
also provided, so that the examples can easily be compiled and run. 
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1 Scan-line-based and Tiled OpenEXR files

In an OpenEXR file, pixel data can be stored either as scan lines or as tiles. Files that store pixels as tiles can
also store multiresolution images. For each of the two storage formats (scan line or tile-based), the IlmImf
library supports two reading and writing interfaces: the first, fully general, interface allows access to arbitrary
channels, and supports many different in-memory pixel data layouts. The second interface is easier to use, but
limits access to 16-bit (HALF) RGBA (red, green, blue, alpha) channels, and provides fewer options for laying
out pixels in memory. 

The interfaces for reading and writing OpenEXR files are implemented in the following eight C++ classes: 

tiles scan lines scan lines and tiles

arbitrary channels TiledInputFile InputFile

TiledOutputFile OutputFile

RGBA only TiledRgbaInputFile RgbaInputFile

TiledRgbaOutputFile RgbaOutputFile

The classes for reading scan-line-based images (InputFile and RgbaInputFile) can also be used to read
tiled image files. This way, programs that do not need support for tiled or multiresolution images can always
use the rather straightforward scan-line interfaces, without worrying about complications related to tiling and
multiple resolutions. When a multiresolution file is read via a scan-line interface, only the highest-resolution
version of the image is accessible. 
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2 Using the RGBA-only Interface for Scan-line-based Files

2.1 Writing an RGBA Image File

Writing a simple RGBA image file is fairly straightforward: 

    void
    writeRgba1 (const char fileName[],
                const Rgba *pixels,
                int width,
                int height)
    {
        RgbaOutputFile file (fileName, width, height, WRITE_RGBA);      // 1
        file.setFrameBuffer (pixels, 1, width);                         // 2
        file.writePixels (height);                                      // 3
    }

Construction of an RgbaOutputFile object, in line 1, creates an OpenEXR header, sets the header's attributes,
opens the file with the specified name, and stores the header in the file. The header's display window and data
window are both set to (0, 0) - (width-1, height-1). The channel list contains four channels, R, G,
B, and A, of type HALF. 

Line 2 specifies how the pixel data are laid out in memory. In our example, the pixels pointer is assumed to
point to the beginning of an array of  width*height pixels. The pixels are represented as  Rgba structs,
which are defined like this: 

    struct Rgba
    {
        half r;    // red
        half g;    // green
        half b;    // blue
        half a;    // alpha (opacity)
    };

The elements of our  array are arranged so that  the pixels  of each scan line are contiguous in memory.
The setFrameBuffer() function takes  three  arguments,  base,  xStride,  and  ystride.  To find  the
address of pixel (x,y), the RgbaOutputFile object computes 

    base + x * xStride + y * yStride.

In this case,  base,  xStride and yStride are set to  pixels,  1, and width, respectively, indicating that
pixel (x,y) can be found at memory address 

    pixels + 1 * x + width * y.

The call to writePixels(), in line 3, copies the image's pixels from memory to the file. The argument to
writePixels(), height, specifies how many scan lines worth of data are copied. 

Finally, returning from function writeRgba1() destroys the local RgbaOutputFile object, thereby closing
the file. 

Why do we have to tell the writePixels() function how many scan lines we want to write? Shouldn't the
RgbaOutputFile object be able to derive the number of scan lines from the data window? The IlmImf
library doesn't require writing all scan lines with a single  writePixels() call.  Many programs want to
write scan lines individually, or in small blocks. For example, rendering computer-generated images can take
a significant amount of time, and many rendering programs want to store each scan line in the image file as
soon as all of the pixels for that scan line are available. This way, users can look at a partial image before
rendering is finished. The IlmImf library allows writing the scan lines in top-to-bottom or bottom-to-top
direction.  The  direction  is  defined  by  the  file  header's  line  order  attribute  (INCREASING_Y or
DECREASING_Y). By default, scan lines are written top to bottom (INCREASING_Y). 
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You may have noticed that in the example above, there are no explicit checks to verify that writing the file
actually succeeded. If the IlmImf library detects an error, it throws a C++ exception instead of returning a C-
style error code. With exceptions, error handling tends to be easier to get right than with error return values.
For instance, a program that calls our writeRgba1() function can handle all possible error conditions with a
single try/catch block: 

    try
    {
        writeRgba1 (fileName, pixels, width, height);
    }
    catch (const std::exception &exc)
    {
        std::cerr << exc.what() << std::endl;
    }

2.2 Writing a Cropped Image

Now we are going to store a cropped image in a file. For this example, we assume that we have a frame buffer
that  is large enough to hold an image with  width by  height pixels, but only part  of the frame buffer
contains valid data.  In the file's header, the size of the whole image is indicated by the display window,
(0, 0) - (width-1, height-1), and the data window specifies the region for which valid pixel data
exist. Only the pixels in the data window are stored in the file. 

    void
    writeRgba2 (const char fileName[],
                const Rgba *pixels,
                int width,
                int height,
                const Box2i &dataWindow)
    {
        Box2i displayWindow (V2i (0, 0), V2i (width - 1, height - 1));
        RgbaOutputFile file (fileName, displayWindow, dataWindow, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, width);
        file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
    }

The code above is similar to that in section 2.1, where the whole image was stored in the file. Two things are
different, however: When the RgbaOutputFile object is created, the data window and the display window
are explicitly specified rather than being derived from the image's width and height. The number of scan lines
stored in the file by writePixels() is equal to the height of the data window instead of the height of the
whole image. Since we are using the default INCREASING_Y direction for storing the scan lines in the file,
writePixels() starts at the top of the data window, at y coordinate  dataWindow.min.y, and proceeds
toward the bottom, at y coordinate dataWindow.max.y. 

Even though we are storing only part of the image in the file, the frame buffer is still large enough to hold the
whole image. In order to save memory, a smaller frame buffer could have been allocated, just big enough to
hold the contents of the data window. Assuming that the pixels were still stored in contiguous scan lines, with
the  pixels pointer  pointing  to  the  pixel  at  the  upper  left  corner of  the  data  window,  at  coordinates
(dataWindow.min.x, dataWindow.min.y),  the  arguments  to  the  setFrameBuffer() call  would
have to be to be changed as follows: 

    int dwWidth = dataWindow.max.x - dataWindow.min.x + 1;

    file.setFrameBuffer
        (pixels - dataWindow.min.x - dataWindow.min.y * dwWidth, 1, dwWidth);

With these settings, evaluation of 

    base + x * xStride + y * yStride

for pixel (dataWindow.min.x, dataWindow.min.y) produces 
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      pixels - dataWindow.min.x - dataWindow.min.y * dwWidth
        + dataWindow.min.x * 1
        + dataWindow.min.y * dwWidth

    = pixels -
        - dataWindow.min.x
        - dataWindow.min.y * (dataWindow.max.x - dataWindow.min.x + 1)
        + dataWindow.min.x
        + dataWindow.min.y * (dataWindow.max.x - dataWindow.min.x + 1)

    = pixels,

which is exactly what we want. Similarly, calculating the addresses for pixels  (dataWindow.min.x+1,
dataWindow.min.y) and  (dataWindow.min.x,  dataWindow.min.y+1) yields  pixels+1 and
pixels+dwWidth, respectively. 

2.3 Storing Custom Attributes

We will now to store an image in a file, and we will add two extra attributes  to the image file header: a string,
called "comments", and a 4×4 matrix, called "cameraTransform". 

    void
    writeRgba3 (const char fileName[],
                const Rgba *pixels,
                int width,
                int height,
                const char comments[],
                const M44f &cameraTransform)
    {
        Header header (width, height);
        header.insert ("comments", StringAttribute (comments));
        header.insert ("cameraTransform", M44fAttribute (cameraTransform));

        RgbaOutputFile file (fileName, header, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, width);
        file.writePixels (height);
    }

The  setFrameBuffer() and  writePixels() calls  are  the  same  as  in  the  previous  examples,  but
construction  of  the  RgbaOutputFile object  is  different.  The  constructors  in  the  previous  examples
automatically created a header on the fly, and immediately stored it in the file. Here we explicitly create a
header and add our own attributes to it. When we create the RgbaOutputFile object, we tell the constructor
to use our header instead of creating its own. 

In order to make it easier to exchange data between programs written by different people, the IlmImf library
defines a set of standard attributes for commonly used data, such as colorimetric information, time and place
where an image was recorded, or the owner of an image file's  content. For the current  list  of standard
attributes,  see the header  file  ImfStandardAttributes.h.  The list  is  expected to  grow over time as
OpenEXR users identify new types of data they would like to represent in a standard format. If you need to
store some piece of information in an OpenEXR file header, it is probably a good idea to check if a suitable
standard attribute exists, before you define a new attribute. 

