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1 Introduction
Make the following
lists full text.

• ESPResSo is a generic soft matter simulation packages

• for molecular dynamics simulations in soft matter research

• focussed on coarse-grained models

• employs modern algorithms (Lattice-Boltzmann, DPD, P3M, . . . )

• written in C for maximal portability

• Tcl-controlled

• parallelized

1.1 Guiding principles

(from paper: 2.1 Goals and principles)
ESPResSo

• does not do the physics for you!

• requires you to understand what you do (can not be used as a black box)

• gives you maximal freedom (flexibility)

• is extensible

• integrates system setup, simulation and analysis, as this can’t be strictly separated
in soft matter simulations

• has no predefined units

• sets as few defaults as possible

1.2 Algorithms contained in ESPResSo

The following algorithms are implemented in ESPResSo:

• ensembles: NVE, NVT, NpT

• charged systems:
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– P3M for fully periodic systems
– ELC and MMM-family of algorithms for charged systems with non-periodic

boundary conditions
– Maggs algorithm

• Hydrodynamics:

– DPD (as a thermostat)
– Lattice-Boltzmann

1.3 Basic program structure

(from paper: 2.2 Basic program structure)

• Control level: Tcl

• “Kernel” written in C

• This user’s guide will focus on the control level

1.4 On units

What is probably one of the most confusing subjects for beginners of ESPResSo is, that
ESPResSo does not predefine any units. While most MD programs specify a set of units,
like, for example, that all lengths are measured in Ångström or nanometers, times are
measured in nano- or picoseconds and energies are measured in kJ

mol , ESPResSo does not
do so.

Instead, the length-, time- and energy scales can be freely chosen by the user. A length
of 1.0 can mean a nanometer, an Ångström, or a kilometer - depending on the physical
system, that the user has in mind when he writes his ESPResSo-script. The user can
choose the unit system that suits the system best.

When creating particles that are intended to represent a specific type of atoms, one
will probably use a length scale of Ångström. This would mean, that e.g. the parameter
σ of the Lennard-Jones interaction between two atoms would be set to twice the van-
der-Waals radius of the atom in Ångström. Alternatively, one could set σ to 2.0 and
measure all lengths in multiples of the van-der-Waals radius.

The second choice to be made is the energy (and time-) scale. One can for example
choose to set the Lennard-Jones parameter ε to the energy in kJ

mol . Then all energies will
be measured in that unit. Alternatively, one can choose to set it to 1.0 and measure
everything in multiples of the van-der-Waals binding energy.

As long as one remains within the same unit system throughout the whole ESPResSo-
script, there should be no problems.
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1.5 Requirements

The following libraries and tools are required to be able to compile and use ESPResSo:

Tcl/Tk ESPResSo requires the Toolkit Command Language Tcl/Tk 1 in the version 8.3
or later. Some example scripts will only work with Tcl 8.4. You do not only need
the interpreter, but also the header files and libraries. Depending on the operating
system, these may come in separate development packages. If you want to use a
graphical user interface (GUI) for your simulation scripts, you will also need Tk.

FFTW In addition, ESPResSo needs the FFTW library 2 for Fourier transforms. ESPResSo
can work with both the 2.1.x and 3.0.x series. Again, the header files are required.

MPI Finally, if you want to use ESPResSo in parallel, you need a working MPI environ-
ment (version 1.2). Currently, the following MPI implementations are supported:

• LAM/MPI is the preferred variant
• MPICH, which seems to be considerably slower than LAM/MPI in our bench-

marks.
• On AIX systems, ESPResSo can also use the native POE parallel environment.
• On DEC/Compaq/HP OSF/Tru64, ESPResSo can also use the native dm-

pirun MPI environment.

1.6 Syntax description

Throughout the user’s guide, formal definitions of the syntax of several Tcl-commands
can be found. The following conventions are used in these decriptions:

• Different variants of a command are labelled (1), (2), . . .

• Keywords and literals of the command that have to be typed exactly as given are
written in typewriter font.

• If the command has variable arguments, they are set in italicfont . The descrip-
tion following the syntax definition should contain a detailed explanation of the
argument and its type.

• ( alt1 | alt2 ) specifies, that one of the alternatives alt1 or alt2 can be used.

• [argument ] specifies, that the arugment argument is optional, i.e. it can be omitted.

• When an optional argument or a whole command is marked by a superscript label
(1), this denotes that the argument can only be used, when the corresponding
feature (see appendix B on page 141) specified in “Required features” is activated.

1http://www.tcl.tk/
2http://www.fftw.org/
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Example
(1) constraint wall normal nx ny nz dist d type id
(2) constraint sphere center cx cy cz radius rad direction direction

type id
(3) constraint rod center cx cy lambda lambda 1

(4) constraint ext_magn_field fx fy fz 2,3

Required features: CONSTRAINTS 1 ELECTROSTATICS 2 ROTATION 3 DIPOLES
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2 First steps

2.1 Quick installation

If you have the requirements (see section 1.5 on page 10) installed, in many cases, to
compile ESPResSo, it is enough to execute the following sequence of two steps in the
directory where you have unpacked the sources:

configure
make Mention minimal

configuration
without
myconfig.hIn some cases, e.g. when ESPResSo needs to be compiled for several different platforms

or when different versions with different sets of features are required, it might be useful
to execute the commands not in the source directory itself, but to start configure from
another directory (see section 3.1 on page 19). Furthermore, many features of ESPResSo
can be selectively turned on or off in the local configuration header of ESPResSo (see
section 3.2 on page 20) before starting the compilation with make.

The shell script configure prepares the source code for compilation. It will determine
how to use and where to find the different libraries and tools required by the compilation
process, and it will test what compiler flags are to be used. The script will find out most
of these things automatically. If something is missing, it will complain and give hints
how to solve the problem. The configuration process can be controlled with the help of
a number of options that are explained in section 3.3 on page 21.

The command make will compile the source code. Depending on the options passed
to the program, make can also be used for a number of other things:

• It can install and uninstall the program to some other directories. However, nor-
mally it is not necessary to actually install ESPResSo to run it.

• It can test the ESPResSo program for correctness.

• It can build the documentation.

The details of the usage of make are described in section 3.4 on page 22.
When these steps have successfully completed, ESPResSo can be started with the

command (see section 3.5 on page 24)

Espresso
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2.2 Running ESPResSo

1

ESPResSo is implemented as an extension to the Tcl script language. This means
that you need to write a script for any task you want to perform with ESPResSo. To
learn about the Tcl script language and especially the ESPResSo extensions, this chapter
offers two tutorial scripts. The first will guide you step by step through creating your
first simulation script, while the second script is a well documented example simulation
script. Since the latter is slightly more complex and uses more advanced features of
ESPResSo, we recommend to work through both scripts in the presented order.

2.3 Creating the first simulation script

This section introduces some of the features of ESPResSo by constructing step by step
a simulation script for a simple salt crystal. We cannot give a full Tcl tutorial here;
however, most of the constructs should be self–explanatory. We also assume that the
reader is familiar with the basic concepts of a MD simulation here. The code pieces can
be copied step by step into a file, which then can be run using Espresso <file> from
the ESPResSo source directory.

Our script starts with setting up the initial configuration. Most conveniently,
one would like to specify the density and the number of particles of the system as
parameters:
set n_part 200; set density 0.7
set box_l [expr pow($n_part/$density,1./3.)]

These variables do not change anything in the simulation engine, but are just standard
Tcl variables; they are used to increase the readability and flexibility of the script. The
box length is not a parameter of this simulation; it is calculated from the number of
particles and the system density. This allows to change the parameters later easily, e. g.
to simulate a bigger system.

