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1 Software and Documentation Licenses

1.1 Software license

Graph Sampler is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version. This program is distributed
in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the im-
plied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

1.2 Documentation license

The GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
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A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in



Chapter 1: Software and Documentation Licenses 3

another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
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It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.



Chapter 1: Software and Documentation Licenses 5

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”
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6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.
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10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/
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2 Overview

Graph Sampler is an inference and simulation tool for networks (understood as graphs).
It can simulate random graphs for general directed graphs (eventually cyclic) (see
[Bibliographic References], page 27: Bois & Gayraud 2015; Datta et al. 2017) or for
directed acyclic graphs (Bayesian networks). The graphs are generated by Markov
chain Monte Carlo (MCMC) simulations and their structure can be specified to follow
probabilistic properties through the use of prior distributions. Graph sampler lets you also
infer about graph structure through the joint use of priors and data about node values
(via a likelihood function).

2.1 General procedure

You write an input files and run compiled graph_sampler program. The input files specifies
the kind of graph to simulate, some simulation parameters and output options, the priors
you want, the eventual data and their likelihood (see Chapter 4 [Running Graph Sampler],
page 13). The simulation output is written to standard ASCII files. After simulations, you
can also check the convergence of the MCMC sampling.

No knowledge of computer programming is required, unless you want to tailor the pro-
gram to special needs (in which case you may want to contact us).

2.2 New features

• Version 1.0.0 provides basic sampling of general graphs and structural inference for
Bayesian networks, see [Bibliographic References], page 27: Bois & Gayraud 2015;
Datta et al. 2017.

• Version 2.0.0 implements missing data imputation, dynamic Bayesian networks, tem-
pered MCMC sampling, the edge count prior, and various routines using the GNU
Scientific Library (gsl).

• Version 3.0.0 implements mainly Bayesian inference for general (cyclic or acyclic)
graphs, the associated constant-gamma data model, priors on strongly connected com-
ponents (cycles), posterior convergence analyses, and tests for checking the software
during or after installation.
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3 Installation

3.1 System requirements

Graph Sampler is written in ANSI-standard C language. We are distributing the source
code and you should be able to compile it for any system, provided you have an ANSI C
compliant compiler.

On any system we recommend the GNU gcc compiler (freeware). An automated compi-
lation script (called Makefile) is provided and can be used if the standard command make

is available to you. We also recommend that you install the GNU Scientific Library prior to
installing Graph Sampler, so that it can make used of the Mersenne twister and Tausworthe
pseudo-random number generators it provides.

If you want to modify the input file parser you will need lex and yacc (that is for
experienced C programmers).

3.2 Distribution

Graph Sampler source code is available on Internet through:

https://sites.google.com/site/utcchairmmbsptp/software.

3.3 Machine-specific installation

3.3.1 Unix and GNU/Linux operating systems

To install on a Unix or GNU/Linux machine, download (in binary mode) the distributed
archive file to your machine. Place it in a directory where there is no existing graph_sampler
subdirectory that could be erased (make sure you check that). Decompress the archive with
GNU gunzip (gunzip <archive-name>.tar.gz). Untar the decompressed archive with tar
(tar xf <archive-name>.tar) (do man tar for further help). Many other archiving tools
can be used in place of gunzip and tar. Move to the graph_sampler directory just created
and issue the following commands:

make

This command compiles the graph_sampler program.

If you do not have the GNU Scientific Library installed, or do not want to use it, you
should compile with the command make -f Makefile_no_gsl.

You can also compile this manual as an info file with the command make info or as an
html file with make html.

To check the software installation, use the command make test. It runs a series of tests,
which should all pass. The test files are included in the sub-folder tests/ and can also be
used as examples or templates for your own analyses.

3.3.2 Other operating systems

Under other operating systems (Windows, etc.) or if everything else fails you should be able
to both uncompress and untar the archive with widely distributed archiving tools. Refer
to the documentation of your C compiler to create an executable file from the source code
files provided.

https://sites.google.com/site/utcchairmmbsptp/software
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You are now ready to use Graph Sampler.
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4 Running Graph Sampler

After having compiled graph_sampler, you are ready to run it. For this you need to write
an input file. This chapter explains how to write such files with the proper syntax.