2.4 Reading an RGBA Image File

Reading an RGBA image is almost as easy as writing one: 

    void
    readRgba1 (const char fileName[],
               Array2D<Rgba> &pixels,
               int &width,
               int &height)
    {
        RgbaInputFile file (fileName);
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        Box2i dw = file.dataWindow();

        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        pixels.resizeErase (height, width);

        file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width, 1, width);
        file.readPixels (dw.min.y, dw.max.y);
    }

Constructing an RgbaInputFile object, passing the name of the file to the constructor, opens the file and
reads the file's header. 

After asking the RgbaInputFile object for the file's data window, we allocate a buffer for the pixels. For
convenience, we use the IlmImf library's  Array2D class template (the call  to  resizeErase() does the
actual allocation). The number of scan lines in the buffer is equal to the height of the data window, and the
number of pixels per scan line is equal to the width of the data window. The pixels are represented as Rgba
structs. 

Note that we ignore the display window in this example; in a program that wanted to place the pixels in the
data window correctly in an overall image, the display window would have to be taken into account. 

Just  as  for  writing a  file,  calling  setFrameBuffer() tells  the  RgbaInputFile object  how to access
individual pixels in the buffer (see also section 2.2, Writing a Cropped Image, on page 4). 

Calling readPixels() copies the pixel data from the file into the buffer. If one or more of the R, G, B, and
A channels are missing in the file, the corresponding field in the pixels is filled with an appropriate default
value. The default value for R, G and B is 0.0, or black; the default value for A is 1.0, or opaque. 

Finally, returning from function readRgba1() destroys the local  RgbaInputFile object, thereby closing
the file. 

Unlike  the  RgbaOutputFile's  writePixels() method,  readPixels() has  two  arguments.  Calling
readPixels(y1,y2) copies the pixels for all scan lines with y coordinates from y1 to y2 into the frame
buffer. This allows access to the the scan lines in any order. The image can be read all at once, one scan line
at a time, or in small blocks of a few scan lines. It is also possible to skip parts of the image. 

Note that even though random access is possible,  reading the scan lines in the same order as they were
written, is more efficient. Random access to the file requires seek operations, which tend to be slow. Calling
the RgbaInputFile's lineOrder() method returns the order in which the scan lines in the file were written
(INCREASING_Y or DECREASING_Y). If successive calls to readPixels() access the scan lines in the right
order, the IlmImf library reads the file as fast as possible, without seek operations. 

2.5 Reading an RGBA Image File in Chunks

The following shows how to read an RGBA image in blocks of a few scan lines. This is useful for programs
that want to process high-resolution images without allocating enough memory to hold the complete image.
These programs typically read a few scan lines worth of pixels into a memory buffer, process the pixels, and
store them in another file. The buffer is then re-used for the next set of scan lines. Image operations like color-
correction or compositing ("A over B") are very easy to do incrementally this way. With clever buffering of a
few extra scan lines, incremental versions of operations that require access to neighboring pixels, like blurring
or sharpening, are also possible. 

    void
    readRgba2 (const char fileName[])
    {
        RgbaInputFile file (fileName);
        Box2i dw = file.dataWindow();

        int width  = dw.max.x - dw.min.x + 1;
        int height = dw.max.y - dw.min.y + 1;
        Array2D<Rgba> pixels (10, width);
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        while (dw.min.y <= dw.max.y)
        {
            file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width,
                                 1, width);

            file.readPixels (dw.min.y, min (dw.min.y + 9, dw.max.y));
            // processPixels (pixels)
            
            dw.min.y += 10;
        }
    }

Again, we open the file and read the file header by constructing an RgbaInputFile object. Then we allocate
a memory buffer that is just large enough to hold ten complete scan lines. We call readPixels() to copy
the pixels from the file into our buffer, ten scan lines at a time. Since we want to re-use the buffer for every
block of ten scan lines, we have to call  setFramebuffer() before each readPixels() call, in order to
associate  memory address  &pixels[0][0] first with pixel coordinates  (dw.min.x, dw.min.y),  then
with (dw.min.x, dw.min.y+10), (dw.min.x, dw.min.y+20) and so on. 

2.6 Reading Custom Attributes

In section 2.3, we showed how to store custom attributes in the image file header. Here we show how to test
whether a given file's header contains particular attributes, and how to read those attributes' values. 

    void
    readHeader (const char fileName[])
    {
        RgbaInputFile file (fileName);

        const StringAttribute *comments =
            file.header().findTypedAttribute <StringAttribute> ("comments");

        const M44fAttribute *cameraTransform = 
            file.header().findTypedAttribute <M44fAttribute> ("cameraTransform");

        if (comments)
            cout << "comments\n   " << comments->value() << endl;

        if (cameraTransform)
            cout << "cameraTransform\n" << cameraTransform->value() << flush;
    }

As usual, we open the file by constructing an RgbaInputFile object. Calling findTypedAttribute<T>(n)
searches  the  header  for  an  attribute  with  type  T and  name  n.  If  a  matching  attribute  is  found,
findTypedAttribute() returns a pointer to the attribute. If the header contains no attribute with name n,
or if the header contains an attribute with name n, but the attribute's type is not T, findAttribute() returns
0. Once we have pointers to the attributes we were looking for, we can access their values by calling the
attributes' value() methods. 

In this example, we handle the possibility that the attributes we want may not exist by explicitly checking for
0 pointers. Sometimes it is more convenient to rely on exceptions instead. Function typedAttribute(),
a variation of  findTypedAttribute(), also searches the header for an attribute with a given name and
type, but if the attribute in question does not exist,  typedAttribute() throws an exception rather than
returning 0. 

Note  that  the  pointers  returned  by  findTypedAttribute() point  to  data  that  are  part  of  the
RgbaInputFile object. The pointers become invalid as soon as the RgbaInputFile object is destroyed.
Therefore, the following will not work: 
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    void
    readComments (const char fileName[], StringAttribute *&comments)
    {
        // error: comments pointer is invalid after this function returns
        RgbaInputFile file (fileName);
        comments = file.header().findTypedAttribute <StringAttribute> ("comments");
    }

readComments() must copy the attribute's value before it returns; for example, like this: 

    void
    readComments (const char fileName[], string &comments)
    {

        RgbaInputFile file (fileName);
        comments = file.header().typedAttribute<StringAttribute>("comments").value();
    }

2.7 Luminance/Chroma and Gray-Scale Images

Writing an RGBA image file usually preserves the pixels without losing any data; saving an image file and
reading it back does not alter the pixels' R, G, B and A values. Most of the time, lossless data storage is
exactly what we want, but sometimes file space or transmission bandwidth are limited, and we would like to
reduce the size of our image files. It is often acceptable if the numbers in the pixels change slightly as long as
the image still looks just like the original. 

The RGBA interface in the IlmImf library supports storing RGB data in luminance/chroma format. The R, G,
and B channels are converted into a luminance channel, Y, and two chroma channels, RY and BY. The Y
channel represents a pixel's brightness, and the two chroma channels represent its color. The human visual
system's spatial resolution for color is much lower than the spatial resolution for brightness. This allows us to
reduce the horizontal  and vertical  resolution of the RY and BY channels by a factor of two. The visual
appearance of the image doesn't change, but the image occupies only half as much space, even before data
compression is applied. (For every four pixels, we store four Y values, one RY value, and one BY value,
instead of four R, four G, and four B values.) 

When opening a file for writing, a program can select how it wants the pixels to be stored. The constructors
for class RgbaOutputFile have an rgbaChannels argument, which determines the set of channels in the
file:

WRITE_RGB red, green, blue 

WRITE_RGBA red, green, blue, alpha

WRITE_YC luminance, chroma

WRITE_YCA luminance, chroma, alpha

WRITE_Y luminance only

WRITE_YA luminance, alpha

WRITE_Y and WRITE_YA provide an efficient way to store gray-scale images. The chroma channels for a
gray-scale image contain only zeroes, so they can be omitted from the file. 

