
OATH Library (liboath) Manual i

OATH Library (liboath) Manual

OATH Library (liboath) Manual ii

COLLABORATORS

TITLE :

OATH Library (liboath) Manual

ACTION NAME DATE SIGNATURE

WRITTEN BY Simon Josefsson January 20, 2021

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

OATH Library (liboath) Manual iii

Contents

1 Liboath API Reference Manual 1

1.1 oath.h . 1

2 Index 25

OATH Library (liboath) Manual 1 / 25

Chapter 1

Liboath API Reference Manual

1.1 oath.h

oath.h — liboath declarations

Functions

int oath_init ()
int oath_done ()
const char * oath_check_version ()
const char * oath_strerror ()
const char * oath_strerror_name ()
int oath_hex2bin ()
void oath_bin2hex ()
int oath_base32_decode ()
int oath_base32_encode ()
#define OATH_HOTP_LENGTH()
int oath_hotp_generate ()
int oath_hotp_validate ()
int (*oath_validate_strcmp_function) ()
int oath_hotp_validate_callback ()
int oath_totp_generate ()
int oath_totp_generate2 ()
int oath_totp_validate ()
int oath_totp_validate_callback ()
int oath_totp_validate2 ()
int oath_totp_validate2_callback ()
int oath_totp_validate3 ()
int oath_totp_validate3_callback ()
int oath_totp_validate4 ()
int oath_totp_validate4_callback ()
int oath_authenticate_usersfile ()

Types and Values

#define OATHAPI
#define OATH_VERSION
#define OATH_VERSION_NUMBER

OATH Library (liboath) Manual 2 / 25

enum oath_rc
#define OATH_HOTP_DYNAMIC_TRUNCATION
#define oath_hotp_validate_strcmp_function
#define OATH_TOTP_DEFAULT_TIME_STEP_SIZE
#define OATH_TOTP_DEFAULT_START_TIME
enum oath_totp_flags

Description

The oath.h file contains declarations for the liboath library.

Functions

oath_init ()

int
oath_init (void);

This function initializes the OATH library. Every user of this library needs to call this function before using other functions. You
should call oath_done() when use of the OATH library is no longer needed.

Note that this function may also initialize Libgcrypt, if the OATH library is built with libgcrypt support and libgcrypt has not
been initialized before. Thus if you want to manually initialize libgcrypt you must do it before calling this function. This is
useful in cases you want to disable libgcrypt’s internal lockings etc.

Returns

On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_done ()

int
oath_done (void);

This function deinitializes the OATH library, which were initialized using oath_init(). After calling this function, no other OATH
library function may be called except for to re-initialize the library using oath_init().

Returns

On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_check_version ()

const char~*
oath_check_version (const char *req_version);

Check OATH library version.

See OATH_VERSION for a suitable req_version string.

This function is one of few in the library that can be used without a successful call to oath_init().

Parameters

OATH Library (liboath) Manual 3 / 25

req_version version string to compare
with, or NULL.

Returns

Check that the version of the library is at minimum the one given as a string in req_version and return the actual version string
of the library; return NULL if the condition is not met. If NULL is passed to this function no check is done and only the version
string is returned.

oath_strerror ()

const char~*
oath_strerror (int err);

Convert return code to human readable string explanation of the reason for the particular error code.

This string can be used to output a diagnostic message to the user.

This function is one of few in the library that can be used without a successful call to oath_init().

Parameters

err liboath error code

Returns

Returns a pointer to a statically allocated string containing an explanation of the error code err .

Since: 1.8.0

oath_strerror_name ()

const char~*
oath_strerror_name (int err);

Convert return code to human readable string representing the error code symbol itself. For example, oath_strerror_name(OATH_OK)
returns the string "OATH_OK".

This string can be used to output a diagnostic message to the user.

This function is one of few in the library that can be used without a successful call to oath_init().

Parameters

err liboath error code

Returns

Returns a pointer to a statically allocated string containing a string version of the error code err , or NULL if the error code is
not known.

Since: 1.8.0

OATH Library (liboath) Manual 4 / 25

oath_hex2bin ()

int
oath_hex2bin (const char *hexstr,

char *binstr,
size_t *binlen);

Convert string with hex data to binary data.