In Unix the command-line syntax to run that executable is simply:

graph_sampler [input-file [output-prefix]]

where the brackets indicate optional arguments. If no input file or/and output prefix are
specified, the program will use defaults. The default input file name is script.txt, the
output files created depend on flag you set in the input file (see below) and their name is
printed on exit. The default output file names are best_graph.out, graph_samples.out,
degree_count.out, motifs_count.out, edge_p.out, results_mcmc.bin and missing_

data.out (the latter is created only if “NaN” data are specified). If you only specify an
input file name, the output file names will still be the default ones. If you specify both an
input file name and an output prefix, the default output file names will be prefixed by it
(i.e., with the prefix my the edge probabilities output file will be named my_edge_p.out).

When the program starts, it announces which model description file was used to create
it. While the input file is read or while simulations are running, some informations will be
printed on your computer screen. They can help you check that the input file is correctly
interpreted and that the program runs as it should. Graph Sampler can also post error
messages, which should be self-explanatory. Where appropriate, they show the line number
in the input file where the error occurred.

The program ends (if everything went fine) by giving you the name of the output file
generated. If you want to run the program in batch mode (in the background), you may
want to redirect the screen output and error messages; refer for this to the man pages for
your command shell.

4.1 Input file syntax

An input files specifies the kind of graph to simulate, some simulation parameters and
output options, the priors you want, the eventual data and their likelihood. All that is
done through the specification of predefined variables, using some keywords, user defined
variables, numbers and operators.

A Graph Sampler input file is a text (ASCII) file that obeys a relatively simple syntax:

• An input file can contain statements, matrix definitions and comments.

• Statements and matrix definitions must end with ’;’ and can span several lines. They
can be placed in any order, except that matrix sizes (defined by specific predefined
variables) must be defined before the corresponding matrix definition.

• Comments start with the pound sign # and go up to the end of line. They are ignored.
Example:

# this is a comment, comments are useful

• Variables are user defined symbols whose name must start with a letter, followed eventu-
ally by other letters, numbers and _. Letters can be upper-case or lower-case. Variable
names are case sensitive. Example:

Xa_2

Note that unassigned variables have a default value of zero.
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• Predefined variables are reserved names that Graph Sampler understands. An exhaus-
tive list of the predefined variables is given in the next section. Predefined variables
not explicitly assigned have (hopefully useful) default values which may differ from zero
(refer to their description, below). Example:

n_nodes

• Expressions are numbers (as in C) or formulae including numbers and/or user defined
variables, operators (’+’, ’-’, ’*’, ’/’) or parentheses. Formulae are computed at they
appear, with usual precedences. The division is always a real division (not an integer
division). Example:

(5 + 6) * (3.4 / 1.1E-8) + Xa_2;

• Statements are in the format:

<variable> = <expression>;.

Example:

X_a2 = 5000;

n_nodes = 6 * Xa_2;

• White space consist of space, tab or carriage return. Several white space characers
in a row are treated as just one white space. Example:

Xa_2 = (2 + 3) /

(25. - 5.76);

• Lists are comma separated lists of expressions. Example:

1, 2, 2+1, 2*2, 5, Xa_2

• Array definitions can only be used with predefined variables at the lefthand side. They
are in the forms:<variable> = array{<list of expressions>};.

The term array is a reserved keyword (see the list of those keywords below). Example:

n_data_levels = array{2, 2, 1+1};

• Matrix definitions can only be used with predefined variables at the lefthand side. They
are in the forms:

<variable> = matrix{<list of expressions>};.

The term matrix is a reserved keyword (see the list of those keywords below). Example:

data = matrix{

1, 2, 2+1,

2*2, 5, Xa_2};

That is the general form. Some matrices can accept keywords such as empty, full,
equanimous, or random instead of a list of expression inside the curly braces (see the
specification of each predefined matrix, below).

4.2 Predefined variables

Here are, grouped by topic, the predefined variables that Graph Sampler understands (they
may have different synomyms, for example a long and a short form, separed here by com-
mas):

4.2.1 Global control variables
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autocycle

The autocycle variable should be set to 1 (true) to allow edges from a node to itself, and
to 0 (false) otherwise. Its default value is false. Setting it to true is incompatible with
specifying bayesian_network to true (loops are not allowed in such networks).

bayesian_network

The predefined variable bayesian_network indicate whether the graphs to sample are
Bayesian networks (in that case it should be set to 1 or true) or general directed graphs
(in which case it should set to 0 or false). General directed graphs can only be simulated
on the basis of priors. For Bayesian networks both simulation and structural inference can
be performed. Note that bayesian_network is incompatible with autocycle set to true.
The default value for bayesian_network is false.