When an image file is opened for reading, class  RgbaInputFile automatically detects luminance/chroma
images and converts the pixels back to RGB format. 
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3 Using the General Interface for Scan-line-based Files

3.1 Writing an Image File

This example demonstrates how to write an OpenEXR image file with two channels: one channel, of type
HALF, is called G, and the other, of type  FLOAT, is called Z. The size of the image is  width by height
pixels. The data for the two channels are supplied in two separate buffers, gPixels and zPixels. Within
each buffer, the pixels of each scan line are contiguous in memory. 

    void
    writeGZ1 (const char fileName[],
              const half *gPixels,
              const float *zPixels,
              int width,
              int height)
    {
        Header header (width, height);                                    // 1
        header.channels().insert ("G", Channel (HALF));                   // 2
        header.channels().insert ("Z", Channel (FLOAT));                  // 3
    
        OutputFile file (fileName, header);                               // 4

        FrameBuffer frameBuffer;                                          // 5

        frameBuffer.insert ("G",                                // name   // 6
                            Slice (HALF,                        // type   // 7
                                   (char *) gPixels,            // base   // 8
                                   sizeof (*gPixels) * 1,       // xStride// 9
                                   sizeof (*gPixels) * width)); // yStride// 10

        frameBuffer.insert ("Z",                                // name   // 11
                            Slice (FLOAT,                       // type   // 12
                                   (char *) zPixels,            // base   // 13
                                   sizeof (*zPixels) * 1,       // xStride// 14
                                   sizeof (*zPixels) * width)); // yStride// 15

        file.setFrameBuffer (frameBuffer);                                // 16
        file.writePixels (height);                                        // 17
    }

In line 1, an OpenEXR header is created, and the header's display window and data window are both set to
(0, 0) - (width-1, height-1). 

Lines 2 and 3 specify the names and types of the image channels that will be stored in the file. 

Constructing an OutputFile object in line 4 opens the file with the specified name, and stores the header in
the file. 

Lines 5 through 16 tell the  OutputFile object how the pixel data for the image channels are laid out in
memory. After constructing a FrameBuffer object, a Slice is added for each of the image file's channels.
A Slice describes the memory layout of one channel. The constructor  for the  Slice object takes four
arguments,  type,  base,  xStride,  and  yStride.  type specifies  the pixel data  type (HALF,  FLOAT,  or
UINT); the other three arguments define the memory address of pixel (x,y) as 

    base + x * xStride + y * yStride.

Note that base is of type char*, and that offsets from base are not implicitly multiplied by the size of an
individual pixel, as in the RGBA-only interface.  xStride and yStride must explictly take the size of the
pixels into account. 

With the values specified in our example, the IlmImf library computes the address of the G channel of pixel
(x,y) like this: 
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    (half*)((char*)gPixels + x * sizeof(half) * 1 + y * sizeof(half) * width)
  = (half*)((char*)gPixels + x * 2 + y * 2 * width),

The address of the Z channel of pixel (x,y) is 

    (float*)((char*)zPixels + x * sizeof(float) * 1 + y * sizeof(float) * width)
  = (float*)((char*)zPixels + x * 4 + y * 4 * width).

The writePixels() call in line 17 copies the image's pixels from memory into the file. As in the RGBA-
only interface, the argument to writePixels() specifies how many scan lines are copied into the file (see
section 2.1, Writing an RGBA Image File, on page 3). 

If the image file contains a channel for which the FrameBuffer object has no corresponding Slice, then
the pixels for that channel in the file are filled with zeroes. If the FrameBuffer object contains a Slice for
which the file has no channel, then the Slice is ignored. 

Returning from function writeGZ1() destroys the local OutputFile object and closes the file. 

3.2 Writing a Cropped Image

Writing a cropped image using the general  interface is  analogous to writing a  cropped image using the
RGBA-only interface, as shown in section 2.2, on page 4: In the file's header the data window is set explicitly
instead of being generated automatically from the image's width and height. The number of scan lines that are
stored in the file is equal to the height of the data window, instead of the height of the entire image. As in
section 2.2, the example code below assumes that the memory buffers for the pixels are large enough to hold
width by height pixels, but only the region that corresponds to the data window will be stored in the file.
For smaller memory buffers with room only for the pixels in the data window, the  base,  xStride and
yStride arguments for the FrameBuffer object's slices would have to be adjusted accordingly (again, see
section 2.2). 

    void
    writeGZ2 (const char fileName[],
              const half *gPixels,
              const float *zPixels,
              int width,
              int height,
              const Box2i &dataWindow)
    {
        Header header (width, height);
        header.dataWindow() = dataWindow;
        header.channels().insert ("G", Channel (HALF));
        header.channels().insert ("Z", Channel (FLOAT));

        OutputFile file (fileName, header);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("G",                                // name
                            Slice (HALF,                        // type
                                   (char *) gPixels,            // base
                                   sizeof (*gPixels) * 1,       // xStride
                                   sizeof (*gPixels) * width)); // yStride

        frameBuffer.insert ("Z",                                // name
                            Slice (FLOAT,                       // type
                                   (char *) zPixels,            // base
                                   sizeof (*zPixels) * 1,       // xStride
                                   sizeof (*zPixels) * width)); // yStride

        file.setFrameBuffer (frameBuffer);
        file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);
    }
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3.3 Reading an Image File

In this example, we read an OpenEXR image file using the IlmImf library's general interface. We assume that
the file contains two channels, R, and G, of type HALF, and one channel, Z, of type FLOAT. If one of those
channels is not present in the image file, the corresponding memory buffer for the pixels will be filled with an
appropriate default value. 

    void
    readGZ1 (const char fileName[],
             Array2D<half> &rPixels,
             Array2D<half> &gPixels,
             Array2D<float> &zPixels,
             int &width, int &height)
    {
        InputFile file (fileName);

        Box2i dw = file.header().dataWindow();
        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;

        rPixels.resizeErase (height, width);
        gPixels.resizeErase (height, width);
        zPixels.resizeErase (height, width);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("R",                                  // name
                            Slice (HALF,                          // type
                                   (char *) (&rPixels[0][0] -     // base
                                             dw.min.x -
                                             dw.min.y * width),
                                   sizeof (rPixels[0][0]) * 1,    // xStride
                                   sizeof (rPixels[0][0]) * width,// yStride
                                   1, 1,                          // x/y sampling
                                   0.0));                         // fillValue

        frameBuffer.insert ("G",                                  // name
                            Slice (HALF,                          // type
                                   (char *) (&gPixels[0][0] -     // base
                                             dw.min.x -
                                             dw.min.y * width),
                                   sizeof (gPixels[0][0]) * 1,    // xStride
                                   sizeof (gPixels[0][0]) * width,// yStride
                                   1, 1,                          // x/y sampling
                                   0.0));                         // fillValue

        frameBuffer.insert ("Z",                                  // name
                            Slice (FLOAT,                         // type
                                   (char *) (&zPixels[0][0] -     // base
                                             dw.min.x -
                                             dw.min.y * width),
                                   sizeof (zPixels[0][0]) * 1,    // xStride
                                   sizeof (zPixels[0][0]) * width,// yStride
                                   1, 1,                          // x/y sampling
                                   FLT_MAX));                     // fillValue

        file.setFrameBuffer (frameBuffer);
        file.readPixels (dw.min.y, dw.max.y);
    }

First, we open the file with the specified name, by constructing an InputFile object. 

Using the  Array2D class template, we allocate memory buffers for the image's R, G and Z channels. The
buffers are big enough to hold all pixels in the file's data window. 
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Next, we create a FrameBuffer object, which describes our buffers to the IlmImf library. For each image
channel, we add a slice to the FrameBuffer. 

As usual, the slice's  type,  xStride, and  yStride describe the corresponding buffer's layout. For the R
channel, pixel  (dw.min.x, dw.min.y) is at address &rPixels[0][0]. By setting the type,  xStride
and yStride of the corresponding Slice object as shown above, evaluating 

    base + x * xStride + y * yStride

for pixel (dw.min.x, dw.min.y) produces 

      (char*)(&rPixels[0][0] - dw.min.x - dw.min.y * width)
       + dw.min.x * sizeof (rPixels[0][0]) * 1
       + dw.min.y * sizeof (rPixels[0][0]) * width

    = (char*)&rPixels[0][0]
       - dw.min.x * sizeof (rPixels[0][0])
       - dw.min.y * sizeof (rPixels[0][0]) * width
       + dw.min.x * sizeof (rPixels[0][0])
       + dw.min.y * sizeof (rPixels[0][0]) * width

    = &rPixels[0][0].

The address calculations for pixels (dw.min.x+1, dw.min.y) and (dw.min.x, dw.min.y+1) produce
&rPixels[0][0]+1 and  &rPixels[0][0]+width,  which  is  equivalent  to  &rPixels[0][1] and
&rPixels[1][0]. 

Each Slice has a fillValue. If the image file does not contain an image channel for the Slice, then the
corresponding memory buffer will be filled with the fillValue. 

The Slice's remaining two parameters,  xSampling and ySampling are used for images where some of
the channels are subsampled, for instance, the RY and BY channels in luminance/chroma images. (see section
2.7, Luminance/Chroma and Gray-scale Images, on page 8). Unless an image contains subsampled channels,
xSampling and ySampling should always be set to 1. For details see header files ImfFrameBuffer.h and
ImfChannelList.h. 

After describing our memory buffers' layout, we call readPixels() to copy the pixel data from the file into
the buffers. Just as with the RGBA-only interface, readPixels() allows random-access to the scan lines in
the file (see section 2.5 Reading an RGBA Image File, on page 6). 