Non-hexadecimal data are not ignored but instead will lead to an OATH_INVALID_HEX error.

If binstr is NULL, then binlenwill be populated with the necessary length. If the binstr buffer is too small, OATH_TOO_SMALL_BUFFER
is returned and binlen will contain the necessary length.

Parameters

hexstr input string with hex data

binstr output string that holds
binary data, or NULL

binlen output variable holding
needed length of binstr

Returns

On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_bin2hex ()

void
oath_bin2hex (const char *binstr,

size_t binlen,
char *hexstr);

Convert binary data to NUL-terminated string with hex data. The output hexstr is allocated by the caller and must have room
for at least 2*binlen +1, to make room for the encoded data and the terminating NUL byte.

Parameters

binstr input binary data

binlen length of input binary data
binstr

hexstr
output string with hex data,
must have room for
2*binlen +1.

Since: 1.12.0

oath_base32_decode ()

int
oath_base32_decode (const char *in,

size_t inlen,

OATH Library (liboath) Manual 5 / 25

char **out,
size_t *outlen);

Decode a base32 encoded string into binary data.

Space characters are ignored and pad characters are added if needed. Non-base32 data are not ignored but instead will lead to an
OATH_INVALID_BASE32 error.

The in parameter should contain inlen bytes of base32 encoded data. The function allocates a new string in *out to hold the
decoded data, and sets *outlen to the length of the data.

If out is NULL, then *outlen will be set to what would have been the length of *out on successful encoding.

If the caller is not interested in knowing the length of the output data out , then outlen may be set to NULL.

It is permitted but useless to have both out and outlen NULL.

Parameters

in
input string with base32
encoded data of length
inlen

inlen length of input base32
string in

out
pointer to output variable
for binary data of length
outlen , or NULL

outlen
pointer to output variable
holding length of out , or
NULL

Returns

On success OATH_OK (zero) is returned, OATH_INVALID_BASE32 is returned if the input contains non-base32 characters,
and OATH_MALLOC_ERROR is returned on memory allocation errors.

Since: 1.12.0

oath_base32_encode ()

int
oath_base32_encode (const char *in,

size_t inlen,
char **out,
size_t *outlen);

Encode binary data into a string with base32 data.

The in parameter should contain inlen bytes of data to encode. The function allocates a new string in *out to hold the encoded
data, and sets *outlen to the length of the data. The output string *out is zero-terminated (ASCII NUL), but the NUL is not
counted in *outlen .

If out is NULL, then *outlen will be set to what would have been the length of *out on successful encoding.

If the caller is not interested in knowing the length of the output data out , then outlen may be set to NULL.

It is permitted but useless to have both out and outlen NULL.

Parameters

OATH Library (liboath) Manual 6 / 25

in input string with binary
data of length inlen

inlen length of input data in

out
pointer to newly allocated
output string of length
outlen , or NULL

outlen
pointer to output variable
holding length of out , or
NULL

Returns

On success OATH_OK (zero) is returned, OATH_BASE32_OVERFLOW is returned if the output would be too large to store,
and OATH_MALLOC_ERROR is returned on memory allocation errors.

Since: 1.12.0

OATH_HOTP_LENGTH()

#define OATH_HOTP_LENGTH(digits, checksum) (digits + (checksum ? 1 : 0))

Pre-processor macro to get length of a OTP string.

Parameters

digits
number of requested digits
in the OTP, excluding
checksum

checksum whether to add a checksum
digit or not

Returns

Length of generated one-time password.

oath_hotp_generate ()

int
oath_hotp_generate (const char *secret,

size_t secret_length,
uint64_t moving_factor,
unsigned digits,
bool add_checksum,
size_t truncation_offset,
char *output_otp);

Generate a one-time-password using the HOTP algorithm as described in RFC 4226.

Use a value of OATH_HOTP_DYNAMIC_TRUNCATION for truncation_offset unless you really need a specific trunca-
tion offset.

To find out the size of the OTP you may use the OATH_HOTP_LENGTH() macro. The output_otp buffer must be have room
for that length plus one for the terminating NUL.

Currently only values 6, 7 and 8 for digits are supported, and the add_checksum value is ignored. These restrictions may be
lifted in future versions, although some limitations are inherent in the protocol.