Example:

bayesian_network = true; # bayesian_network = 1 would also work

dynamic_bayesian_network

If dynamic_bayesian_network is set to to 1 or true the graphs sampled are dynamic
Bayesian networks (DBNs). Both simulation and structural inference can be performed.
In DBNs, the data are supposed to be collected at different discrete times, and the node
states (values) at a given time can influence the nodes values at subsequent times. That
allows the modeling of loops (e.g., a node at time t can be its own parent at time t+1) (see
[Bibliographic References], page 27: Husmeier 2003). Currently, in graph sampler, edges
can only connect nodes from one time to the next (no connection to node values at the
same time or times ulterior to the next). The pattern of edges from one time to the next is
also constant and valid for all time pairs (the dependence structure is not allowed to change
with time). The initial adjacency matrix specified, together with the priors on edges refer to
edges between subsequent times and do not need to respect acyclicity (again, for example,
a 1 on the diagonal of the adjacency matrix means that the corresponding node at time t
is the parent of itself, but at time t+1). Despite the free structure of the adjacency matrix
sampled, acyclicity is always maintained in such DBNs, and the adjacency matrices given
just need to be “unrolled” in time. Note that autocycle can be set to either true or false
if dynamic_bayesian_network is set to true.The default value for dynamic_bayesian_

network is false.

hypergraph

If hypergraph is set to to 1 or true the graphs sampled are hypergraphs in which strongly
connected components (“cycles” or “loops”) are collapsed into multivariate nodes (see
[Bibliographic References], page 27: Wiecek submitted). Only structural inference can
be performed in this case. The data are specified as in a standard Bayesian network, but
the global graph can contain cycles. Note that autocycle must be set to either true if
hypergraph is set to true. The default value for hypergraph is false.

n_nodes

The number of nodes in the network considered is specified by setting n_nodes to an integer
(not long integer) value. n_nodes must be set before the initial adjacency or prior on edges’
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probability matrices are defined. The default value for n_nodes is 0, which raises an error
message, because n_nodes should be set to a meaningful value.

initial_adjacency

The starting value of the graph adjacency matrix is defined by setting initial_adjacency,
a square matrix of dimension n_nodes. Matrix elements should be either 0 or 1. Element
[i,j ] is set to 1 if an edge (link) goes from node i to node j. Setting it to 0 indicates no edge
between the two nodes.

Example:

n_nodes = 3;

initial_adjacency = matrix {0, 0, 0,

1, 0, 0,

1, 0, 0};

initial_adjacency definition can also use an extended syntax:

initial_adjacency = matrix{empty | full | random};.

were “|” means “or”.

• If the keyword empty is used, all elements will be set to zero.

• If full is used all elements will be set to 1 when bayesian_network is false. If
bayesian_network is true the diagonal elements will be set to zero and the others to
1. If you want it to work with Bayesian networks, you should set bayesian_network
to true before defining initial_adjacency, because its default value is false.

• If random is used all elements will be set randomly to 0 or 1 (with equal probability)
when bayesian_network is false. If bayesian_network is true the diagonal elements
will be set to zero and the others to 0 or 1. If you want it to work with Bayesian net-
works, you should set bayesian_network to true before defining initial_adjacency,
because its default value is false.

n_runs

The total number of iterations to be performed by the MCMC sampler is specified by setting
n_runs to an integer or a floating point number inferior to the maximum unsigned long
integer value on your machine (typically 18.446.744.073.709.551.615 on a 64 bits machine).
Its default value is 1000000000 (a billion).

n_burn_in

A certain number of “burn-in” iterations can be specified by setting n_burn_in to a long
integer value. In that case the MCMC chain recording, and computation of summary
outputs (such as the edge probabilities) starts only after n_burn_in iteration. Its default
value is zero. This is typically used to discard the part of the MCMC chain that is not at
equilibrium. However, checking that equilibrium is attained is best done, in our opinion,
by running multiple independent chains and using Gelman and Rubin R̂ diagnostic (see
[Convergence analysis], page 24).
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perk_scale