3.4 Interleaving Image Channels in the Frame Buffer

Here is a variation of the previous example. We are reading an image file, but instead of storing each image
channel in a separate memory buffer, we interleave the channels in a single buffer. The buffer is an array of
structs, which are defined like this: 

    typedef struct GZ
    {
        half  g;
        float z;
    };

The code to read the file is almost the same as before; aside from reading only two instead of three channels,
the only difference is how base,  xStride and yStride for the  Slices in the FrameBuffer object are
computed: 
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    void
    readGZ2 (const char fileName[],
             Array2D<GZ> &pixels,
             int &width, int &height)
    {
        InputFile file (fileName);

        Box2i dw = file.header().dataWindow();
        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        int dx = dw.min.x;
        int dy = dw.min.y;

        pixels.resizeErase (height, width);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("G",
                            Slice (HALF,
                                   (char *) &pixels[-dy][-dx].g,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));

        frameBuffer.insert ("Z",
                            Slice (FLOAT,
                                   (char *) &pixels[-dy][-dx].z,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));

        file.setFrameBuffer (frameBuffer);
        file.readPixels (dw.min.y, dw.max.y);
    }

3.5 Which Channels are in a File?

In functions readGZ1() and readGZ2(), above, we simply assumed that the files we were trying to read
contained a certain set of channels. We relied on the IlmImf library to do "something reasonable" in case our
assumption was not true. Sometimes we want to know exactly what channels are in an image file before
reading any pixels, so that we can do what we think is appropriate. 

The file's header contains the file's channel list. Using iterators similar to those in the C++ Standard Template
Library, we can iterate over the channels: 

    const ChannelList &channels = file.header().channels();

    for (ChannelList::ConstIterator i = channels.begin(); i != channels.end(); ++i)
    {
        const Channel &channel = i->second;
        // ...
    }

Channels can also be accessed by name, either with the [] operator, or with the findChannel() function: 

    const ChannelList &channels = file.header().channels();
    const Channel &channel = channelList["G"];
    const Channel *channelPtr = channelList.findChannel("G");

The difference between the  [] operator and  findChannel() function is how errors are handled:  If the
channel in question is not present, findChannel() returns 0; the [] operator throws an exception. 
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3.6 Layers

In an image file with many channels it is sometimes useful to group the channels into layers, that is, into sets
of channels that logically belong together. Grouping channels into layers is done using a naming convention:
channel C in layer L is called L.C.

For example, a computer-generated picture of a 3D scene may contain a separate set of R, G and B channels
for the light that originated at each one of the light sources in the scene.  Every set of R, G, and B channels is
in its own layer.  If the layers are called light1, light2, light3, etc., then the full names of the channels in this
image are light1.R, light1.G, light1.B, light2.R, light2.G, light2.B, light3.R, and so on.

Layers can be nested; for instance, light1.specular.R refers to the R channel in the specular sub-layer of layer
light1.

Channel names that do not contain a ".", or that contain a "." only at the beginning or at the end are not
considered to be part of any layer.

Class ChannelList has two member functions that support per-layer access to channels: layers() returns
the names of all layers in a ChannelList, and channelsInLayer() converts a layer name into a pair of
iterators that allows iterating over the channels in the corresponding layer.

The following sample code prints the layers in a ChannelList and the channels in each layer:

    const ChannelList &channels = ... ;

    set<string> layerNames;
    channels.layers (layerNames);

    for (set<string>::const_iterator i = layerNames.begin();
         i != layerNames.end();
         ++i)
    {
        cout << "layer " << *i << endl;

        ChannelList::ConstIterator layerBegin, layerEnd;
        channels.channelsInLayer (*i, layerBegin, layerEnd);

        for (ChannelList::ConstIterator j = layerBegin;
             j != layerEnd;
             ++j)
        {
            cout << "\tchannel " << j.name() << endl;
        }
    }
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4 Tiles, Levels and Level Modes

A single tiled OpenEXR file can hold multiple versions of an image, each with a different resolution. Each
version is called a  level. A tiled file's level mode defines how many levels are stored in the file. There are
three different level modes: 

ONE_LEVEL The file contains only a single, full-resolution level. A ONE_LEVEL image file is
equivalent to a scan-line-based file; the only difference is that  the pixels are
accessed by tile instead of by scan line. 

MIPMAP_LEVELS The  file  contains  multiple  levels.  The  first  level  holds  the  image  at  full
resolution. Each successive level is half the resolution of the previous level in x
and y direction. The last level contains only a single pixel.  MIPMAP_LEVELS
files are used for texture-mapping and similar applications. 

RIPMAP_LEVELS Like  MIPMAP_LEVELS,  but  with  more  levels.  The  levels  include  all
combinations  of  reducing  the  resolution  of  the  image  by  powers  of  two
independently  in  x  and  y  direction.  Used  for  texture  mapping,  like
MIPMAP_LEVELS.  The additional levels in a RIPMAP_LEVELS file can help to
accelerate anisotropic filtering during texture lookups. 

In  MIPMAP_LEVELS and  RIPMAP_LEVELS mode, the size (width or height) of each level is computed by
halving the size of the level with the next higher resolution. If the size of the higher-resolution level is odd,
then the size of the lower-resolution level must be rounded up or down in order to avoid arriving at a non-
integer width or height. The rounding direction is determined by the file's level size rounding mode. 

Within each level, the pixels of the image are stored in a two-dimensional  array of tiles.  The tiles in an
OpenEXR file can be any rectangular shape, but all tiles in a file have the same size. This means that lower-
resolution levels contain fewer, rather than smaller, tiles. 

An OpenEXR file's level mode and rounding mode, and the size of the tiles are stored in an attribute in the file
header. The value of this attribute is a TileDescription object: 

    enum LevelMode
    {
        ONE_LEVEL,
        MIPMAP_LEVELS,
        RIPMAP_LEVELS
    };

    enum LevelRoundingMode
    {
        ROUND_DOWN,
        ROUND_UP
    };

    class TileDescription
    {
      public:

        unsigned int      xSize;        // size of a tile in the x dimension
        unsigned int      ySize;        // size of a tile in the y dimension
        LevelMode         mode;
        LevelRoundingMode roundingMode;

        ...                             // (methods omitted)
    };
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5 Using the RGBA-only Interface for Tiled Files

5.1 Writing a Tiled RGBA Image File with One Resolution Level

Writing a tiled RGBA image with a single level is easy: 

    void
    writeTiledRgbaONE1 (const char fileName[],
                        const Rgba *pixels,
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,         // image size
                                 tileWidth, tileHeight, // tile size
                                 ONE_LEVEL,             // level mode
                                 ROUND_DOWN,            // rounding mode
                                 WRITE_RGBA);           // channels in file // 1

        out.setFrameBuffer (pixels, 1, width);                              // 2
out.writeTiles (0, out.numXTiles() - 1, 0, out.numYTiles() - 1); // 3

    }

Opening the file and defining the pixel data layout in memory are done in almost the same way as for scan-
line-based files: 

Construction of the TiledRgbaOutputFile object, in line 1, creates an OpenEXR header, sets the header's
attributes, opens the file with the specified name, and stores the header in the file.  The header's display
window and data window are both set to (0, 0) - (width-1, height-1). The size of each tile in the
file will be tileWidth by tileHeight pixels. The channel list contains four channels, R, G, B, and A, of
type HALF. 

Line 2 specifies how the pixel data are laid out in memory. The arithmetic involved in calculating the memory
address of a specific pixel is the same as for the scan-line-based interface (see section 2.1). We assume that
the pixels pointer points to an array of width*height pixels, which contains the entire image. 

Line 3 copies the pixels into the file. The  TiledRgbaOutputFile's  writeTiles() method takes four
arguments,  dxMin,  dyMin,  dxMax and dyMax; writeTiles() writes all tiles that have tile coordinates
(dx,dy), where  dxMin ≤ dx ≤ dxMax and  dyMin ≤ dy ≤ dyMax.  The  numXTiles() method returns the
number of tiles in the x direction, and similarly, the numYTiles() method returns the number of tiles in the y
direction.  Thus, 

    out.writeTiles (0, out.numXTiles() - 1, 0, out.numYTiles() - 1);

writes the entire image.