OATH Library (liboath) Manual 7 / 25

Parameters

secret the shared secret string
secret_length length of secret

moving_factor a counter indicating the
current OTP to generate

digits
number of requested digits
in the OTP, excluding
checksum

add_checksum whether to add a checksum
digit or not

truncation_offset use a specific truncation
offset

output_otp
output buffer, must have
room for the output OTP
plus zero

Returns

On success, OATH_OK (zero) is returned, otherwise an error code is returned.

oath_hotp_validate ()

int
oath_hotp_validate (const char *secret,

size_t secret_length,
uint64_t start_moving_factor,
size_t window,
const char *otp);

Validate an OTP according to OATH HOTP algorithm per RFC 4226.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

secret the shared secret string
secret_length length of secret
start_moving_factor start counter in OTP stream

window how many OTPs after start
counter to test

otp the OTP to validate.

Returns

Returns position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in OTP window, or an
error code.

oath_validate_strcmp_function ()

int
(*oath_validate_strcmp_function) (void *handle,

const char *test_otp);

OATH Library (liboath) Manual 8 / 25

Prototype of strcmp-like function that will be called by oath_hotp_validate_callback() or oath_totp_validate_callback() to vali-
date OTPs.

The function should be similar to strcmp in that it return 0 only on matches. It differs by permitting use of negative return codes
as indication of internal failures in the callback. Positive values indicate OTP mismatch.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
oath_strcmp hash the test_otp OTP using the same hash, and then compare the results.

Parameters

handle caller handle as passed to
oath_hotp_validate_callback()

test_otp OTP to match against.

Returns

0 if and only if test_otp is identical to the OTP to be validated. Negative value if an internal failure occurs. Positive value if
the test_otp simply doesn’t match.

Since: 1.6.0

oath_hotp_validate_callback ()

int
oath_hotp_validate_callback (const char *secret,

size_t secret_length,
uint64_t start_moving_factor,
size_t window,
unsigned digits,
oath_validate_strcmp_function strcmp_otp,
void *strcmp_handle);

Validate an OTP according to OATH HOTP algorithm per RFC 4226.

Validation is implemented by generating a number of potential OTPs and performing a call to the strcmp_otp function, to
compare the potential OTP against the given otp . It has the following prototype:

int (*oath_validate_strcmp_function) (void *handle, const char *test_otp);

The function should be similar to strcmp in that it return 0 only on matches. It differs by permitting use of negative return codes
as indication of internal failures in the callback. Positive values indicate OTP mismatch.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
strcmp_otp hash the test_otp OTP using the same hash, and then compare the results.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

secret the shared secret string
secret_length length of secret
start_moving_factor start counter in OTP stream

window how many OTPs after start
counter to test

OATH Library (liboath) Manual 9 / 25

digits number of requested digits
in the OTP

strcmp_otp function pointer to a
strcmp-like function.

strcmp_handle caller handle to be passed
on to strcmp_otp .

Returns

Returns position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in OTP window, or an
error code.

Since: 1.4.0

oath_totp_generate ()

int
oath_totp_generate (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
char *output_otp);

Generate a one-time-password using the time-variant TOTP algorithm described in RFC 6238. The input parameters are taken
as time values.

The system parameter time_step_size describes how long the time window for each OTP is. The recommended value is 30
seconds, and you can use the value 0 or the symbol OATH_TOTP_DEFAULT_TIME_STEP_SIZE to indicate this.

The system parameter start_offset denote the Unix time when time steps are started to be counted. The recommended value
is 0, to fall back on the Unix epoch) and you can use the symbol OATH_TOTP_DEFAULT_START_TIME to indicate this.

The output_otp buffer must have room for at least digits characters, plus one for the terminating NUL.

Currently only values 6, 7 and 8 for digits are supported. This restriction may be lifted in future versions.

Parameters

secret the shared secret string
secret_length length of secret

now Unix time value to compute
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

digits
number of requested digits
in the OTP, excluding
checksum

output_otp
output buffer, must have
room for the output OTP
plus zero

OATH Library (liboath) Manual 10 / 25

Returns

On success, OATH_OK (zero) is returned, otherwise an error code is returned.

Since: 1.4.0

oath_totp_generate2 ()

int
oath_totp_generate2 (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
int flags,
char *output_otp);

Generate a one-time-password using the time-variant TOTP algorithm described in RFC 6238. The input parameters are taken
as time values.