Tempered MCMC sampling is perfomed if a perk_scale is specified (Geyer and Thompson,
Journal of the American Statistical Association, 1995, 90:909-920). The perk_scale defines
a set of inverse temperatures (between 0 and 1) to be used in tempered MCMC.

perk_scale = array {0.1, 0.5, 0.9, 1};

This option slows effective sampling (which occurs at perk equal to 1) by a factor equal to
the number of perk factors provided, but it improves mixing and convergence dramatically.
Perks (inverse temperatures) are sampled at the start of each adjacency matrix updating.
Therefore if a perk of zero is specified, the Markov chain should regenerate when it hits this
perk (which corresponds to an infinite temperature). Samples obtained at perk 1.0 between
two random hits of perk zero should therefore be from the exact target distribution (i.e.,
obtained at convergence). If recording the chain is requested (save_chain set to true)
perks are output to the file inverse_temperatures.out. You can use it to trace back
which graph samples were obtained at which temperature.

random_generator

If you have linked Graph Sampler with GNU Scientific Library (gls) you can choose be-
tween two extremely long period random number generators provided by the library: ei-
ther the “Mersenne twister” generator (gsl rng mt19937) or the “Tausworthe generator”
(gsl rng taus2). To that effect you can set the variable random_generator to either the
mersenne_twister keyword or the tausworthe keyword. By default the Mersenne twister
is used.

Example:

random_generator = tausworthe;

If you have have compiled Graph Sampler with the NO LIBGSL option, the GNU Sci-
entific Library is not available. In that case the Park and Miller’s “minimal standard”
MINSTD generator (a good one though) is used instead. Setting the random_generator

variable is ignored in that case.

random_seed

The starting value of the pseudo-random generator random_seed can be explicitly set to any
real or integer number superior to zero. That allows repeating exactly the same sequence
random numbers. That is required to generate different chains for the same problem in
order to check the convergence of the MCMC simulations. If it is not set by the user,
random_seed has a default value of 314159265.3589793.

Example:

random_seed = 123.456;

4.2.2 Variables specifying priors

hyper_pB

The matrix hyper_pB is a square matrix of dimension n_nodes which specifies a prior
distribution on edge probabilities. Each element [i,j ] of hyper_pB is the parameter p (a
real of double format) of a Bernoulli distribution for the presence of an edge from node i
to node j. In the case of Bayesian networks, p values should be 0 on the first diagonal.
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Example:

bayesian_network = true;

hyper_pB = matrix {0, 0.1, 0.1,

0.9, 0, 0.1,

0.9, 0.1, 0 };

hyper_pB definition can also use an extended syntax:

hyper_pB = matrix{equanimous};.

If the keyword equanimous is used, all elements of hyper pB will be set to 0.5, except
when bayesian_network has been defined as true, or autocycle is true, or hypergraph
is true, in which cases the diagonal elements will be set to zero.

Finally, you can also read the hyper_pB matrix from a file, using:

hyper_pB = import_file {"filename"};

where filename is the valid name of an existing file containing the probability values,
separated by white spaces or tabs (but not commas). That file cannot have extensions .bin
or .out, as those are reserved.

Internally, hyper_pB is always used. If it is not defined by the user, p values will default
to 0.5 (with zeroes on the diagonal if bayesian_network is true), so that the prior is
neutral (equal probability for the absence or presence of any edge). The use of the keyword
equanimous is equivalent, with the advantage of being explicit.

In the case of a Bayesian network, nodes which have been assigned a zero probability
of having parents (a column of zero in the hyper_pB matrix) are understood to be special
“control” nodes for which the likelihood will not be computed. Such nodes will typically cor-
respond to experimental design variables. Their likelihood is not computed. They condition
the likelihood of their eventual children node and then take the values assigned to them in
the input file (in which case the “data” are rather forcing values than actual observations).

concordance_prior

The flag concordance_prior set to 1 or true indicates that a concordance prior should
be used (in addition to the baseline Bernoulli prior on individual edges). By default
concordance_prior is false. A concordance prior is an unnormalized score of the edge-
wise difference between a reference adjacency matrix and the matrix being examined (see
below edge_requirements). Beware that you should probably not used it in conjunction
with an informative Bernoulli prior on edges, since both priors specify (explicitly in the
case of Bernoulli) individual edge probabilies. Leaving the Bernoulli prior unspecified will
be fine in that case as it will be assigned a non-informative default value.

edge_requirements

The matrix edge_requirements is a square matrix of dimension n_nodes which specifies
the concordance between the edges of a reference adjacency matrix and the current one.
Each element [i,j ] of edge_requirements can take a value of 1, -1, or 0.