The parameters of the simulation engine are modified by the setmd command.
For example
setmd box_l $box_l $box_l $box_l
setmd periodic 1 1 1

defines a cubic simulation box of size box_l, and periodic boundary conditions in
all spatial dimensions. We now fill this simulation box with particles
set q 1; set type 0
for {set i 0} { $i < $n_part } {incr i} {

set posx [expr $box_l*[t_random]]
set posy [expr $box_l*[t_random]]
set posz [expr $box_l*[t_random]]
set q [expr -$q]; set type [expr 1-$type]
part $i pos $posx $posy $posz q $q type $type

}

1http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

14

http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html


This loop adds n_part particles at random positions, one by one. In this construct,
only two commands are not standard Tcl commands: the random number generator
t_random and the part command, which is used to specify particle properties, here the
position, the charge q and the type. In ESPResSo the particle type is just an integer
number which allows to group particles; it does not imply any physical parameters. Here
we use it to tag the charges: positive charges have type 0, negative charges have type 1.

Now we define the ensemble that we will be simulating. This is done using the
thermostat command. We also set some integration scheme parameters:
setmd time_step 0.01; setmd skin 0.4
set temp 1; set gamma 1
thermostat langevin $temp $gamma

This switches on the Langevin thermostat for the NVT ensemble, with temperature temp
and friction gamma. The skin depth skin is a parameter for the link–cell system which
tunes its performance, but cannot be discussed here.

Before we can really start the simulation, we have to specify the interactions
between our particles. We use a simple, purely repulsive Lennard-Jones interaction
to model the hard core repulsion [7], and the charges interact via the Coulomb
potential:
set sig 1.0; set cut [expr 1.12246*$sig]
set eps 1.0; set shift [expr 0.25*$eps]
inter 0 0 lennard-jones $eps $sig $cut $shift 0
inter 1 0 lennard-jones $eps $sig $cut $shift 0
inter 1 1 lennard-jones $eps $sig $cut $shift 0
inter coulomb 10.0 p3m tunev2 accuracy 1e-3 mesh 32

The first three inter commands instruct ESPResSo to use the same purely repulsive
Lennard–Jones potential for the interaction between all combinations of the two parti-
cle types 0 and 1; by using different parameters for different combinations, one could
simulate differently sized particles. The last line sets the Bjerrum length to the value
10, and then instructs ESPResSo to use P3M for the Coulombic interaction and to try
to find suitable parameters for an rms force error below 10−3, with a fixed mesh size of
32. The mesh is fixed here to speed up the tuning; for a real simulation, one will also
tune this parameter.

If we want to calculate the temperature of our system from the kinetic energy, we need
to know the number of the degrees of freedom of the particles. In ESPResSo these are
usually 3 translational plus 3 rotational degrees of freedom (if ROTATION is compiled
into the code). You can get this number in the following way 2:

if { [regexp "ROTATION" [code_info]] } {
set deg_free 6

} else { set deg_free 3 }

Now we can integrate the system:

2Note: there also exists a predefined tcl function degrees of freedom which does the same.
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set integ_steps 200
for {set i 0} { $i < 20 } { incr i} {

set temp [expr [analyze energy kinetic]/(($deg_free/2.0)*$n_part)]
puts "t=[setmd time] E=[analyze energy total], T=$temp"
integrate $integ_steps

}

This code block is the primary simulation loop and runs 20×integ_steps MD steps.
Every integ_steps time steps, the potential, electrostatic and kinetic energies are
printed out (the latter one as temperature). However, the simulation will crash:
ESPResSo complains about particle coordinates being out of range. The reason for
this is simple: Due to the initial random setup, the overlap energy is around a
million kT, which we first have to remove from the system. In ESPResSo, this is
can be accelerated by capping the forces, i. e. modifying the Lennard–Jones force
such that it is constant below a certain distance. Before the integration loop, we
therefore insert this equilibration loop:
for {set cap 20} {$cap < 200} {incr cap 20} {

puts "t=[setmd time] E=[analyze energy total]"
inter ljforcecap $cap; integrate $integ_steps

}
inter ljforcecap 0

This loop integrates the system with a force cap of initially 20 and finally 200. The last
command switches the force cap off again. With this equilibration, the simulation script
runs fine.

However, it takes some time to simulate the system, and one will probably like to
write out simulation data to configuration files, for later analysis. For this purpose
ESPResSo has commands to write simulation data to a Tcl stream in an easily
parsable form. We add the following lines at end of integration loop to write the
configuration files “config 0” through “config 19”:
set f [open "config_$i" "w"]
blockfile $f write tclvariable {box_l density}
blockfile $f write variable box_l
blockfile $f write particles {id pos type}
close $f

The created files “config ...” are human–readable and look like
{tclvariable

{box_l 10}
{density 0.7}

}
{variable {box_l 10.0 10.0 10.0} }
{particles {id pos type}

{0 3.51770181433 4.3208975936 5.30529948918 0}
{1 3.93145531704 6.58506447035 6.95045147034 1}
...

}
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Figure 2.1: VMD Snapshot of the salt system

As you can see, such a blockfile consists of several Tcl lists, which are called blocks,
and can store any data available from the simulation. Reading a configuration is
done by the following simple script:
set f [open $filename "r"]
while { [blockfile $f read auto] != "eof" } {}
close $f

The blockfile read auto commands will set the Tcl variables box_l and density to
the values specified in the file when encountering the tclvariable block, and set the
box dimensions for the simulation when encountering the variable block. The particle
positions and types of all 216 particles are restored when the particles block is read.
Note that it is important to have the box dimensions set before reading the particles, to
avoid problems with the periodic boundary conditions.

With these configurations, we can now investigate the system. As an example, we
will create a second script which calculates the averaged radial distribution functions
g++(r) and g+−(r). The radial distribution function for a the current configuration
can be obtained using the analyze command:
set rdf [analyze rdf 0 1 0.9 [expr $box_l/2] 100]
set rlist ""
set rdflist ""
foreach value [lindex $rdf 1] {
lappend rlist [lindex $value 0]
lappend rdflist [lindex $value 1]

}

The shown analyze rdf command returns the distribution function of particles of type
1 around particles of type 0 (i. e. of opposite charges) for radii between 0.9 and half the
box length, subdivided into 100 bins. Changing the first two parameters to either “0 0”
or “1 1” allows to determine the distribution for equal charges. The result is a list of
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r and g(r) pairs, which the following foreach loop divides up onto two lists rlist and
rdflist.

To average over a set of configurations, we put the two last code snippets into a
loop like this:
set cnt 0
for {set i 0} {$i < 100} {incr i} { lappend avg_rdf 0}
foreach filename $argv {

set f [open $filename "r"]
while { [blockfile $f read auto] != "eof" } {}
close $f
set rdf [analyze rdf 0 1 0.9 [expr $box_l/2] 100]
set rlist ""
set rdflist ""
foreach value [lindex $rdf 1] {

lappend rlist [lindex $value 0]
lappend rdflist [lindex $value 1] }

set avg_rdf [vecadd $avg_rdf $rdflist]
incr cnt

}
set avg_rdf [vecscale [expr 1.0/$cnt] $avg_rdf]

Initially, the sum of all g(r), which is stored in avg_rdf, is set to 0. Then the loops
over all configurations given by argv, calculates g(r) for each configuration and adds
up all the g(r) in avg_rdf. Finally, this sum is normalized by dividing by the number
of configurations. Note the “1.0/$cnt”; this is necessary, since “1/$cnt” is interpreted
as an integer division, which results in 0 for cnt > 1. argv is a predefined variable: it
contains all the command line parameters. Therefore this script should be called like

Espresso nnodes script [config... ]

where nnodes is the number of CPUs ESPResSo should be running on.
The printing of the calculated radial distribution functions is simple. Add to the

end of the previous snippet the following lines:
set plot [open "rdf.data" "w"]
puts $plot "\# r rdf(r)"
foreach r $rlist rdf $avg_rdf { puts $plot "$r $rdf" }
close $plot

This instructs the Tcl interpreter to write the avg_rdf to the file rdf.data in gnuplot–
compatible format. Fig. 2.2 shows the resulting radial distribution functions, averaged
over 100 configurations. In addition, the distribution for a neutral system is given,
which can be obtained from our simulation script by simply removing the command
inter coulomb ... and therefore not turning on P3M.