The system parameter time_step_size describes how long the time window for each OTP is. The recommended value is 30
seconds, and you can use the value 0 or the symbol OATH_TOTP_DEFAULT_TIME_STEP_SIZE to indicate this.

The system parameter start_offset denote the Unix time when time steps are started to be counted. The recommended value
is 0, to fall back on the Unix epoch) and you can use the symbol OATH_TOTP_DEFAULT_START_TIME to indicate this.

The output_otp buffer must have room for at least digits characters, plus one for the terminating NUL.

Currently only values 6, 7 and 8 for digits are supported. This restriction may be lifted in future versions.

The flags parameter may be used to change the MAC function, for example OATH_TOTP_HMAC_SHA256 or OATH_TOTP_HMAC_SHA512.

Parameters

secret the shared secret string
secret_length length of secret

now Unix time value to compute
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

digits
number of requested digits
in the OTP, excluding
checksum

flags flags indicating mode, one
of oath_totp_flags

output_otp
output buffer, must have
room for the output OTP
plus zero

Returns

On success, OATH_OK (zero) is returned, otherwise an error code is returned.

Since: 2.6.0

OATH Library (liboath) Manual 11 / 25

oath_totp_validate ()

int
oath_totp_validate (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
size_t window,
const char *otp);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

secret the shared secret string
secret_length length of secret

now Unix time value to validate
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

window
how many OTPs
after/before start OTP to
test

otp the OTP to validate.

Returns

Returns absolute value of position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in
OTP window, or an error code.

Since: 1.6.0

oath_totp_validate_callback ()

int
oath_totp_validate_callback (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
size_t window,
oath_validate_strcmp_function strcmp_otp,
void *strcmp_handle);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Validation is implemented by generating a number of potential OTPs and performing a call to the strcmp_otp function, to
compare the potential OTP against the given otp . It has the following prototype:

OATH Library (liboath) Manual 12 / 25

int (*oath_validate_strcmp_function) (void *handle, const char *test_otp);

The function should be similar to strcmp in that it return 0 only on matches. It differs by permitting use of negative return codes
as indication of internal failures in the callback. Positive values indicate OTP mismatch.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
strcmp_otp hash the test_otp OTP using the same hash, and then compare the results.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

secret the shared secret string
secret_length length of secret

now Unix time value to compute
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

window how many OTPs after start
counter to test

digits number of requested digits
in the OTP

strcmp_otp function pointer to a
strcmp-like function.

strcmp_handle caller handle to be passed
on to strcmp_otp .

Returns

Returns position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in OTP window, or an
error code.

Since: 1.6.0

oath_totp_validate2 ()

int
oath_totp_validate2 (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
size_t window,
int *otp_pos,
const char *otp);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

OATH Library (liboath) Manual 13 / 25

secret the shared secret string
secret_length length of secret

now Unix time value to validate
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

window
how many OTPs
after/before start OTP to
test

otp_pos
output search position in
search window (may be
NULL).

otp the OTP to validate.

Returns

Returns absolute value of position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in
OTP window, or an error code.

Since: 1.10.0

oath_totp_validate2_callback ()

int
oath_totp_validate2_callback (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
size_t window,
int *otp_pos,
oath_validate_strcmp_function strcmp_otp,
void *strcmp_handle);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Validation is implemented by generating a number of potential OTPs and performing a call to the strcmp_otp function, to
compare the potential OTP against the given otp . It has the following prototype:

int (*oath_validate_strcmp_function) (void *handle, const char *test_otp);

The function should be similar to strcmp in that it return 0 only on matches. It differs by permitting use of negative return codes
as indication of internal failures in the callback. Positive values indicate OTP mismatch.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
strcmp_otp hash the test_otp OTP using the same hash, and then compare the results.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

secret the shared secret string

OATH Library (liboath) Manual 14 / 25

secret_length length of secret

now Unix time value to compute
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

digits number of requested digits
in the OTP

window how many OTPs after start
counter to test

otp_pos
output search position in
search window (may be
NULL).

strcmp_otp function pointer to a
strcmp-like function.

strcmp_handle caller handle to be passed
on to strcmp_otp .

Returns

Returns absolute value of position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in
OTP window, or an error code.