• The value 1 indicates that an edge from node i to node j is desired (rather than strictly
required). The presence of that edge in the adjacency matrix evaluated raises its score
by lambda_concordance (see below).
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• The value -1 indicates that an edge from node i to node j is not desired. The presence
of that edge in the adjacency matrix evaluated lowers its score. In the case of Bayesian
networks, diagonal values should be -1, otherwise Hell might break loose.

• A value of 0 indicates no preference: the score is unaffected by the presence of absence
of an edge from node i to node j. The presence of that edge in the adjacency matrix
evaluated raises its score.

Example:

concordance_prior = true;

edge_requirements = matrix {-1, -1, 0,

1, -1, -1,

1, -1, -1};

By default, all elements of edge_requirements will be set to 0 when bayesian_network

is false. If bayesian_network is true the diagonal elements will be set to -1 and the others
to 0. If you want it to work with Bayesian networks, you should set bayesian_network

before defining edge_requirements, because its default value is false.

lambda_concordance

The parameter lambda_concordance is used to weight the differences between the reference
adjacency matrix and the current adjacency matrix when concordance_prior is true. It
should be set to a double (typically superior to zero). Its default value is 1.

degree_prior

The flag degree_prior set to 1 or true indicates that a power law prior is placed on the
distribution of the nodes’ degrees (the number of incoming and outgoing edges for a given
node) (see [Bibliographic References], page 27: Bois & Gayraud 2015). The power law
parametergamma_degree (see next) has default value 1. This prior comes in addition to the
baseline Bernoulli prior on individual edges. By default it is false.

gamma_degree

If degree_prior is true, gamma_degree specifies the parameter of the exponential prior on
degree counts. It should be set to a double (typically superior to zero). Its default value is
1.

edge_count_prior

The variable edge_count_prior can be set to a number between 0 and the maximum
number of edges possible to impose a binomial prior (with parameters n_nodes squared
and edge count prior / (n_nodes squared)) on the total number of edges in the graph. The
maximum number of edges is n_nodes squared, in a general graph, and n_nodes times (n_
nodes - 1) in a Bayesian network. The number given should be the a priori expected value
for the edge count. The variable n_nodes must be set before setting edge_count_prior.

Example:

n_nodes = 20;

edge_count_prior = 50;
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motif_prior

The flag motif_prior set to 1 or true indicates that a beta-binomial prior is placed on
the count of triangular feed-forward and feedback loops in the network (see [Bibliographic
References], page 27: Bois & Gayraud 2015). It comes in addition to the baseline Bernoulli
prior on individual edges and is incompatible with Bayesian networks or dynamic Bayesian
networks (an error message will be issued). By default it is false.

alpha_motif

If motif_prior is true, alpha_motif specifies the first parameter of the beta-binomial
prior on loops’ counts. It should be set to an integer superior to zero. Its default value is 1.

beta_motif

If motif_prior is true, beta_motif specifies the second parameter of the beta-binomial
prior on loops’ counts. It should be set to an integer superior to zero. Its default value is 1.

scc_prior

The flag scc_prior set to 1 or true indicates that priors are placed on either or both
the number and size of the graph’s strongly connected components (SCCs) (see next).
By default, only a prior on the number of SCCs is turned on. Those SCC priors come
in addition to the baseline Bernoulli prior on individual edges and is incompatible with
Bayesian networks (an error message will be issued). By default it is false.

lambda_scc

If scc_prior is true, lambda_scc specifies the rate parameter of Poisson prior on the
number of non-trivial SCCs (SCCs of size larger than 1) in the graph. So it represents
basically the expected a priori number of SCCs in the graph. It should be set to an integer
superior to zero. Its default value is 1.

gamma_scc

If scc_prior is true, gamma_scc specifies the power parameter of a power law prior on the
size of the graph’s SCCs. It should be set to an integer equal or superior to zero. Larger
values penalize large SCCs. Its default value is zero.

maximum_scc_size

The variable maximum_scc_size can be set to an integer to place an upper limit on the size
of the SCCs present in the sampled graph. By default the limit is the number of nodes.