The code example given before is still quite simple, and the reader is encouraged to
try to extend the example a little bit, e. g. by using differently sized particle, or changing
the interactions. If something does not work, ESPResSo will give comprehensive error
messages, which should make it easy to identify mistakes. For real simulations, the
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Figure 2.2: Radial distribution functions g++(r) between equal charges (rectangles) and
g+−(r) for opposite charges (circles). The plus symbols denote g(r) for an
uncharged system.

simulation scripts can extend over thousands of lines of code and contain automated
adaption of parameters or online analysis, up to automatic generation of data plots.
Parameters can be changed arbitrarily during the simulation process, as needed for e. g.
simulated annealing. The possibility to perform non–standard simulations without the
need of modifications to the simulation core was one of the main reasons why we decided
to use a script language for controlling the simulation core.

2.4 tutorial.tcl

In the directory samples/ of the es sources, you will find a well documented simulation
script tutorial.tcl, which takes you step by step through a slightly more complicated
simulation of a polyelectrolyte system. The basic structure of the script is however
the same as in the previous example and probably the same as the structure of most
ESPResSo simulation scripts.

Initially, some parameters and global variables are set, the interactions are initialized,
and particles are added. For this, the script makes use of the polymer command, which
provides a faster way to set up chain molecules.

The actual simulation falls apart again into two loops, the warmup loop with increasing
force capping, and the final simulation loop. Note that the electrostatic interaction is
only activated after equilibrating the excluded volume interactions, which speeds up the
warmup phase. However, depending on the problem, this splitted warmup may not be
possible due to physical restrictions. ESPResSo cannot detect these mistakes and it is
your responsibility to find simulation procedure suitable to your specific problem.
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3 Compiling and installing ESPResSo

• Compiling ESPResSo is a necessary evil

• Features can be compiled in or not

• For maximal efficiency, compile in only the features that you use

• ESPResSo can be obtained from the ESPResSo home page 1.

• If you are looking for the ESPResSo binary or the object files, read 3.1

• other than in most packages, ESPResSo will probably not be installed, or it will
only be installed locally. Refer to 3.4.1 on page 23 for details.

3.1 Source and build directories

Usually, when a program is compiled, the resulting binary files are put into the same
directory as the sources of the program. In ESPResSo, the source directory that con-
tains all the source files is completely separated from the build directory where the files
created by the build process are put. As the source directory is not modified during the
compilation process, it is possible to compile more than one binary versions of ESPResSo
from a single set of source files.

The location of the build directory is determined when configure is called. Depending
on whether it is called from the source directory where it resides, or from some other
directory, the build system will act different.

When configure is called from another current working directory than the source
directory, this directory will become the build directory. All files will be generated below
the build directory. This way, you can make as many builds of ESPResSo as you like, each
build having different compiler flags and built-in features, and for as many platforms as
you want. All further commands concerning compiling and running ESPResSo have to
be called from this directory, instead of from the source directory.

When configure is called from the source directory where the script resides, the
ESPResSo build system has limited built-in capabilities to handle different computer
hardware. A new subdirectory is created in the source directory and configure is re-
cursively called from this directory, making the subdirectory the build directory. The
directory is called obj-platform/, where platform is an automatically determined de-
scriptor of the CPU type where the script was started, e.g. obj-Athlon_64-pc-linux.

1http://www.espresso.mpg.de
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Note that this heuristic will work in many cases, but it may not always work as intended.
When you notice any problems, you can always call configure from another directory.

In this case it is also possible to run the commands make and Espresso directly
in the source directory. Furthermore, the option --enable-chooser will be set in the
recursive call of configure that activates the automatic binary chooser (see section 3.4.1
on page 23).

Example When the source directory is $srcdir (i.e. the files where unpacked to this
directory), then the build directory can be set to $builddir by calling the configure-
script from there:

cd $builddir
$srcdir/configure
make
Espresso

3.2 myconfig.h: Activating and deactivating features

ESPResSo has a large number of features that can be compiled into the binary. How-
ever, it is not recommended to actually compile in all possible features, as this will
negatively affect ESPResSo’s performance. Instead, compile in only the features that are
actually required. For the developers, it is also possible to turn on or off a number of
debugging messages. The features and debug messages can be controlled via a config-
uration header file that contains C-preprocessor declarations. Appendix B on page 141
lists and describes all available features. When no configuration header is provided by
the user, a default header will be used that turns on the default features. The file
myconfig-sample.h in the source directory contains a list of all possible features that
can be copied into your own configuration file.

When you distinguish between the build and the source directory (see 3.1 on the
previous page), the configuration header can be put in either of these. Note, however,
that when a configuration header is found in both directories, the one in the build
directory will be used. For an example how this can be employed, see section 3.1.

By default, the configuration header is called myconfig.h. The name of the configu-
ration header can be changed either when the configure-script is called with the option
--with-myconfig (see section 3.3 on the facing page), or when make is called with the
setting myconfig=myconfig header (see section 3.4 on page 22).

The configuration header can be used to compile different binary versions of ESPResSo
with a different set of features from the same source directory. Suppose that you have
a source directory $srcdir and two build directories $builddir1 and $builddir2 that
contain different configuration headers:

• $builddir1/myconfig.h:

#define ELECTROSTATICS
#define LENNARD-JONES
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• $builddir2/myconfig.h:

#define LJCOS

Then you can simply compile two different versions of ESPResSo via

cd $builddir1
$srcdir/configure
make

cd $builddir2
$srcdir/configure
make

3.3 Running configure

The shell script configure collects all the information required by the compilation
process. It will determine how to use and where to find the different libraries and tools
required by the compilation process, and it will test what compiler flags are to be used.
The script will find out most of these things automatically. If something is missing, it
will complain and give hints how to solve the problem. The generic syntax of calling the
configure script is:

configure [options ...] [variable=value ...]

Note that in the ESPResSo build system, the files generated by the configuration and
compilation process are not placed next to the source files, but into a separate build
directory instead. Refer to section 3.1 on page 19 for details.

The behaviour of configure can be controlled by the means of command line options.
In the following, only those command line options that are specific to ESPResSo will be
explained. For a complete list of options and explanations thereof, call

configure --help

3.3.1 Options

--enable-chooser This option will enable the automatic binary chooser mechanism
for ESPResSo (see section 3.4.1 on page 23). This option will be automatically
enabled, when the configure script is called from the source directory, otherwise
it will be disabled. It is not recommended to set the option manually.

--enable-debug This option will enable compiler flags required for debugging the ESPResSo
binary and is disabled by default.

--enable-profiling This option will enable compiler flags required for profiling the
ESPResSo binary and is disabled by default.

22



--disable-processor-optimization This option will control whether configure will
check for several optimization flags to be used by the compiler. This option is
enabled by default.

--disable-xlc-qipa This option is only useful when the IBM C-compiler xlc is used
and will control whether or not the compiler flag -qipa is used. If you come
upon problems when using the ESPResSo binary on IBM machines, try using
--disable-xlc-ipa. The option is enabled by default.

--with-myconfig=MYCONFIG_HEADER This option sets the name of the local configura-
tion header (see 3.2 on page 20). It defaults to “myconfig.h”.

--with-mpi=MPI/ --without-mpi Sets the MPI implementation that should be used,
or disables MPI. By default, configure will test automatically what MPI imple-
mentation is available. The following implementations are known:

fake, no This will disable MPI completely. Equivalent to --without-mpi.
lam Use the LAM/MPI environment (http://www.lam-mpi.org/).
mpich Use the MPICH environment (http://www-unix.mcs.anl.gov/mpi/mpich/).
poe Use the POE environment (IBM).
dmpi Use the DMPI environment (Tru64).
generic Use a generic MPI implementation. This will try to find an MPI compiler

and an MPI runtime environment.