Since: 1.10.0

oath_totp_validate3 ()

int
oath_totp_validate3 (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
size_t window,
int *otp_pos,
uint64_t *otp_counter,
const char *otp);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

secret the shared secret string
secret_length length of secret

now Unix time value to validate
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

OATH Library (liboath) Manual 15 / 25

window
how many OTPs
after/before start OTP to
test

otp_pos
output search position in
search window (may be
NULL).

otp_counter
counter value used to
calculate OTP value (may
be NULL).

otp the OTP to validate.

Returns

Returns absolute value of position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in
OTP window, or an error code.

Since: 2.4.0

oath_totp_validate3_callback ()

int
oath_totp_validate3_callback (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
size_t window,
int *otp_pos,
uint64_t *otp_counter,
oath_validate_strcmp_function strcmp_otp,
void *strcmp_handle);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Validation is implemented by generating a number of potential OTPs and performing a call to the strcmp_otp function, to
compare the potential OTP against the given otp . It has the following prototype:

int (*oath_validate_strcmp_function) (void *handle, const char *test_otp);

The function should be similar to strcmp in that it return 0 only on matches. It differs by permitting use of negative return codes
as indication of internal failures in the callback. Positive values indicate OTP mismatch.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
strcmp_otp hash the test_otp OTP using the same hash, and then compare the results.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

Parameters

secret the shared secret string
secret_length length of secret

now Unix time value to compute
TOTP for

time_step_size time step system parameter
(typically 30)

OATH Library (liboath) Manual 16 / 25

start_offset
Unix time of when to start
counting time steps
(typically 0)

digits number of requested digits
in the OTP

window how many OTPs after start
counter to test

otp_pos
output search position in
search window (may be
NULL).

otp_counter
counter value used to
calculate OTP value (may
be NULL).

strcmp_otp function pointer to a
strcmp-like function.

strcmp_handle caller handle to be passed
on to strcmp_otp .

Returns

Returns absolute value of position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in
OTP window, or an error code.

Since: 2.4.0

oath_totp_validate4 ()

int
oath_totp_validate4 (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
size_t window,
int *otp_pos,
uint64_t *otp_counter,
int flags,
const char *otp);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

The flags parameter may be used to change the MAC function, for example OATH_TOTP_HMAC_SHA256 or OATH_TOTP_HMAC_SHA512.

Parameters

secret the shared secret string
secret_length length of secret

now Unix time value to validate
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

OATH Library (liboath) Manual 17 / 25

window
how many OTPs
after/before start OTP to
test

otp_pos
output search position in
search window (may be
NULL).

otp_counter
counter value used to
calculate OTP value (may
be NULL).

flags flags indicating mode, one
of oath_totp_flags

otp the OTP to validate.

Returns

Returns absolute value of position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in
OTP window, or an error code.

Since: 2.6.0

oath_totp_validate4_callback ()

int
oath_totp_validate4_callback (const char *secret,

size_t secret_length,
time_t now,
unsigned time_step_size,
time_t start_offset,
unsigned digits,
size_t window,
int *otp_pos,
uint64_t *otp_counter,
int flags,
oath_validate_strcmp_function strcmp_otp,
void *strcmp_handle);

Validate an OTP according to OATH TOTP algorithm per RFC 6238.

Validation is implemented by generating a number of potential OTPs and performing a call to the strcmp_otp function, to
compare the potential OTP against the given otp . It has the following prototype:

int (*oath_validate_strcmp_function) (void *handle, const char *test_otp);

The function should be similar to strcmp in that it return 0 only on matches. It differs by permitting use of negative return codes
as indication of internal failures in the callback. Positive values indicate OTP mismatch.

This callback interface is useful when you cannot compare OTPs directly using normal strcmp, but instead for example only
have a hashed OTP. You would then typically pass in the hashed OTP in the strcmp_handle and let your implementation of
strcmp_otp hash the test_otp OTP using the same hash, and then compare the results.

Currently only OTP lengths of 6, 7 or 8 digits are supported. This restrictions may be lifted in future versions, although some
limitations are inherent in the protocol.

The flags parameter may be used to change the MAC function, for example OATH_TOTP_HMAC_SHA256 or OATH_TOTP_HMAC_SHA512.