This simple method works well when enough memory is available to allocate a frame buffer for the entire
image. When allocating a frame buffer for the whole image is not desirable, for example because the image is
very large,  a  smaller frame buffer  can be used.  Even a  frame buffer that  can hold only a  single tile  is
sufficient, as demonstrated in the following example: 

    void
    writeTiledRgbaONE2 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,         // image size
                                 tileWidth, tileHeight, // tile size
                                 ONE_LEVEL,             // level mode
                                 ROUND_DOWN,            // rounding mode
                                 WRITE_RGBA);           // channels in file // 1

        Array2D<Rgba> pixels (tileHeight, tileWidth);                       // 2
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        for (int tileY = 0; tileY < out.numYTiles (); ++tileY)              // 3
        {
            for (int tileX = 0; tileX < out.numXTiles (); ++tileX)          // 4
            {
                Box2i range = out.dataWindowForTile (tileX, tileY);         // 5

                generatePixels (pixels, width, height, range);              // 6

                out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],
                                    1,          // xStride
                                    tileWidth); // yStride                  // 7

                out.writeTile (tileX, tileY);                               // 8
            }
        }
    }

In line 2 we allocate a pixels array with tileWidth*tileHeight elements, which is just enough for one
tile. Line 5 computes the data window range for each tile, that is, the set of pixel coordinates covered by the
tile. The generatePixels() function, in line 6, fills the pixels array with one tile's worth of image data.
The same pixels array is reused for all tiles. We must call setFrameBuffer(), in line 7, before writing
each tile so that the pixels in the array are accessed properly in the writeTile() call in line 8. Again, the
address arithmetic to access the pixels is the same as for scan-line-based files. The values for the  base,
xStride, and yStride arguments to the setFrameBuffer() call must be chosen so that evaluating the
expression 

    base + x * xStride + y * yStride

produces the address of the pixel with coordinates (x,y). 

5.2 Writing a Tiled RGBA Image File with Mipmap Levels

In order to store a multiresolution image in a file, we can allocate a frame buffer large enough for the highest-
resolution level, (0,0), and reuse it for all levels: 

    void
    writeTiledRgbaMIP1 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,
                                 tileWidth, tileHeight,
                                 MIPMAP_LEVELS, 
                                 ROUND_DOWN,
                                 WRITE_RGBA);                                   // 1

        Array2D<Rgba> pixels (height, width);                                   // 2
        out.setFrameBuffer (&pixels[0][0], 1, width);                           // 3

        for (int level = 0; level < out.numLevels (); ++level)                  // 4
        {
            generatePixels (pixels, width, height, level);                      // 5

            out.writeTiles (0, out.numXTiles (level) – 1,                       // 6
                            0, out.numYTiles (level) – 1,
                            level);
        }
    }

The  main  difference  here  is  the  use  of  MIPMAP_LEVELS in  line  1  for  the  TiledRgbaOutputFile
constructor. This signifies that the file will contain multiple levels, each level being a factor of 2 smaller in
both dimensions than the previous level. Mipmap images contain n levels, with level numbers 
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    (0,0), (1,1), ... (n-1,n-1),

where 

    n = floor (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ROUND_DOWN, or 

    n = ceil (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is  ROUND_UP. Note that even though level numbers are pairs of integers,
(lx,ly), only levels where lx equals ly are used in MIPMAP_LEVELS files. 

Line 2 allocates a  pixels array with  width by height pixels, big enough to hold the highest-resolution
level. 

In order to store all tiles in the file, we must loop over all levels in the image (line 4). numLevels() returns
the number of levels,  n, in our mipmapped image. Since the tile sizes remain the same in all  levels, the
number of tiles in both dimensions varies between levels.  numXTiles() and  numYTiles() take a level
number as an optional argument, and return the number of tiles in the x or y direction for the corresponding
level. Line 5 fills the pixels array with appropriate data for each level, and line 6 stores the pixel data in the
file.

As with ONE_LEVEL images, we can choose to only allocate a frame buffer for a single tile and reuse it for all
tiles in the image: 

    void
    writeTiledRgbaMIP2 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,
                                 tileWidth, tileHeight,
                                 MIPMAP_LEVELS,
                                 ROUND_DOWN,
                                 WRITE_RGBA);

        Array2D<Rgba> pixels (tileHeight, tileWidth);

        for (int level = 0; level < out.numLevels (); ++level)
        {
            for (int tileY = 0; tileY < out.numYTiles (level); ++tileY)
            {
                for (int tileX = 0; tileX < out.numXTiles (level); ++tileX)
                {
                    Box2i range = out.dataWindowForTile (tileX, tileY, level);

                    generatePixels (pixels, width, height, range, level);

                    out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],
                                        1,              // xStride
                                        tileWidth);     // yStride

                    out.writeTile (tileX, tileY, level);
                }
            }
        }
    }

The structure of this code is the same as for writing a ONE_LEVEL image using a tile-sized frame buffer, but
we have to loop over  more tiles.  Also,  dataWindowForTile() takes  an additional  level argument  to
determine the pixel range for the tile at the specified level. 
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5.3 Writing a Tiled RGBA Image File with Ripmap Levels

The ripmap level mode allows for storing all combinations of reducing the resolution of the image by powers
of two independently in both dimensions. Ripmap files contains nx*ny levels, with level  numbers: 

    (0, 0),   (1, 0),   ... (nx-1, 0),
    (0, 1),   (1, 1),   ... (nx-1, 1),
     ...
    (0,ny-1), (1,ny-1), ... (nx-1,ny-1)

where 

    nx = floor (log (width) / log (2)) + 1
    ny = floor (log (height) / log (2)) + 1

if the level size rounding mode is ROUND_DOWN, or 

    nx = ceil (log (width) / log (2)) + 1
    ny = ceil (log (height) / log (2)) + 1

if the level size rounding mode is ROUND_UP. 

With a frame buffer that is large enough to hold level (0,0), we can write a ripmap file like this: 

    void
    writeTiledRgbaRIP1 (const char fileName[],
                        int width, int height,
                        int tileWidth, int tileHeight)
    {
        TiledRgbaOutputFile out (fileName,
                                 width, height,
                                 tileWidth, tileHeight,
                                 RIPMAP_LEVELS,
                                 ROUND_DOWN,
                                 WRITE_RGBA);

        Array2D<Rgba> pixels (height, width);
        out.setFrameBuffer (&pixels[0][0], 1, width);

        for (int yLevel = 0; yLevel < out.numYLevels (); ++yLevel)
        {
            for (int xLevel = 0; xLevel < out.numXLevels (); ++xLevel)
            {
                generatePixels (pixels, width, height, xLevel, yLevel);

                out.writeTiles (0, out.numXTiles (xLevel) - 1,
                                0, out.numYTiles (yLevel) – 1,
                                xLevel,
                                yLevel);
            }
        }
    }

As for  ONE_LEVEL and MIPMAP_LEVELS files, the frame buffer doesn't have to be large enough to hold a
whole level. Any frame buffer big enough to hold at least a single tile will work. 
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5.4 Reading a Tiled RGBA Image File

Reading a tiled RGBA image file is done similarly to writing one: 

    void
    readTiledRgba1 (const char fileName[],
                    Array2D<Rgba> &pixels,
                    int &width,
                    int &height)
    {
        TiledRgbaInputFile in (fileName);
        Box2i dw = in.dataWindow();

        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        int dx = dw.min.x;
        int dy = dw.min.y;

        pixels.resizeErase (height, width);

        in.setFrameBuffer (&pixels[-dy][-dx], 1, width);
        in.readTiles (0, in.numXTiles() - 1, 0, in.numYTiles() - 1);
    }

First we need to create a TiledRgbaInputFile object for the given file name. We then retrieve information
about the data window in order to create an appropriately sized frame buffer, in this case large enough to hold
the whole image at level (0,0). After we set the frame buffer, we read the tiles from the file. 

This example only reads the highest-resolution level of the image. It can be extended to read all levels, for
multiresolution images, by also iterating over all  levels within the image,  analogous to the examples in
sections section 5.2 and 5.3. 
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6 Using the General Interface for Tiled Files

6.1 Writing a Tiled Image File

This example is a variation of the one in section 3.1, on page 9. We are writing a ONE_LEVEL image file with
two channels, G, and Z, of type HALF, and FLOAT respectively, but here the file is tiled instead of scan-line-
based: 

    void
    writeTiled1 (const char fileName[],
                 Array2D<GZ> &pixels,
                 int width, int height,
                 int tileWidth, int tileHeight)
    {
        Header header (width, height);                                          // 1
        header.channels().insert ("G", Channel (HALF));                         // 2
        header.channels().insert ("Z", Channel (FLOAT));                        // 3

        header.setTileDescription
            (TileDescription (tileWidth, tileHeight, ONE_LEVEL));               // 4
        
        TiledOutputFile out (fileName, header);                                 // 5

        FrameBuffer frameBuffer;                                                // 6

        frameBuffer.insert ("G",                                     // name    // 7
                            Slice (HALF,                             // type    // 8
                                   (char *) &pixels[0][0].g,         // base    // 9
                                    sizeof (pixels[0][0]) * 1,       // xStride // 10
                                    sizeof (pixels[0][0]) * width)); // yStride // 11

        frameBuffer.insert ("Z",                                     // name    // 12
                            Slice (FLOAT,                            // type    // 13
                                   (char *) &pixels[0][0].z,         // base    // 14
                                    sizeof (pixels[0][0]) * 1,       // xStride // 15
                                    sizeof (pixels[0][0]) * width)); // yStride // 16

        out.setFrameBuffer (frameBuffer);                                       // 17

        out.writeTiles (0, out.numXTiles() - 1, 0, out.numYTiles() - 1);        // 18
    }

As one would expect, the code here is very similar to the code in section 3.1. The file's header is created in
line 1, while lines 2 and 3 specify the names and types of the image channels that will be stored in the file. An
important addition is line 4, where we define the size of the tiles and the level mode. In this example we use
ONE_LEVEL for  simplicity.  Line  5  opens the  file  and  writes  the  header.  Lines  6  through  17  tell  the
TiledOutputFile object the location and layout of the pixel data for each channel. Finally, line 18 stores
the tiles in the file. 