--with-efence / --without-efence Whether or not to use the “electric fence” mem-
ory debugging library (http://freshmeat.net/projects/efence/). Efence is
not used by default.

--with-tcl=TCL By default, configure will automatically determine which version of
Tcl is used. If the wrong version is chosen automatically, you can specify the name
of the library with this option, e.g. tcl8.4.

--with-tk=TK / --without-tk By default, the GUI toolkit Tk is not used by ESPResSo.
This option can be used to activate Tk and to specify which Tk version to use,
e.g. tk8.4. If you only specify --with-tk and do not give a version number,
configure will try to automatically deduce the right version.

--with-fftw=VERSION / --without-fftw This can be used to specify whether the FFTW
library is to be used, and which version. By default, version 3 will be used if it is
found, otherwise version 2 is used. Note that quite a number of central features of
ESPResSo require FFTW.

3.4 make: Compiling, testing and installing ESPResSo

The command make is mainly used to compile the ESPResSo source code, but it can do
a number of other things. The generic syntax of the make command is:
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make [target...] [variable=value]

When no target is given, the target all is used. The following targets are available:

all Compiles the complete ESPResSo source code. The variable myconf can be used to
specify the name of the configuration header to be used.

check Runs the testsuite. By default, all available tests will be run on 1, 2, 3, 4, 6,
or 8 processors. Which tests are run can be controlled by means of the variable
tests, which processor numbers are to be used can be controlled via the variable
processors. Note that depending on your MPI installation, MPI jobs can only
be run in the queueing system, so that ESPResSo will not run from the command
line. In that case, you may not be able to run the testsuite, or you have to directly
submit the testsuite script testsuite/test.sh to the queueing system.
Example: make check tests="madelung.tcl" processors="1 2"
will run the test madlung.tcl on one and two processors.

clean Deletes all files that were created during the compilation.

mostlyclean Deletes most files that were created during the compilation. Will keep for
example the built doxygen documentation and the ESPResSo binary.

dist Creates a .tar.gz-file of the ESPResSo sources. This will include all source files
as they currently are in the source directory, i.e. it will include local changes. This
is useful to give your version of ESPResSo to other people. The variable extra can
be used to specify additional files and directories that are to be included in the
archive file.
Example: make dist extra="myconfig.h internal"
will create the archive file and include the file myconfig.h and the directory
internal with all files and subdirectories.

install Install ESPResSo. The variables prefix and exec-prefix can be used to spec-
ify the installation directories, otherwise the defaults defined by the configure
script are used. prefix sets the prefix where all ESPResSo files are to be installed,
exec-prefix sets the prefix where the executable files are to be installed and is re-
quired only when there is an architecture-specific directory (e.g. /usr/local/bin64/).
For the actual locations where the different files are installed, refer to section 3.4.1.
Example: make install prefix=/usr/local
will install all files below /usr/local.

uninstall Uninstalls ESPResSo, i.e. removes all files that were installed during make
install. The variables are identical to the variables of the install-target.

3.4.1 Installation directories

Other than most software, ESPResSo is not necessarily installed into the system, but can
also be used directly from the build directory. The rest of this section is only interesting
if you plan to install ESPResSo.
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Normally, the ESPResSo-binary Espresso-bin is installed in the directory $prefix/libexec/
and a the wrapper script Espresso in the directory $prefix/bin/ that handles the MPI
invocation.

When the configure-script is called from the source directory or when the option
--enable-chooser is given, an automatic binary chooser is installed in the directory
$prefix/bin/ and the ESPResSo-binary and the MPI wrapper script are installed in an
architecture-specific subdirectory $exec-prefix/lib/espresso/obj-platform/. When
called, the binary chooser will automatically call the MPI wrapper script from the right
subdirectory.

3.5 Running ESPResSo

When ESPResSo is found in your path, it can be run via

Espresso [tcl script [N processors [args]]]

When ESPResSo is called without any arguments, it is started in the interactive mode,
where new commands can be entered on the command line. When the name of a tcl -
script is given, the script is executed. N processors is the number of processors that
are to be used. Any further arguments are passed to the script. Note that depending
on your MPI installation, MPI jobs can only be run in the queueing system, so that
ESPResSo will not run from the command line.
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4 Setting up particles

4.1 part: Creating single particles

4.1.1 Defining particle properties

Syntax

part pid [pos x y z ] [type typeid ] [v vx vy vz ] [f fx fy fz ]
[bond bondid pid2 ...] [q charge] 1 [quat q1 q2 q3 q4 ] 2

[omega x y z ] 2 [torque x y z ] 2

[[un]fix x y z ] 3 [ext_force x y z ] 3 [exclude pid2...] 4

[exclude delete pid2...] 4 [mass mass] 5 [dipm moment ] 6

[dip dx dy dz ] 6

Required features: 1 ELECTROSTATICS 2 ROTATION 3 EXTERNAL_FORCES 4 EXCLUSION
5 MASS 6 DIPOLES

Description
This command modifies particle data, namely position, type (monomer, ion, . . . ), charge,
velocity, force and bonds. Multiple properties can be changed at once. If you add a new
particle the position has to be set first because of the spatial decomposition.

Arguments
• pid

• [pos x y z ] Sets the position of this particle to (x, y, z).

• [type typeid ] Restrictions: typeid ≥ 0.
The typeid is used in the inter command (see section 5 on page 36) to define the
parameters of the non bonded interactions between different kinds of particles.

• [v vx vy vz ] Sets the velocity of this particle to (vx, vy, vz). The velocity remains
variable and will be changed during integration.

• [f fx fy fz ] Set the force acting on this particle to (fx, fy, fz). The force remains
variable and will be changed during integration.

• [bond bondid pid2...] Restrictions: bondid ≥ 0; pid2 must be an existing parti-
cle. The bondid is used for the inter command to define bonded interactions.

• bond delete Will delete all bonds attached to this particle.

• [q charge] Sets the charge of this praticle to q.Docs required
(JC?).

• [quat q1 q2 q3 q4 ]
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Docs required
(JC?). • [omega x y z ] Docs required

(JC?).
• [torque x y z ] When printing the values, unsing part id particle print there is an

alternative named [tbf] which gives you the values of the torque in the body frame.
Be aware: the values obtained when printing using [torque] are computed in the
frame laboratory and are the ones one should usually look at. Nonetheless, in case
you introduce torques using [torque] option, espresso will assume they are given
in the body-frame. Thus [tbf] is useful to know which should be the numerical
values you should reintroduce in order to have exactly the same conformation.

• [fix x y z ] Fixes the particle in space. By supplying a set of 3 integers as ar-
guments it is possible to fix motion in x , y , or z coordinates independently. For
example fix001 will fix motion only in z. Note that fix without arguments is
equivalent to fix111 .

• [ext_force x y z ] An additional external force is applied to the particle.

• [unfix] Release any external influence from the particle.

• [exclude pid2...+] Restrictions: pid2 must be an existing particle. Between
the current particle an the exclusion partner(s), no nonbonded interactions are
calculated. Note that unlike bonds, exclusions are stored with both partners.
Therefore this command adds the defined exclusions to both partners.

• [exclude delete pid2...] Searches for the given exclusion and deletes it. Again
deletes the exclusion with both partners.

• [mass mass] Sets the mass of this particle to mass. If not set, all particles have
a mass of 1 in reduced units.

• [dipm moment ] Sets the dipol moment of this particle to moment.

• [dip dx dy dz ] Sets the orientation of the dipol axis to (dx, dy, dz).

4.1.2 Getting particle properties

Syntax

(1) part pid print [( id | pos | type | folded_position | type | q | v | f
| fix | ext_force | bond | connections [range] )]...

(2) part

Description

Variant (1) will return a list of the specified properties of particle pid , or all properties,
if no keyword is specified. Variant (2) will return a list of all properties of all particles.