Parameters

secret the shared secret string

OATH Library (liboath) Manual 18 / 25

secret_length length of secret

now Unix time value to compute
TOTP for

time_step_size time step system parameter
(typically 30)

start_offset
Unix time of when to start
counting time steps
(typically 0)

digits number of requested digits
in the OTP

window how many OTPs after start
counter to test

otp_pos
output search position in
search window (may be
NULL).

otp_counter
counter value used to
calculate OTP value (may
be NULL).

flags flags indicating mode, one
of oath_totp_flags

strcmp_otp function pointer to a
strcmp-like function.

strcmp_handle caller handle to be passed
on to strcmp_otp .

Returns

Returns absolute value of position in OTP window (zero is first position), or OATH_INVALID_OTP if no OTP was found in
OTP window, or an error code.

Since: 2.6.0

oath_authenticate_usersfile ()

int
oath_authenticate_usersfile (const char *usersfile,

const char *username,
const char *otp,
size_t window,
const char *passwd,
time_t *last_otp);

Authenticate user named username with the one-time password otp and (optional) password passwd . Credentials are read
(and updated) from a text file named usersfile .

Note that for TOTP the usersfile will only record the last OTP and use that to make sure more recent OTPs have not been seen
yet when validating a new OTP. That logics relies on using the same search window for the same user.

Parameters

usersfile
string with user credential
filename, in UsersFile
format

username string with name of user

otp string with one-time
password to authenticate

OATH Library (liboath) Manual 19 / 25

window how many past/future OTPs
to search

passwd
string with password, or
NULL to disable password
checking

last_otp output variable holding last
successful authentication

Returns

On successful validation, OATH_OK is returned. If the supplied otp is the same as the last successfully authenticated one-time
password, OATH_REPLAYED_OTP is returned and the timestamp of the last authentication is returned in last_otp . If the
one-time password is not found in the indicated search window, OATH_INVALID_OTP is returned. Otherwise, an error code is
returned.

Types and Values

OATHAPI

define OATHAPI __attribute__((__visibility__("default")))

Symbol holding shared library API visibility decorator.

This is used internally by the library header file and should never be used or modified by the application.

https://www.gnu.org/software/gnulib/manual/html_node/Exported-Symbols-of-Shared-Libraries.html

OATH_VERSION

#define OATH_VERSION "2.6.6"

Pre-processor symbol with a string that describe the header file version number. Used together with oath_check_version() to
verify header file and run-time library consistency.

OATH_VERSION_NUMBER

#define OATH_VERSION_NUMBER 0x02060600

Pre-processor symbol with a hexadecimal value describing the header file version number. For example, when the header version
is 1.2.3 this symbol will have the value 0x01020300. The last two digits are only used between public releases, and will otherwise
be 00.

enum oath_rc

Return codes for OATH functions. All return codes are negative except for the successful code OATH_OK which are guaranteed
to be

1. Positive values are reserved for non-error return codes.

Note that the oath_rc enumeration may be extended at a later date to include new return codes.