6.2 Reading a Tiled Image File

Reading a tiled file with the general interface is virtually identical to reading a scan-line-based file, as shown
in section 3.4, on page 12; only the last three lines are different. Instead of reading all scan lines at once with a
single function call, here we must iterate over all tiles we want to read. 
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    void
    readTiled1 (const char fileName[],
                Array2D<GZ> &pixels,
                int &width, int &height)
    {
        TiledInputFile in (fileName);

        Box2i dw = in.header().dataWindow();
        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        int dx = dw.min.x;
        int dy = dw.min.y;

        pixels.resizeErase (height, width);

        FrameBuffer frameBuffer;

        frameBuffer.insert ("G",
                            Slice (HALF,
                                   (char *) &pixels[-dy][-dx].g,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));

        frameBuffer.insert ("Z",
                            Slice (FLOAT,
                                   (char *) &pixels[-dy][-dx].z,
                                    sizeof (pixels[0][0]) * 1,
                                    sizeof (pixels[0][0]) * width));

        in.setFrameBuffer (frameBuffer);

        in.readTiles (0, in.numXTiles() - 1, 0, in.numYTiles() - 1);
    }

In this example we assume that the file we want to read contains two channels, G and Z, of type HALF and
FLOAT respectively. If the file contains other channels, we ignore them. We only read the highest-resolution
level of the image. If the input file contains more levels (MIPMAP_LEVELS or  MIPMAP_LEVELS), we can
access the extra levels by calling a four-argument version of the readTile() function,

    in.readTile (tileX, tileY, levelX, levelY);

or by calling a six-argument version of readTiles():

    in.readTiles (tileXMin, tileXMax, tileYMin, tileYMax, levelX, levelY);
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7 Threads

7.1 Library Thread-Safety

The IlmImf library is thread-safe.  In a multithreaded application program, multiple threads can concurrently
read and write distinct OpenEXR files.  In addition, accesses to a single shared file by multiple application
threads are automatically serialized.  In other words, each thread can independently create, use and destroy its
own input and output file objects.  Multiple threads can also share a single input or output file.   In the latter
case the IlmImf library uses mutual exclusion to ensure that only one thread at a time can access the shared
file.

7.2 Multithreaded I/O

The IlmImf library supports multithreaded file input and output where the library creates its own worker
threads  that  are  independent  of  the  application  program's  threads.  When  an  application  thread  calls
readPixels(), readTiles(), writePixels() or writeTiles() to read or write multiple scan lines or
tiles at once, the library's worker threads process the tiles or scanlines in parallel.

During  startup,  the  application  program  must  enable  multithreading  by  calling  function
setGlobalThreadCount().  This tells the IlmImf library how many worker threads it should create.  (As a
special case, setting the number of worker threads to zero reverts to single-threaded operation; reading and
writing image files happens entirely in the application thread that calls the IlmImf library.)

The application  program should  read  or  write  as  many scan  lines  or  tiles  as  possible  in  each  call  to
readPixels(),  readTiles(),  writePixels() or writeTiles(). This allows the library to break up
the work into chunks that can be processed in parallel.  Ideally the application reads or writes the entire image
using a single read or write call.  If the application reads or writes the image one scan line or tile at a time, the
library reverts to single-threaded file I/O.

The following function writes an RGBA file using four concurrent worker threads:

    void
    writeRgbaMT (const char fileName[],
                 const Rgba *pixels,
                 int width,
                 int height)
    {
        setGlobalThreadCount (4);
        RgbaOutputFile file (fileName, width, height, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, width);
        file.writePixels (height);
    }

Except for  the  call  to  setGlobalThreadCount(),  function  writeRgbaMT() is  identical  to  function
writeRgba1() in section  2.1 on page  3, but on a computer with multiple processors  writeRgbaMT()
writes files significantly faster than writeRgba1().

7.3 Multithreaded I/O, Multithreaded Application Program

Function setGlobalThreadCount() creates a global pool of worker threads inside the IlmImf library.  If
an application program has multiple threads, and those threads read or write several OpenEXR files at the
same time, then the worker threads must be shared among the application threads.  By default each file will
attempt to use the entire worker thread pool for itself.  If two files are read or written simultaneously by two
application threads, then it is possible that all worker threads perform I/O on behalf of one of the files, while
I/O for the other file is stalled.

In  order  to  avoid  this  situation,  the  constructors  for  input  and  output  file  objects  take  an  optional
numThreads argument.  This gives the application program more control over how many threads will be
kept busy reading or writing a particular file.

23



For example, we may have an application program that runs on a four-processor computer.  The program has
one thread that reads files and another one that writes files.  We want to keep all four processors busy, and we
want to split the processors evenly between input and output.  Before creating the input and output threads,
the application instructs the IlmImf library to create four worker threads:

    // main, before application threads are created:
    setGlobalThreadCount (4);

In the input and output threads, input and output files are opened with numThreads set to 2:

    // application's input thread
    InputFile in (fileName, 2);
    ...

    // application's output thread
    OutputFile out (fileName, header, 2);
    ...

This ensures that file input and output in the application's two threads can proceed concurrently, without one
thread stalling the other's I/O. 

24



8 Low-Level I/O

8.1 Custom Low-Level File I/O

In all of the previous file reading and writing examples, we were given a file name, and we relied on the
constructors for our input file or output file objects to open the file. In some contexts, for example, in a plugin
for an existing application program, we may have to read from or write to a file that has already been opened.
The representation of the open file as a C or C++ data type depends on the application program and on the
operating system. 

At its lowest level, the IlmImf library performs file I/O via objects of type IStream and OStream. IStream
and OStream are abstract base classes. The IlmImf library contains two derived classes, StdIFStream and
StdOFStream, that implement reading from std::ifstream and writing to std::ofstream objects. An
application  program can  implement  alternative  file  I/O  mechanisms  by  deriving  its  own  classes  from
Istream and Ostream. This way, OpenEXR images can be stored in arbitrary file-like objects, as long as it
is  possible  to  support  read, write,  seek  and tell  operations with  semantics  similar  to  the  corresponding
std::ifstream and std::ofstream methods. 

For example, assume that we want to read an OpenEXR image from a C stdio file (of type FILE *) that has
already been opened. To do this, we derive a new class, C_IStream, from IStream. The declaration of class
IStream looks like this:

    class IStream
    {
      public:

        virtual ~IStream ();

        virtual bool    read (char c[], int n) = 0;
        virtual Int64   tellg () = 0;
        virtual void    seekg (Int64 pos) = 0;
        virtual void    clear ();
        const char *    fileName () const;
        virtual bool    isMemoryMapped () const;
        virtual char *  readMemoryMapped (int n);

      protected:

        IStream (const char fileName[]);

      private:

        ...
    };

Our derived class needs a public constructor, and it must override four methods: 

    class C_IStream: public IStream
    {
      public:

        C_IStream (FILE *file, const char fileName[]):
            IStream (fileName), _file (file) {}

        virtual bool    read (char c[], int n);
        virtual Int64   tellg ();
        virtual void    seekg (Int64 pos);
        virtual void    clear ();

      private:

        FILE *          _file;
    };
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read(c,n) reads n bytes from the file, and stores them in array c. If reading hits the end of the file before n
bytes have been read, or if an I/O error occurs, read(c,n) throws an exception. If read(c,n) hits the end
of the file after reading n bytes, it returns false, otherwise it returns true: 

    bool
    C_IStream::read (char c[], int n)
    {
        if (n != fread (c, 1, n, _file))
        {
            // fread() failed, but the return value does not distinguish
            // between I/O errors and end of file, so we call ferror() to
            // determine what happened.