Example

part 40 print id pos q bonds
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will return a list like
40 8.849 1.8172 1.4677 1.0 {}

This routine is primarily intended for effective use in Tcl scripts.
When the keyword connection is specified, it returns the connectivity of the

particle up to range (defaults to 1). For particle 5 in a linear chain the result up to
range = 3 would look like:
{ { 4 } { 6 } } { { 4 3 } { 6 7 } } { {4 3 2 } { 6 7 8 } }

The function is useful when you want to create bonded interactions to all other particles
a certain particle is connected to. Note that this output can not be used as input to the
part command. Check results if you use them in ring structures.

If none of the options is specified, it returns all properties of the particle, if it
exists, in the form

0 pos 2.1 6.4 3.1 type 0 q -1.0 v 0.0 0.0 0.0 f 0.0 0.0 0.0
bonds { {0 480} {0 368} ... }

which may be used as an input to this function later on. The first integer is the particle
number.

Variant (2) returns the properties of all stored particles in a tcl-list with the same
format as specified above:
{0 pos 2.1 6.4 3.1 type 0 q -1.0 v 0.0 0.0 0.0 f 0.0 0.0 0.0
bonds{{0 480}{0 368}...}}
{1 pos 1.0 2.0 3.0 type 0 q 1.0 v 0.0 0.0 0.0 f 0.0 0.0 0.0
bonds{{0 340}{0 83}...}}
{2...{{...}...}}
{3...{{...}...}}
...

4.1.3 Deleting particles

Syntax

(1) part pid delete
(2) part deleteall

Description

In variant (1), the particle pid is deleted and all bonds referencing it. Variant (2)
will delete all particles currently present in the simulation. Variant (3) will delete all
currently defined exclusions.

4.1.4 Exclusions

Syntax

(1) part auto_exclusions [range]
(2) part delete_exclusions
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Description
Variant (1) will create exclusions for all particles pairs connected by not more than
range bonds (range defaults to 2). This is typically used in atomistic simulations, where
nearest and next nearest neighbour interactions along the chain have to be omitted since
they are included in the bonding potentials. For example, if the system contains particles
0 . . . 100, where particle n is bonded to particle n− 1 for 1 ≤ n ≤ 100, then it will result
in the exclusions:

• particle 1 does not interact with particles 2 and 3

• particle 2 does not interact with particles 1, 3 and 4

• particle 3 does not interact with particles 1, 2, 4 and 5

• ...

Variant (2) deletes all exclusions currently present in the system.

4.2 Creating groups of particle

4.2.1 polymer: Setting up polymer chains

Syntax

polymer num polymers monomers per chain bond length
[start pid ] [pos x y z ] [mode ( RW | SAW | PSAW ) [shield [trymax]]]
[charge q ] 1 [distance dcharged] 1 [types typeidneutral [typeidcharged]]
[bond bondid ] [angle φ [θ [x y z ]]] [constraints] 2

Required features: 1 ELECTROSTATICS 2 CONSTRAINTS

Description
This command will create num polymers polymer or polyelectrolyte chains with monomers per chain
monomers per chain. The length of the bond between two adjacent monomers will be
set up to be bond length.

Arguments
•num polymers Sets the number of polymer chains.

•monomers per chain Sets the number of monomers per chain.

• bond length Sets the initial distance between two adjacent monomers. The dis-
tance during the course of the simulation depends on the applied potentials. For
fixed bond length please refer to the SHAKE algorithm. Link to

rattle/shake.

• [start pid ] Sets the particle number of the start monomer to be used with the
part command. This defaults to 0.

• [pos x y z ] Sets the position of the first monomer in the chain to x , y , z (defaults
to a randomly chosen value)
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• [mode ( RW | PSAW | SAW ) [shield [trymax]]] Selects the setup mode:
RW (Random walk) The monomers are randomly placed by a random walk with

a steps size of bondl ength.

PSAW (Pruned self-avoiding walk) The position of a monomer is randomly cho-
sen in a distance of bond length to the previous monomer. If the position is
closer to another particle than shield , the attempt is repeated up to trymax

times. Note, that this is not a real self-avoiding random walk, as the particle
distribution is not the same. If you want a real self-avoiding walk, use the
SAW mode. However, PSAW is several orders of magnitude faster than SAW,
especially for long chains.

SAW (Self-avoiding random walk) The positions of the monomers are chosen as
in the plain random walk. However, if this results in a chain that has a
monomer that is closer to another particle than shield , a new attempt of
setting up the whole chain is done, up to trymax times.

The default for the mode is RW, the default for the shield is 1.0, and the default
for trymax is 30000, which is usually enough for PSAW. Depending on the length
of the chain, for the SAW mode, trymax has to be increased by several orders of
magnitude.

• [charge valency ] Sets the valency of the charged monomers. If the valency of
the charged polymers valency is smaller than 10−10, the charge is assumed to be
zero, and the types are set to typeidcharged = typeidneutral. If charge is not set, it
defaults to 0.0.

• [distance dcharged] Sets the stride between the indices of two charged monomers.
This defaults defaults to 1, meaning that all monomers in the chain are charged.

• [types typeidneutral typeidcharged] Sets the type ids of the neutral and charged
monomer types to be used with the part command. If only typeidneutral is defined,
typeidcharged defaults to 1. If the option is omitted, both monomer types default
to 0.

• [bond bondid ] Sets the type number of the bonded interaction to be set between
the monomers. This defaults to 0. Any bonded interaction, no matter how many
bonding-partners needed, is stored with the second particle in this bond.Link to bonded

interactions

• [angle φ [θ [x y z]]] Allows for setting up helices or planar polymers: φ and
theta are the angles between adjacent bonds. x , y and z set the position of the
second monomer of the first chain.

• [constraints] If this option is specified, the particle setup-up tries to obey pre-
viously defined constraints (see section 4.3 on page 33).
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4.2.2 counterions: Set up counterions

Syntax

counterions N [start pid ] [mode ( SAW | RW ) [shield [trymax ]]]
[charge val ] 1 [type typeid ]

Required features: 1 ELECTROSTATICS

Description
This command will create N counterions in the simulation box.

Arguments
• [start pid ] Sets the particle id of the first counterion. It defaults to the cur-

rent number of particles, i.e. counterions are placed after all previously defined
particles.

• [mode ( SAW | RW ) [shield [trymax ]]] Specifies the setup method to place the
counterions. It defaults to SAW. See the polymer command for a detailed descrip-
tion.

• [charge val ] Specifies the charge of the counterions. If not set, it defaults to −1.0.

• [type typeid ] Specifies the particle type of the counterions. It defaults to 2.

4.2.3 salt: Set up salt ions

Syntax

salt N+ N− [start pid ] [mode ( SAW | RW ) [shield [trymax]]]
[charges val+ [val−]] 1 [types typeid+ [typeid−]] [rad r ]

Required features: 1 ELECTROSTATICS

Description
Create N+ positively and N− negatively charged salt ions of charge val+ and val− within
the simulation box.

Arguments
• [start pid ] Sets the particle id of the first (positively charged) salt ion. It defaults

to the current number of particles.

• [mode ( SAW | RW ) [shield [trymax ]]] Specifies the setup method to place the
counterions. It defaults to SAW. See the polymer command for a detailed descrip-
tion.

• [charge val+ [val−]] Sets the charge of the positive salt ions to val+ and the one
of the negatively charged salt ions to val−. If not set, the values default to 1.0
and −1.0, respectively.

• [type typeid+ [typeid−]] Specifies the particle type of the salt ions. It defaults to
3 respectively 4.
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• [rad r ] The salt ions are only placed in a sphere with radius r around the origin.

4.2.4 diamond: Setting up diamond polymer networks

Syntax
diamond a bond length monomers per chain [counterions NCI]

[charges valnode valmonomer valCI] 1 [distance dcharged] 1 [nonet]
Required features: 1 ELECTROSTATICS

Description
Creates a diamond-shaped polymer network with 8 tetra-functional nodes connected by
2 ∗ 8 polymer chains of length MPC in a unit cell of length a. For inter-particle bonds
interaction 0 is taken which must be a two-particle bond.A picture would

be helpful.