Members

OATH Library (liboath) Manual 20 / 25

OATH_OK
Successful
re-
turn

OATH_CRYPTO_ERROR

Internal
er-
ror
in
crypto
func-
tions

OATH_INVALID_DIGITS

Unsupported
num-
ber
of
OTP
dig-
its

OATH_PRINTF_ERROR

Error
from
sys-
tem
printf
call

OATH_INVALID_HEX

Hex
string
is
in-
valid

OATH_TOO_SMALL_BUFFER

The
out-
put
buffer
is
too
small

OATH_INVALID_OTP

The
OTP
is
not
valid

OATH_REPLAYED_OTP

The
OTP
has
been
re-
played

OATH_BAD_PASSWORD

The
pass-
word
does
not
match

OATH Library (liboath) Manual 21 / 25

OATH_INVALID_COUNTER

The
counter
value
is
cor-
rupt

OATH_INVALID_TIMESTAMP

The
times-
tamp
is
cor-
rupt

OATH_NO_SUCH_FILE

The
sup-
plied
file-
name
does
not
ex-
ist

OATH_UNKNOWN_USER

Cannot
find
in-
for-
ma-
tion
about
user

OATH_FILE_SEEK_ERROR

System
er-
ror
when
seek-
ing
in
file

OATH_FILE_CREATE_ERROR

System
er-
ror
when
cre-
at-
ing
file

OATH_FILE_LOCK_ERROR

System
er-
ror
when
lock-
ing
file

OATH Library (liboath) Manual 22 / 25

OATH_FILE_RENAME_ERROR

System
er-
ror
when
re-
nam-
ing
file

OATH_FILE_UNLINK_ERROR

System
er-
ror
when
re-
mov-
ing
file

OATH_TIME_ERROR

System
er-
ror
for
time
ma-
nip-
u-
la-
tion

OATH_STRCMP_ERROR

A
str-
cmp
call-
back
re-
turned
an
er-
ror

OATH_INVALID_BASE32

Base32
string
is
in-
valid

OATH_BASE32_OVERFLOW

Base32
en-
cod-
ing
would
over-
flow

OATH_MALLOC_ERROR

Memory
al-
lo-
ca-
tion
failed

OATH Library (liboath) Manual 23 / 25

OATH_FILE_FLUSH_ERROR

System
er-
ror
when
flush-
ing
file
buffer

OATH_FILE_SYNC_ERROR

System
er-
ror
when
sync-
ing
file
to
disk

OATH_FILE_CLOSE_ERROR

System
er-
ror
when
clos-
ing
file

OATH_LAST_ERROR

Meta-
error
in-
di-
cat-
ing
the
last
er-
ror
code,
for
use
when
it-
er-
at-
ing
over
all
er-
ror
codes
or
sim-
i-
lar.

OATH_HOTP_DYNAMIC_TRUNCATION

#define OATH_HOTP_DYNAMIC_TRUNCATION SIZE_MAX

Pre-processor symbol to indicate that no HOTP truncation should occur, see oath_hotp_generate().

OATH Library (liboath) Manual 24 / 25

oath_hotp_validate_strcmp_function

#define oath_hotp_validate_strcmp_function oath_validate_strcmp_function

Pre-processor compatibility definition for oath_validate_strcmp_function().

Since: 1.4.0

OATH_TOTP_DEFAULT_TIME_STEP_SIZE

#define OATH_TOTP_DEFAULT_TIME_STEP_SIZE~30

Pre-processor symbol to provide a default value for the TOTP time-step value, see oath_totp_generate().

OATH_TOTP_DEFAULT_START_TIME

#define OATH_TOTP_DEFAULT_START_TIME ((time_t) 0)

Pre-processor symbol to indicate that you want to use the Unix epoch as a starting pointer for TOTP, see oath_totp_generate().

enum oath_totp_flags

Flags for oath_totp_generate2().

Members

OATH_TOTP_HMAC_SHA256

Use
HMAC-
SHA256
in-
stead
of
HMAC-
SHA1.

OATH_TOTP_HMAC_SHA512

Use
HMAC-
SHA512
in-
stead
of
HMAC-
SHA1.

Since: 2.6.0

OATH Library (liboath) Manual 25 / 25

Chapter 2

Index

O
oath_authenticate_usersfile, 18
oath_base32_decode, 4
oath_base32_encode, 5
oath_bin2hex, 4
oath_check_version, 2
oath_done, 2
oath_hex2bin, 4
OATH_HOTP_DYNAMIC_TRUNCATION, 23
oath_hotp_generate, 6
OATH_HOTP_LENGTH, 6
oath_hotp_validate, 7
oath_hotp_validate_callback, 8
oath_hotp_validate_strcmp_function, 24
oath_init, 2
oath_rc, 19
oath_strerror, 3
oath_strerror_name, 3
OATH_TOTP_DEFAULT_START_TIME, 24
OATH_TOTP_DEFAULT_TIME_STEP_SIZE, 24
oath_totp_flags, 24
oath_totp_generate, 9
oath_totp_generate2, 10
oath_totp_validate, 11
oath_totp_validate2, 12
oath_totp_validate2_callback, 13
oath_totp_validate3, 14
oath_totp_validate3_callback, 15
oath_totp_validate4, 16
oath_totp_validate4_callback, 17
oath_totp_validate_callback, 11
oath_validate_strcmp_function, 7
OATH_VERSION, 19
OATH_VERSION_NUMBER, 19
OATHAPI, 19

	Liboath API Reference Manual
	oath.h

	Index