4.2.3 Variables specifying data and likelihood

n_data

If bayesian_network is true, data can be input to infer on the probabiliy of the presence
of edges on the basis of priors and data likelihood, in a fully Bayesian framework. The
predefined variable n_data should be set to an integer equal to the number of data points
per node. Its default is zero. If no data are provided while bayesian_network is true,
simulations will proceed simply on the basis of priors distributions.
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data

After n_nodes, n_data and a proper model have been defined, a data matrix can be defined
(actually if n_data is different from zero, a data matrix must be defined). data has no
default value. The matrix of data should have n nodes rows and each row should be a
vector of n_data values (integers, doubles or “NaN” in the case of missing data). A warning
is issued if a node has only missing data (that is likely to lead to identifiability problems).

Example:

n_nodes = 3;

bayesian_network = true;

n_data = 4;

data = matrix {1.1, 1.3, 1.4, 1.35,

2.1, NaN, 2.5, 2.45,

3.4, 3.6, 3.8, 3.85};

You can also read the data matrix from a file, using:

data = import_file {"filename"};

where filename is the valid name of an existing file containing the data values (or
missing data coded as NaN), separated by white spaces or tabs (without commas). The data
file cannot have extensions .bin or .out, those are reserved.

If missing data are entered (as “NaN”), they will be replaced in the computation by
imputed values (imputation is performed by MCMC sampling). A sub-sample (at the
moment a thousand) of the imputed data value is written to a text file (named missing_

data.out)

likelihood

If data are supplied, their likelihood function must also be specified with the following
syntax:

likelihood = dirichlet | normal_gamma | constant_gamma | zellner;

were “|” means “or”.

• The keyword dirichlet should be used for discrete data only. It specifies a Dirichlet-
multinomial model (See [Bibliographic References], page 27: Laskey & Myers 2003;
Heckerman et al. 1994; Heckerman et al. 1995). In that case the data have to be coded
by integers from zero to n. The number of levels for each node has to be specified using
an [n data levels], page 22, declaration. The Dirichlet hyper-parameters are internally
set to one, specify a uniform prior on configurations of parents for any node.

• The keyword normal_gamma specifies a vague normal-gamma prior for the regression
parameters describing the dependance of children nodes with respect to their parents.
Such a prior and model can be used for continous or discrete data. Its hyper-parameters
[alpha normal gamma], page 22, and [beta normal gamma], page 22, can be set at
user-defined values.

• The keyword constant_gamma specifies an improper constant-gamma prior for the
regression parameters describing the dependance of children nodes with respect to
their parents. Such a prior and model is used for hypergraphs and can be used in
standard BNs for continous or discrete data. Its hyper-parameters [extra df wishart],
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page 22, [scale wishart diagonal], page 22, [scale wishart offdiagonal], page 22, and
[maximum scc size], page 22, can be set at user-defined values.

• The keyword zellner specifies a Zellner prior for the normal regression model (based
on our experience, we do not recommend it though). One of its drawbacks is that any
node cannot have more parents than there are data about it (arguably, an artificial
constraint).Its hyper-parameter [gamma zellner], page 23, can be set at a user-defined
value.

n_data_levels

If a Dirichlet-multinomial model is used, discrete data have to be specified for each node.
Such data have to be coded as integers from zero to n, n being the number of levels for a
given node. Those levels are specified using the n_data_levels [array], page 25, declaration.

n_data_levels = array{2, 2, 3, 2, 4};

alpha_normal_gamma

The parameter alpha_normal_gamma corresponds to the prior shape of the Gamma distri-
bution of the data precision in the Normal-Gamma regression model. It can be set to any
positive floating point value. By default its value is 1.5, which works well in our hands. You
may want to tailor it to your needs.

beta_normal_gamma

The parameter beta_normal_gamma corresponds to the prior rate of the Gamma distribution
of the data precision in the Normal-Gamma regression model. It can be set to any positive
floating point value. By default its value is 1000, which is rather vague and works well in
our hands.

extra_df_wishart

The tuning parameter extra_df_wishart can be set to any positive integer. It is added to
the number of nodes in a hypernode to define the degrees of freedom for the inverse-Wishart
prior distribution of the regression parameter covariance matrix. By default its value is 1.