Which typeids are
used for the
different particles?

Arguments
• a Determines the size of the of the unit cell.

• bond length Specifies the bond length of the polymer chains connecting the 8
tetra-functional nodes.

•monomers per chain Sets the number of chain monomers between the functional
nodes.

• [counterions NCI] Adds NCI counterions to the system.

• [charges valnode valmonomer valCI] Sets the charge of the nodes to valnode, the
charge of the connecting monomers to valmonomer, and the charge of the counte-
rions to valCI.

• [distance dcharged] Specifies the distance between charged monomers along the
interconnecting chains. If dcharged > 1 the remaining chain monomers are un-
charged.Define what nonet

does.
• [nonet]

4.2.5 icosaeder: Setting up an icosaeder

Syntax
icosaeder a monomers per chain [counterions NCI]

[charges valmonomers valCI] 1 [distance dcharged] 1

Required features: 1 ELECTROSTATICS

Description
Creates a modified icosaeder to model a fullerene (or soccer ball). The edges are modeled
by polymer chains connected at the corners of the icosaeder. For inter-particle bonds
interaction 0 is taken which must be a two-particle bond.A picture would

be helpful

Arguments
• a Defines the size of the icosaeder.
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•monomers per chain Specifies the number of chain monomers along one edge.

• [counterions NCI] Specifies the number of counterions to be placed into the sys-
tem.

• [charges valmonomers valCI] Set the charges of the monomers to valmonomers and
the charges of the counterions to valCI.

• [distance dcharged] Specifies the distance between two charged monomer along
the edge. If dcharged > 1 the remaining monomers are uncharged.

4.2.6 crosslink: Cross-linking polymers

Syntax

crosslink num polymer monomers per chain [start pid ] [catch rcatch]
[distLink link dist ] [distChain chain dist ] [FENE bondid ]
[trials trymax]

Description

Attempts to end-crosslink the current configuration of num polymer equally long poly-
mers with monomers per chain monomers each, returning how many ends are success-
fully connected.

Arguments

• [start pid ] pid specifies the first monomer of the chains to be linked. It has to
be specified if the polymers do not start at id 0.

• [catch rcatch] Set the radius around each monomer which is searched for possible
new monomers to connect to. rcatch defaults to 1.9.

• [distLink link dist ] The minimal distance of two interconnecting links. It de-
faults to 2.

• [distChain chain dist ] The minimal distance for an interconnection along the
same chain. It defaults to 0. If set to monomers per chain, no interchain con-
nections are created.

• [FENE bondid ] Sets the bond type for the connections to bondid .

• [trials trymax] If not specified, trymax defaults to 30000.
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4.3 constraint: Setting up constraints

Syntax

(1) constraint wall normal nx ny nz dist d type id
(2) constraint sphere center cx cy cz radius rad direction direction

type id
(3) constraint cylinder center cx cy cz axis nx ny nz radius rad

length length direction direction type id
(4) constraint maze nsphere n dim d sphrad rs cylrad rc type id
(5) constraint pore center cx cy cz axis nx ny nz radius rad length

length type id
(6) constraint rod center cx cy lambda lambda 1

(7) constraint plate height h sigma sigma 1

(8) constraint ext_magn_field fx fy fz 2,3

(9) constraint plane cell x y z type id
Required features: CONSTRAINTS 1 ELECTROSTATICS 2 ROTATION 3 DIPOLES

Description

The constraint command offers a variety of surfaces that can be defined to interact with
desired particles. Variants (1) to (5) create interactions via a non-bonded interaction
potential, where the distance between the two particles is replaced by the distance of
the center of the particle to the surface. The constraints are identified like a particle via
its type for the non-bonded interaction. After a type is defined for each constraint one
has to define the interaction of all different particle types with the constraint using the
inter command.

Variants (6) and (7) create interactions based on electrostatic interactions. The cor-
responding force acts in direction of the normal vector of the surface and applies to all
charged particles.

Variant (8) does not define a surface but is based on magnetic dipolar interaction with
an external magnetic field. It applies to all particles with a dipol moment.

Variant (9) is essential for the use of tunable-slip boundary interactions for microchan-
nel flows like the Plane Poiseuille or Plane Couette Flow.

Note that constraints are not saved to checkpoints and that they have to
be reset upon restarting a simulation.

The resulting surface in variant (1) is a plane defined by the normal vector nx ny nz

and the distance d from the origin. The force acts in direction of the normal.
The resulting surface in variant (2) is a sphere with center cx cy cz and radius rad .

The direction determines the force direction, -1 or [inside] for inward and +1 or [outside]
for outward.

The resulting surface in variant (3) is a cylinder with center cx cy cz and radius rad .
The length parameter is half of the cylinder length. The axis is a vector along the
cylinder axis, which is normalized in the program. The direction is defined the same
way as for the spherical constraint.
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The resulting surface in variant (4) is n spheres of radius rs along each dimension,
connected by cylinders of radius rc . The spheres have simple cubic symmetry. The
spheres are distributed evenly by dividing the boxl by n. Dimension of the maze can be
controlled by d : 0 for one dimensional, 1 for two dimensional and 2 for three dimensional
maze.

Variant (5) sets up a cylindrical pore similar to variant (3) with a center cx cy cz and
radius rad . The length parameter is half of the cylinder length. The axis is a vector
along the cylinder axis, which is normalized in the program.

Variant (6) specifies an electrostatic interaction between the charged particles in the
system to an infinitely long rod with a line charge of lambda which is alinge along the
z-axis and centered at cx and cy .

Variant (7) specifies the electrostatic interactinos between the charged particles in the
system and an inifinitely large plate in the x-y-plane at height h. The plate carries a
charge density of sigma.

Variant (8) specifies the dipolar coupling of particles with a dipolar moment to an
external field fx fy fz .

Variant (9) creates an infinite plane at a fixed position. For non-initializing a direc-
tion of the constraint values of the positions have to be negative. For the tunable-slip
boundary interactions you have to set two constraints.

Example

To create an infinite plane in z-direction at z = 20.0 of type id 1, use:

constraint plane cell -10 -10 20 type 1

4.3.1 Deleting a constraint

Syntax

constraint delete [num]

Description

This command will delete constraints. If num is specified only this constraint will
deleted, otherwise all constraints will be removed from the system.

4.3.2 Getting the force on a constraint

Syntax

constraint force n

Description

Returns the force acting on the nth constraint.
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4.3.3 Getting the currently defined constraints

Syntax

constraint [num]

Description
Prints out all constraint information. If num is specified only this constraint is displayed,
otherwise all constraints will be printed.
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5 Setting up interactions

In ESPResSo, interactions are setup and investigated by the inter command. There
are mainly two types of interactions: non-bonded and bonded interactions. Non-bonded
interactions only depend on the type of the two involved particles. This also applies to
the electrostatic interaction; however, due to its long-ranged nature, it requires special
care and ESPResSo handles it separately with a number of state of the art algorithms.
The particle type and the charge are both defined using the part command.

A bonded interaction defines an interaction between a number of particles; it however
only applies to sets of particles for which it has been explicitely set. A bonded interaction
between a set of particles has to be specified explicitely by the part bond command,
while the inter command is used to define the interaction parameters.

5.1 Getting the currently defined interactions

Syntax

inter

Description

Without any arguments, inter returns a list of all defined interactions as a Tcl-list.
The format of each entry corresponds to the syntax for defining the interaction as
described below. Typically, this list looks like

{0 0 lennard-jones 1.0 2.0 1.1225 0.0 0.0} {0 FENE 7.0 2.0}

5.2 Non-bonded, short-ranged interactions

Syntax

inter type1 type2 [interaction] [parameters]

Description

This command defines an interaction of type interaction between all particles of type
type1 and type2 . The possible interaction types and their parameters are listed
below. If the interaction is omitted, the command returns the currently defined
interaction between the two types using the syntax to define the interaction, e.g.