            if (ferror (_file))
                Iex::throwErrnoExc();
            else
                throw Iex::InputExc ("Unexpected end of file.");
        }

        return feof (_file);
    }

tellg() returns the current reading position, in bytes, from the beginning of the file. The next read() call
will begin reading at the indicated position: 

    Int64
    C_IStream::tellg ()
    {
        return ftell (_file);
    }

seekg(pos) sets the current reading position to pos bytes from the beginning of the file: 

    void
    C_IStream::seekg (Int64 pos)
    {
        clearerr (_file);
        fseek (_file, pos, SEEK_SET);
    }

clear() clears any error flags that may be set on the file after a read() or seekg() operation has failed: 

    void
    C_IStream::clear ()
    {
        clearerr (_file);
    }

In order to read an RGBA image from an open C stdio file, we first make a  C_IStream object. Then we
create an RgbaInputFile, passing the C_IStream instead of a file name to the constructor. After that, we
read the image as usual (see section 2.4, Reading an RGBA Image File, on page 5): 
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    void
    readRgbaFILE (FILE *cfile,
                  const char fileName[],
                  Array2D<Rgba> &pixels,
                  int &width,
                  int &height)
    {
        C_IStream istr (cfile, fileName);
        RgbaInputFile file (istr);

        Box2i dw = file.dataWindow();
        width  = dw.max.x - dw.min.x + 1;
        height = dw.max.y - dw.min.y + 1;
        pixels.resizeErase (height, width);
        file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width, 1, width);
        file.readPixels (dw.min.y, dw.max.y);
    }

8.2 Memory-Mapped I/O

When the IlmImf library reads an image file, pixel data are copied several times on their way from the file to
the application's frame buffer.  For compressed files, the time spent copying is usually not significant when
compared to how long it takes to uncompress the data.  However, when uncompressed image files are being
read from a fast  file system, it  may be advantageous to eliminate one or two copy operations by using
memory-mapped I/O.

Memory-mapping establishes a relationship between a file and a program's virtual address space, such that
from the program's point of view the file looks like an array of type char.  The contents of the array match
the data in the file.  This allows the program to access the data in the file directly, bypassing any copy
operations associated with reading the file via a C++ std::ifstream or a C FILE *.

Classes derived from IStream can optionally support memory-mapped input.  In order to do this, a derived
class must override two virtual functions, isMemoryMapped() and readMemoryMapped(), in addition to
the functions needed for regular, non-memory-mapped input:

    class MemoryMappedIStream: public IStream
    {
      public:

        MemoryMappedIStream (const char fileName[]);
        virtual ~MemoryMappedIStream ();

        virtual bool    isMemoryMapped () const;
        virtual char *  readMemoryMapped (int n);
        virtual bool    read (char c[], int n);
        virtual Int64   tellg ();
        virtual void    seekg (Int64 pos);

      private:

        char *          _buffer;
        Int64           _fileLength;
        Int64           _readPosition;
    };

The constructor for class  MemoryMappedIStream maps the contents of the input file into the program's
address space.  Memory mapping is not portable across operating systems.  The example shown here uses the
POSIX mmap() system call.  On Windows files can be memory-mapped by calling CreateFileMapping()
and MapViewOfFile():
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    MemoryMappedIStream::MemoryMappedIStream (const char fileName[]):
        IStream (fileName),
        _buffer (0),
        _fileLength (0),
        _readPosition (0)
    {
        int file = open (fileName, O_RDONLY);

        if (file < 0)
            THROW_ERRNO ("Cannot open file \"" << fileName << "\".");

        struct stat stat;
        fstat (file, &stat);
        _fileLength = stat.st_size;

        _buffer = (char *) mmap (0, _fileLength, PROT_READ, MAP_PRIVATE, file, 0);
        close (file);

        if (_buffer == MAP_FAILED)
            THROW_ERRNO ("Cannot memory-map file \"" << fileName << "\".");
    }

The destructor frees the address range associated with the file by un-mapping the file.  The POSIX version
shown here uses munmap().  A Windows version would call UnmapViewOfFile() and CloseHandle():

    MemoryMappedIStream::~MemoryMappedIStream ()
    {
        munmap (_buffer, _fileLength);
    }

Function  isMemoryMapped() returns  true to  indicate  that  memory-mapped input  is  supported.   This
allows the IlmImf library to call readMemoryMapped() instead of read():

    bool
    MemoryMappedIStream::isMemoryMapped () const
    {
        return true;
    }

readMemoryMapped() is analogous to read(), but instead of copying data into a buffer supplied by the
caller,  readMemoryMapped() returns  a  pointer  into  the  memory-mapped file,  thus  avoiding  the  copy
operation:

    char *
    MemoryMappedIStream::readMemoryMapped (int n)
    {
        if (_readPosition >= _fileLength)
            throw Iex::InputExc ("Unexpected end of file.");

        if (_readPosition + n > _fileLength)
            throw Iex::InputExc ("Reading past end of file.");

        char *data = _buffer + _readPosition;
        _readPosition += n;
        return data;
    }

The MemoryMappedIStream class must also implement the regular read() function, as well as tellg()
and seekg():
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    bool
    MemoryMappedIStream::read (char c[], int n)
    {
        if (_readPosition >= _fileLength)
            throw Iex::InputExc ("Unexpected end of file.");

        if (_readPosition + n > _fileLength)
            throw Iex::InputExc ("Reading past end of file.");

        memcpy (c, _buffer + _readPosition, n);
        _readPosition += n;
        return _readPosition < _fileLength;
    }

    Int64
    MemoryMappedIStream::tellg ()
    {
        return _readPosition;
    }

    void
    MemoryMappedIStream::seekg (Int64 pos)
    {
        _readPosition = pos;
    }

Class MemoryMappedIStream does not need a clear() function.  Since the memory-mapped file has no
error flags that need to be cleared, the clear() method provided by class IStream, which does nothing, can
be re-used.

Memory-mapping a file can be faster than reading the file via a C++ std::istream or a C FILE *, but the
extra speed comes at a cost.  A large memory-mapped file can occupy a significant portion of a program's
virtual  address  space.   In  addition,  mapping  and un-mapping many files  of  varying  sizes can  severely
fragment the address space.  After a while, the program may be unable to map any new files because there is
no contiguous range of free addresses that would be large enough hold a file, even though the total amount of
free space would be sufficient.  An application program that uses memory-mapped I/O should manage its
virtual address space in order to avoid fragmentation.  For example, the program can reserve several address
ranges, each one large enough to hold the largest file that the program expects to read.  The program can then
explicitly map each new file into one of the reserved ranges, keeping track of which ranges are currently in
use.
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9 Miscellaneous

9.1 Is this an OpenEXR File?

Sometimes we want to test quickly if a given file is an OpenEXR file. This can be done by looking at the
beginning of the file: The first four bytes of every OpenEXR file contain the 32-bit integer "magic number"
20000630 in little-endian byte order. After reading a file's first four bytes via any of the operating system's
standard file I/O mechanisms, we can compare them with the magic number by explicitly testing if the bytes
contain the values 0x76, 0x2f, 0x31, and 0x01. 

Given a file name, the following function returns  true if  the corresponding file exists,  is readable,  and
contains an OpenEXR image: 

    bool
    isThisAnOpenExrFile (const char fileName[])
    {
        std::ifstream f (fileName, std::ios_base::binary);

        char b[4];
        f.read (b, sizeof (b));

        return !!f && b[0] == 0x76 && b[1] == 0x2f && b[2] == 0x31 && b[3] == 0x01;
    }

Using this function does not require linking with the IlmImf library.

Programs that are linked with the IlmImf library can determine if a given file is an OpenEXR file by calling
one of the following functions, which are part of the library:

    bool isOpenExrFile (const char fileName[], bool &isTiled);
    bool isOpenExrFile (const char fileName[]);
    bool isTiledOpenExrFile (const char fileName[]);
    bool isOpenExrFile (IStream &is, bool &isTiled);
    bool isOpenExrFile (IStream &is);
    bool isTiledOpenExrFile (IStream &is);

9.2 Is this File Complete?

Sometimes we want to test if an OpenEXR file is complete.  The file may be missing pixels, either because
writing the file is still in progress or because writing was aborted before the last scan line or tile was stored in
the file.  Of course, we could test if  a given file is complete by attempting to read the entire file, but the input
file classes in the IlmImf library have an isComplete() method that is faster and more convenient.  The
following function returns true or false, depending on whether a given OpenEXR file is complete or not:

    bool
    isComplete (const char fileName[])
    {
        InputFile in (fileName);
        return in.isComplete();
    }
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9.3 Preview Images

Graphical user interfaces for selecting image files often represent files as small preview or thumbnail images.
In order to make loading and displaying the preview images fast, OpenEXR files support storing preview
images in the file headers. 