scale_wishart_diagonal

The tuning parameter scale_wishart_diagonal can be set to any positive floating point
value. It defines the value of the diagonal elements of the scale matrix for the inverse-
Wishart prior distribution of the regression parameter covariance matrix. By default its
value is 1.0.

scale_wishart_offdiagonal

The tuning parameter scale_wishart_offdiagonal can be set to any positive floating
point value. It defines the value of the off-diagonal elements of the scale matrix for the
inverse-Wishart prior distribution of the regression parameter covariance matrix. By default
its value is 0.

maximum_scc_size

The contraining parameter maximum_scc_size can be set to any positive floating point
value. It defines the maximum allowed size of a strongly connected component in the
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network (if hypergraphs are sampled). By default its value is n nodes. It does not make
sense to set it to a higher value...

gamma_zellner

The tuning parameter gamma_zellner can be set to any positive floating point value. When
it is equal to the number of data points per node, the data and Zellner prior on the regression
parameters have equal weight. By default its value is 1.0.

4.2.4 Variables specifying outputs

save_chain

The entire MCMC sampling chain can be saved (after the burnin period) in binary format
to a file (named by default results_mcmc.bin) by setting save_chain to 1 or true. By
default, the chain is not saved. Beware, MCMC chains can be very large, even though the
recording format is very compact: results_mcmc.bin starts with the number of nodes in
the graph (as a binary integer, i.e., a byte), followed by the value of the adjacency matrix
(n nodes by n nodes bits) at the end of burn-in period, followed by a two-bits encoding
of the difference between successive adjacency matrices or end of chain. The chain saving
algorithm assumes that the matrix is scanned systematically, and does not encode the
location of changes. The results_mcmc.bin file can be used to recreate the successive
adjacency matrices sampled or check convergence of the MCMC algorithm.

n_saved_adjacency

The user can request the output of a number n_saved_adjacency (integer) of randomly
generated adjacency matrices. Those matrices are saved at regularly spaced iterations along
the MCMC chain (after the burn-in period) in the file with defaut name graph_samples.out
in text format, along with the logarithmes of the prior probability, data likelihood (if data
were specified) and posterior probability. A value of 1 for element [i,j ] (that is, on the ith row
and jth column) indicates that node i is parent of node j. By default n_saved_adjacency
is zero and no matrices are recorded.

save_best_graph

By setting save_best_graph to true, the user can request the output of the adjacency
matrix of the graph having the highest posterior probablity among all random graphs
generated after the burn-in period. That matrice is saved in the file with default name
best_graph.out in text format, along with the logarithmes of its prior probability, data
likelihood (if data were specified) and posterior probability. By default save_best_graph
is false.

save_edge_probabilities

Setting save_edge_probabilities to true, triggers the calculation and output of a matrix
of the individual edge probabilities in the file edge_p.out, in text format. If requested, the
edge probabilities are computed at each full update of the adjacency matrix (i.e., when each
element of the adjacency matrix has been visited. By default save_edge_probabilities
is false.
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save_degree_counts

Setting save_degree_counts to true, forces the output of a count of the nodes’ degrees
in the graphs sampled after the burn-in period to the file with default name degree_

count.out, in text format. By default save_degree_counts is false.

save_motifs_probabilies

Setting save_motifs_probabilies to true, forces the output (to the file with default name
motifs_count.out, in text format) of a count of triangular feed-forward and feedback loops
in the graphs sampled after the burn-in period. By default save_motifs_probabilies is
false.

4.2.5 Variables specifying posterior analyses

convergence_check

The command convergence_check instructs Graph Sampler to check that a set of MCMC
chains have converged, after running them, according to the following syntax (were “|”
means “or”):

convergence_check = standard_w_chain | standard_w_edgeP |

incremental_w_chain;

Note that, when checking convergence, no sampling is made and that priors, likelihoods,
data, and save statements are ignored. The three values (keywords) that convergence_

check can take specify slightly different kinds of convergence analyses:

• The keyword standard_w_chain instructs Graph Sampler to read a set of chain record-
ing files (of format results_mcmc.bin) and perform a Gelman and Rubin convergence
diagnostic on them (see [Bibliographic References], page 27: Gelman & Rubin 1992,
and other relevant statistical literature). By default, the whole recorded chains are
read, but a range of iterations can also be specified. The number of nodes in the graph
is read from the files and needs to match across files.