0 0 lennard-jones 1.0 2.0 1.1225 0.0 0.0

For many non-bonded interactions, it is possible to artificially cap the forces, which
often allows to equilibrate the system much faster. See the subsection 5.2.13 for details.
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5.2.1 Lennard-Jones interaction

Syntax

inter type1 type2 lennard-jones ε σ rcut cshift roff [rcap rmin]
Required features: LENNARD_JONES

Description

This command defines the traditional (12-6)-Lennard-Jones interaction between particles
of the types type1 and type2 . The potential is defined by

VLJ(r) =

{
4ε(( σ

r−roff
)12 − ( σ

r−roff
)6 + cshift) , if rmin + roff < r < rcut + roff

0 , otherwise
. (5.1)

The traditional Lennard–Jones potential is the “work–horse” potential for particle–
particle interactions in coarse–grained simulations. It is a simple model of the van–der–
Waals interaction, and is attractive at large distance, but strongly repulsive at short
distances. roff +σ corresponds to the sum of the radii of the interaction particles; at this
radius, VLJ(r) = 4εcshift. The minimum of the potential is at r = roff + 2

1
6σ. At this

value of r, VLJ(r) = −ε+ 4εcshift. The attractive part starts beyond this value of r . rcut

determines the radius where the potential is cut off. Typically, one will choose the cshift

such, that the potential is continuous at the cutoff radius.
A special case of the Lennard–Jones potential is the Weeks–Chandler–Andersen (WCA)

potential, which one obtains by putting the cutoff into the minimum, i.e. choosing
rcut = 2

1
6σ and cshift = 1

4 . The WCA potential is purely repulsive, and is often used to
mimick hard sphere repulsion.

The total force on a particle can be capped by using the command inter ljforcecap,
see section 5.2.13, or on an individual level using the rcap variable. This is set to 0 by
default (no capping).

An additional parameter can be used to restrict the interaction from a minimal dis-
tance rmin. This is an optional parameter, set to 0 by default.

5.2.2 Generic Lennard-Jones interaction

Syntax

inter type1 type2 lj-gen ε σ rcut cshift roff e1 e2 b1 b2

Required features: LENNARD_JONES_GENERIC

Description

This command defines a generalized version of the Lennard-Jones interaction (see section
5.2.1) between particles of the types type1 and type2 . The potential is defined by

VLJ(r) =

{
4ε(b1 ( σ

r−roff
)e1 − b2 ( σ

r−roff
)e2 + cshift) , if rmin + roff < r < rcut + roff

0 , otherwise
.

(5.2)
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The total force on a particle can be capped by using the command inter ljforcecap,
see section 5.2.13, or on an individual level using the rcap variable. This is set to 0 by
default (no capping).

5.2.3 Lennard-Jones cosine interaction

Syntax

(1) inter type1 type2 lj-cos ε σ rcut roff

(2) inter type1 type2 lj-cos2 ε σ roff ω

Required features: (1) LJCOS (2) LJCOS2

Description
specifies a Lennard-Jones interaction with cosine tail [16] between particles of the types
type1 and type2 . The first variant behaves as follows: Until the minimum of the Lennard-
Jones potential at rmin = roff + 2

1
6σ, it behaves identical to the unshifted Lennard-Jones

potential (cshift = 0). Between rmin and rcut, a cosine is used to smoothly connect the
potential to 0, i.e.

V (r) =
1
2
ε
(
cos
[
α(r − roff)2 + β

]
− 1
)
, (5.3)

where α = π
[
(rcut − roff)2 − (rmin − roff)2

]−1 and β = π − (rmin − roff)2 α.
In the second variant, the cutoff radius is rcut = rmin + ω, and the potential between

rmin and rcut is given by

V (r) = ε cos2
[ π

2ω
(r − rmin)

]
. (5.4)

Only the second variant allows capping the force using inter ljforcecap, see sec-
tion 5.2.13.

5.2.4 Directional Lennard-Jones interaction

Syntax
inter type1 type2 lj-angle ε σ rcut b1a b1b b2a b2b

Required features: LJ_ANGLE

Description
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Specifies a 12-10 Lennard-Jones interaction with angular dependence between particles
of the types type1 and type2 . These two particles need two bonded partners oriented
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in a symmetric way. They define an orientation for the central particle. The purpose of
using bonded partners is to avoid dealing with torques, therefore the interaction does not
need the ROTATION feature. The angular part of the potential minimizes the system
when the two central beads are oriented along the vector formed by these two particles.
The shaded beads on the image are virtual particles that are formed from the orientation
of the bonded partners, connected to the central beads. They are used to define angles.
The potential is of the form

U(rik, θjik, θikn) = ε

[
5
(σ
r

)12
− 6

(σ
r

)10
]

cos2 θjik cos2 θikn, (5.5)

where rik is the distance between the two central beads, and each angle defines the
orientation between the direction of a central bead (determined from the two bonded
partners) and the vector rik. Note that the potential is turned off if one of the angle
is more than π/2. This way we don’t end up creating a minimum for an anti-parallel
configuration.

Unfortunately, the bonded partners are not seeked dynamically. One has to keep track
of the relative positions of the particle IDs. This can be done by setting the parameters
b1a , b1b , b2a , and b2b . Say the first bead type1 has particle ID n, then one should set
the simulation such as its two bonded partners have particle IDs n + b1a and n + b1b ,
respectively. On a linear chain, for example, one would typically have b1a = 1 and
b1b = −1 such that the central bead and its two bonded partners have position IDs n,
n + 1 , and n − 1 , respectively. This is surely not optimized, but once the simulation is
set correctly the algorithm is very fast.

The force can be capped using inter ljangleforcecap. It might turn out to be
useful in some cases to keep this capping during the whole simulation. This is due to
the very sharp angular dependence for small distance, compared to σ. Two beads might
come very close to each other while having unfavorable angles such that the interaction
is turned off. Then a change in the angle might suddenly turn on the interaction and
the system will blow up (the potential is so steep that one would need extremely small
time steps to deal with it, which is not very clever for such rare events).

For instance, when modeling hydrogen bonds (N-H...O=C), one can avoid simulating
hydrogens and oxygens by using this potential. This comes down to implementing a
HBond potential between N and C atoms.

The contribution
to the pressure is
not yet
implemented.

5.2.5 Smooth step interaction

Syntax
inter type1 type2 smooth-step σ1 n ε k0 σ2 rcut

Required features: SMOOTH_STEP

Description
This defines a smooth step interaction between particles of the types type1 and type2 ,
for which the potential is

V (r) = (σ1/d)n + ε/(1 + exp [2k0(r − σ2)]) (5.6)
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for r < rcut , and V (r) = 0 elsewhere. With n around 10, the first term creates a short
range repulsion similar to the Lennard-Jones potential, while the second term provides
a much softer repulsion. This potential therefore introduces two length scales, the range
of the first term, σ1, and the range of the second one, σ2, where in general σ1 < σ2.

5.2.6 BMHTF potential

Syntax
inter type1 type2 bmhtf-nacl A B C D σ rcut

Required features: BMHTF_NACL

Description
This defines an interaction with the short-ranged part of the Born-Meyer-Huggins-Tosi-
Fumi potential between particles of the types type1 and type2 , which is often used to
simulate NaCl crystals. The potential is defined by:

V (r) = A exp [B(σ − r)]− Cr−6 −Dr−8 + εshift, (5.7)

where εshift is chosen such that V (rcut) = 0. For r ≥ rcut, the V (r) = 0.
For NaCl, the parameters should be chosen as follows:

types A (kJ/mol) B (Å−1) C (Å6kJ/mol) D Å8kJ/mol σ (Å)
Na-Na 25.4435 3.1546 101.1719 48.1771 2.34
Na-Cl 20.3548 3.1546 674.4793 837.0770 2.755
Cl-Cl 15.2661 3.1546 6985.6786 14031.5785 3.170

The cutoff can be chosen relatively freely because the potential decays fast; a value
around 10 seems reasonable.