A preview image is an attribute whose value is of type PreviewImage. A PreviewImage object is an array
of pixels of type PreviewRgba. A pixel has four components, r, g, b and a, of type unsigned char, where
r, g and b are the pixel's red, green and blue components, encoded with a gamma of 2.2. a is the pixel's alpha
channel;  r,  g  and  b should be premultiplied by  a.  On a typical  display with 8-bits per component, the
preview image can be shown by simply loading the r, g and b components into the display's frame buffer.
(No gamma correction or tone mapping is required.) 

The code fragment below shows how to test if an OpenEXR file has a preview image, and how to access a
preview image's pixels: 

    RgbaInputFile file (fileName);

    if (file.header().hasPreviewImage())
    {
        const PreviewImage &preview = file.header().previewImage();

        for (int y = 0; y < preview.height(); ++y)
            for (int x = 0; x < preview.width(); ++x)
            {
                const PreviewRgba &pixel = preview.pixel (x, y);
                ... 
            }
    }

Writing an OpenEXR file with a preview image is shown in the following example. Since the preview image
is an attribute in the file's header, it is entirely separate from the main image. Here the preview image is a
smaller version of the main image, but this is not required; in some cases storing an easily recognizable icon
may be more appropriate. This example uses the RGBA-only interface to write a scan-line based file, but
preview images are also supported for files that are written using the general interface, and for tiled files. 

    void
    writeRgbaWithPreview1 (const char fileName[],
                           const Array2D<Rgba> &pixels,
                           int width,
                           int height)
    {
        Array2D <PreviewRgba> previewPixels;                                        // 1
        int previewWidth;                                                           // 2
        int previewHeight;                                                          // 3

        makePreviewImage (pixels, width, height,                                    // 4
                          previewPixels, previewWidth, previewHeight);

        Header header (width, height);                                              // 5

        header.setPreviewImage                                                      // 6
            (PreviewImage (previewWidth, previewHeight, &previewPixels[0][0]));

        RgbaOutputFile file (fileName, header, WRITE_RGBA);                         // 7
        file.setFrameBuffer (&pixels[0][0], 1, width);                              // 8
        file.writePixels (height);                                                  // 9
    }

Lines 1 through 4 generate the preview image. Line 5 creates a header for the image file. Line 6 converts the
preview image into a PreviewImage attribute, and adds the attribute to the header. Lines 7 through 9 store
the header (with the preview image) and the main image in a file. 
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Function makePreviewImage(), called in line 4, generates the preview image by scaling the main image
down to one eighth of its original width and height: 

    void
    makePreviewImage (const Array2D<Rgba> &pixels,
                      int width,
                      int height,
                      Array2D<PreviewRgba> &previewPixels,
                      int &previewWidth,
                      int &previewHeight)
    {
        const int N = 8;

        previewWidth  = width / N;
        previewHeight = height / N;
        previewPixels.resizeErase (previewHeight, previewWidth);

        for (int y = 0; y < previewHeight; ++y)
        {
            for (int x = 0; x < previewWidth; ++x)
            {
                const Rgba  &inPixel = pixels[y * N][x * N];
                PreviewRgba &outPixel = previewPixels[y][x];

                outPixel.r = gamma (inPixel.r);
                outPixel.g = gamma (inPixel.g);
                outPixel.b = gamma (inPixel.b);
                outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);
            }
        }
    }

To make this example easier to read, scaling the image is done by just sampling every eighth pixel of every
eighth scan line. This can lead to aliasing artifacts in the preview image; for a higher-quality preview image,
the main image should be lowpass-filtered before it is subsampled. 

Function  makePreviewImage() calls  gamma() to  convert  the  floating-point  red,  green,  and  blue
components of the sampled main image pixels to unsigned char values. gamma() is a simplified version
of what the exrdisplay program does in order to show an OpenEXR image's floating-point pixels on the
screen (for details, see exrdisplay's source code): 

    unsigned char
    gamma (float x)
    {
        x = pow (5.5555f * max (0.f, x), 0.4545f) * 84.66f;
        return (unsigned char) clamp (x, 0.f, 255.f);
    }

makePreviewImage() converts the pixels' alpha component to unsigned char by by linearly mapping the
range [0.0, 1.0] to [0, 255]. 

Some programs write image files one scan line or tile at a time, while the image is being generated. Since the
image does not yet exist when the file is opened for writing, it is not possible to store a preview image in the
file's header at this time (unless the preview image is an icon that has nothing to do with the main image).
However, it is possible to store a blank preview image in the header when the file is opened. The preview
image can then be updated as the pixels become available. This is demonstrated in the following example: 
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    void
    writeRgbaWithPreview2 (const char fileName[],
                           int width,
                           int height)
    {
        Array <Rgba> pixels (width);

        const int N = 8;                                         

        int previewWidth = width / N;
        int previewHeight = height / N;
        Array2D <PreviewRgba> previewPixels (previewHeight, previewWidth);

        Header header (width, height);
        header.setPreviewImage (PreviewImage (previewWidth, previewHeight));

        RgbaOutputFile file (fileName, header, WRITE_RGBA);
        file.setFrameBuffer (pixels, 1, 0);

        for (int y = 0; y < height; ++y)
        {
            generatePixels (pixels, width, height, y);
            file.writePixels (1);

            if (y % N == 0)
            {
                for (int x = 0; x < width; x += N)
                {
                    const Rgba  &inPixel = pixels[x];
                    PreviewRgba &outPixel = previewPixels[y / N][x / N];

                    outPixel.r = gamma (inPixel.r);
                    outPixel.g = gamma (inPixel.g);
                    outPixel.b = gamma (inPixel.b);
                    outPixel.a = int (clamp (inPixel.a * 255.f, 0.f, 255.f) + 0.5f);
                }
            }
        }

        file.updatePreviewImage (&previewPixels[0][0]);
    }

9.4 Environment Maps

An environment map is an image that represents an omnidirectional view of a three-dimensional scene as seen
from a particular 3D location. Every pixel in the image corresponds to a 3D direction, and the data stored in
the pixel represent the amount of light arriving from this direction. In 3D rendering applications, environment
maps are often used for image-based lighting techniques that appoximate how objects are illuminated by their
surroundings. Environment maps with enough dynamic range to represent even the brightest light sources in
the environment are sometimes called "light probe images." 

In an OpenEXR file, an environment map is stored as a rectangular pixel array, just like any other image, but
an attribute in the file header indicates that the image is an environment map. The attribute's value, which is
of  type  Envmap,  specifies  the  relation  between  2D  pixel  locations  and  3D directions.  Envmap is  an
enumeration type. Two values are possible: 

ENVMAP_LATLONG

Latitude-Longitude Map: The environment is projected onto the image using polar coordinates (latitude
and longitude). A pixel's x coordinate corresponds to its longitude, and the y coordinate corresponds to its
latitude. The pixel in the upper left corner of the data window has latitude +π/2 and longitude +π; the pixel
in the lower right corner has latitude -π/2 and longitude -π . 
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In 3D space, latitudes -π/2 and +π/2 correspond to the negative and positive y direction.  Latitude 0,
longitude 0 points in the positive z direction; latitude 0, longitude π/2 points in the positive x direction. 

For a latitude-longitude map, the size of the data window should be 2×N by N pixels (width by height),
where N can be any integer greater than 0. 

ENVMAP_CUBE

Cube Map: The environment is projected onto the six faces of an axis-aligned cube. The cube's faces are
then arranged in a 2D image as shown below. 

For a cube map, the size of the data window should be N by 6×N pixels (width by height), where N can be
any integer greater than 0. 
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Note that both kinds of environment maps contain redundant pixels:  In a latitude-longitude map, the top row
and the bottom row of pixels correspond to the map's north pole and south pole (latitudes +π/2 and -π/2).  In
each of those two rows all pixels are the same.  The leftmost column and the rightmost column of pixels both
correspond to the meridian with longitude +π (or, equivalently, -π).  The pixels in the leftmost column are
repeated in the rightmost column.  In a cube-face map, the pixels along each edge of a face are repeated along
the  corresponding  edge  of  the  adjacent  face.   The  pixel  in  each  corner  of  a  face  is  repeated  in  the
corresponding corners of the two adjacent faces.

The following code fragment tests if an OpenEXR file contains an environment map, and if it does, which
kind: 

    RgbaInputFile file (fileName);

    if (hasEnvmap (file.header()))
    {
        Envmap type = envmap (file.header());
        ...
    }

For each kind of  environment  map,  the IlmImf library provides a  set  of routines that  convert  from 3D
directions to 2D floating-point pixel locations and back. Those routines are useful in application programs
that  create  environment  maps  and in  programs  that  perform map  lookups.  For  details,  see header  file
ImfEnvmap.h. 
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