• The keyword standard_w_edgeP asks Graph Sampler to read a set of edge probabilities
recording files (of format edge_p.out) and perform a Gelman and Rubin convergence
diagnostic.This is much faster than using chain recording files, because edge probabil-
ities files are much smaller, while containing all the needed information for computing
convergence. However, in that case, the range options are not available (the whole
chains used for computing edge probabilities are implicitly used) and you do need to
specify the number of nodes in the graph using the n_nodes variable.

• The keyword incremental_w_chain will cause Graph Sampler to read a set of chain
recording files (of format results_mcmc.bin) and perform a Gelman and Rubin con-
vergence diagnostic at each iteration. By default, the whole recorded chains are read,
but a range of iterations can also be specified. This is the slowest procedure. The
number of nodes in the graph is read from the files and needs to match across files.

File names need to be specified as an array, using a file_names specification:

file_names = array {"xa_results_mcmc.bin", "xb_results_mcmc.bin",

"xc_results_mcmc.bin"};

The variables start_at_iter and end_at_iter can be used when reading the chains to
specify the (inclusive) range of iterations to check convergence on. In each case the results
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are written to a file named convergence.out. This file can be very large in the case of
incremental convergence analysis (a pair of numbers is written for each iteration read). In
pathological cases where the chains are stuck, the convergence criterion can be infinite and
is coded in the output file with the value -1.

4.3 Reserved keywords

The following keywords can be used in Graph Sampler input files:

array keyword

This keyword is used for vector definition. Example:

n_data_levels = array {2, 2, 1+1};

dirichlet keyword

This keyword should be used in the case of discrete data, to specify a Dirichlet prior (syntax:
likelihood = dirichlet;).

empty keyword

This keyword can be used to create an empty initial adjacency matrix (syntax:
matrix{empty};).

equanimous keyword

This keyword can be used to create a prior matrix on edge probabilities (hyper_pB) with
all elements set to 0.5 when bayesian_network is false. If bayesian_network is true the
diagonal elements will be set to zero and the others to 0.5. (syntax: matrix{equanimous};).

false (or False or FALSE) keyword

This keyword is equivalent to zero and can be used when assigning variables.

full keyword

This keyword can be used to create a full initial adjacency matrix (all elements at 1, except
a zeroed diagonal in Bayesian networks) (syntax: matrix{full};).

import_file keyword

This keyword should be used to indicate that hyper pB or data should be im-
ported from a text file (syntax: hyper_pB = import_file{"filename"}; or data =

import_file{"filename"};).

incremental_w_chain keyword

This keyword specifies an incremental Gelman and Rubin convergence analysis on a set of
chain recording files.

matrix keyword

This keyword is used for matrix definition. Example:

data = matrix {1.1, 1.3, 1.4, 1.35,

2.1, 2.4, 2.5, 2.45,

3.4, 3.6, 3.8, 3.85};
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mersenne_twister keyword

This keyword can be used to specify that the Mersenne twister pseudo-random numeber
generator will be used (syntax: random_generator = mersenne_twister;).

NaN keyword

This keyword should be used instead of a number to indicate that a data value is missing.
It can only be used within a data matrix.

normal_gamma keyword

This keyword can be used for discrete or (preferably) continuous data, to specify a Normal-
Gamma prior (syntax: likelihood = normal_gamma;).

constant_gamma keyword

This keyword can be used for discrete or (preferable) continuous data, to specify a Constant-
Gamma prior (syntax: likelihood = constant_gamma;).

random keyword

This keyword can be used to create a random initial adjacency matrix (all elements 0 or 1
at random, except a zeroed diagonal in Bayesian networks) (syntax: matrix{random};).

standard_w_chain keyword

This keyword specifies a simple Gelman and Rubin convergence analysis on a set of chain
recording files.

standard_w_edgeP keyword

This keyword specifies a simple Gelman and Rubin convergence analysis on a set of edge
probabilities recording files (of format edge_p.out).

true (or True or TRUE) keyword

This keyword is equivalent to 1 and can be used when assigning variables.

tausworthe keyword

This keyword can be used to specify that the Tausworthe pseudo-random numeber generator
will be used (syntax: random_generator = tausworthe;).

zellner keyword

This keyword should be used in the case of continuous data, to specify a Zellner prior
(syntax: likelihood = zellner;).
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