In addition to this short ranged interaction, one needs to add a Coulombic, long–
ranged part. If one uses elementary charges, i.e. a charge of q = +1 for the Na–particles,
and q = −1 for the Cl–particles, the corresponding prefactor of the Coulomb interaction
is ≈ 1389.3549Å kJ/mol.

5.2.7 Morse interaction

Syntax
inter type1 type2 morse ε α rmin rcut

Required features: MORSE

Description
This defines an interaction using the Morse potential between particles of the types
type1 and type2 . It serves similar purposes as the Lennard-Jones potential, but has a
deeper minimum, around which it is harmonic. This models the potential energy in a
diatomic molecule. This potential allows capping the force using inter morseforcecap,
see section 5.2.13.

For r < rcut, this potential is given by

V (r) = ε (exp [−2α (r − rmin)]− 2 exp [−α (r − rmin)])− εshift, (5.8)
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where εshift is again chosen such that V (rcut) = 0. For r ≥ rcut, the V (r) = 0.

5.2.8 Buckingham interaction

Syntax

inter type1 type2 buckingham A B C D rcut rdiscont εshift

Required features: BUCKINGHAM

Description
This defines a Buckingham interaction between particles of the types type1 and type2 ,
for which the potential is given by

V (r) = A exp(−Br)− Cr−6 −Dr−4 + εshift (5.9)

for rdiscont < r < rcut. Below rdiscont, the potential is linearly continued towards r = 0,
similarly to force capping, see below. Above r = rcut, the potential is 0. This potential
allows capping the force using inter buckforcecap, see section 5.2.13.

5.2.9 Soft-sphere interaction

Syntax
inter type1 type2 soft-sphere a n rcut roffset

Required features: SOFT_SPHERE

Description
This defines a soft sphere interaction between particles of the types type1 and type2 ,
which is defined by a single power law:

V (r) = a (r − roffset)
−n (5.10)

for r < rcut, and V (r) = 0 above. There is no shift implemented currently, which means
that the potential is discontinuous at r = rcut. Therefore energy calculations should be
used with great caution.

5.2.10 Gay-Berne interaction

Syntax

inter type1 type2 gay-berne ε0 σ0 rcutoff k1 k2 µ ν

Required features: ROTATION

Description
This defines a Gay-Berne potential for prolate and oblate particles between particles of
the types type1 and type2 . The Gay-Berne potential is an anisotropic version of the
classic Lennard-Jones potential, with orientational dependence of the range σ0 and the
well-depth ε0 .
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Assume two particles with orientations given by the unit vectors ûi and ûj and inter-
molecular vector r = rr̂. If r < rcut , then the interaction between these two particles is
given by

V (rij , ûi, ûj) = 4ε(r̂ij , ûi, ûj)
(
r̃−12
ij − r̃−6

ij

)
, (5.11)

otherwise V (r) = 0. The reduced radius is

r̃ =
r − σ(r̂, ûi, ûj) + σ0

σ0
, (5.12)

σ(r̂, ûi, ûj) = σ0

{
1− 1

2
χ

[
(r̂ · ûi + r̂ · ûj)2

1 + χûi · ûj
+

(r̂ · ûi − r̂ · ûj)2

1− χûi · ûj

]}− 1
2

(5.13)

and

ε(r̂, ûi, ûj) =

ε0
(
1− χ2(ûi · ûj)

)− ν
2

[
1− χ′

2

(
(r̂ · ûi + r̂ · ûj)2

1 + χ′ ûi · ûj
+

(r̂ · ûi − r̂ · ûj)2

1− χ′ ûi · ûj

)]µ
. (5.14)

The parameters χ =
(
k2

1 − 1
)
/
(
k2

1 + 1
)

and χ′ =
(
k

1/µ
2 − 1

)
/
(
k

1/µ
2 + 1

)
are responsi-

ble for the degree of anisotropy of the molecular properties. k1 is the molecular elonga-
tion, and k2 is the ratio of the potential well depths for the side-by-side and end-to-end
configurations. The exponents µ and ν are adjustable parameters of the potential. Sev-
eral Gay-Berne parametrizations exist, the original one being k1 = 3, k2 = 5, µ = 2 and
ν = 1.

5.2.11 Tabulated interaction

Syntax
inter type1 type2 tabulated filename
Required features: TABULATED

Description
This defines an interaction between particles of the types type1 and type2 according
to an arbitrary tabulated pair potential. filename specifies a file which contains the
tabulated forces and energies as a function of the separation distance. The tabulated
potential allows capping the force using inter tabforcecap, see section 5.2.13.

At present the required file format is simply an ordered list separated by whitespace.
The data reader first looks for a # character and begins reading from that point in the
file. Anything before the # will be ignored.

The first three parameters after the # specify the number of data points Npoints and
the minimal and maximal tabulated separation distances rmin and rmax. The number
of data points obviously should be an integer, the two other can be arbitrary positive
doubles. Take care when choosing the number of points, since a copy of each lookup table
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is kept on each node and must be referenced very frequently. The maximal tabulated
separation distance also acts as the effective cutoff value for the potential.

The remaining data in the file should consist of n data triples r, F (r) and V (r). r gives
the particle separation, V (r) specifies the interaction potential, and F (r) = −V ′(r)/r
the force (note the factor 1/r!). The values of r are assumed to be equally distributed
between rmin and rmax with a fixed distance of (rmax − rmin)/(Npoints − 1); the distance
values r in the file are ignored and only included for human readability.

5.2.12 Tunable-slip boundary interaction

Syntax

inter type1 type2 tunable_slip T γL rcut δt vx vy vz

Required features: TUNABLE_SLIP

Description

Simulating microchannel flow phenomena like the Plane Poiseuille and the Plane Couette
Flow require accurate boundary conditions. There are two main boundary conditions in
use:

1. slip boundary condition which means that the flow velocity at the the hydrody-
namic boundaries is zero.

2. partial-slip boundary condition which means that the flow velocity at the hydro-
dynamic boundaries does not vanish.

In recent years, experiments have indicated that the no-slip boundary condition is
indeed usually not valid on the micrometer scale. Instead, it has to be replaced by the
partial-slip boundary condition

δB ∂nv‖|rB = v‖|rB ,

where v‖ denotes the tangential component of the velocity and ∂nv‖ its spatial derivative
normal to the surface, both evaluated at the position rB of the so-called hydrodynamic
boundary. This boundary condition is characterized by two effective parameters, namely
(i) the slip length δB and (ii) the hydrodynamic boundary rB.

Within the approach of the tunable-slip boundary interactions it is possible to tune the
slip length systematically from full-slip to no-slip. A coordinate-dependent Langevin-
equation describes a viscous layer in the vicinity of the channel walls which exerts an
additional friction on the fluid particles. T is the temperature, γL the friction coefficient
and rcut is the cut-off radius of this layer. δt is the timestep of the integration scheme.
With vx vy and vz it is possible to give the layer a reference velocity to create a Plane
Couette Flow. Make sure that the cutoff radius rcut is larger than the cutoff radius of
the constraint Lennard-Jones interactions. Otherwise there is no possibility that the
particles feel the viscous layer.
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This method was tested for Dissipative Particle Dynamics but it is intended for meso-
scopic simulation methods in general. Note, that to use tunable-slip boundary interac-
tions you have to apply two plane cell constraints with Lennard-Jones in addition to the
tunable-slip interaction. Make sure that the cutoff radius rcut is larger than the cutoff
radius of the constraint Lennard-Jones interactions. Otherwise there is no possibility
that the particles feel the viscous layer. Please read reference [15] before using this
interaction.

5.2.13 Capping the force during warmup

Syntax

(1) inter ljforcecap ( Fmax | individual )
(2) inter morseforcecap ( Fmax | individual )
(3) inter buckforcecap ( Fmax | individual )
(4) inter tabforcecap ( Fmax | individual )

Required features: (1) LENNARD_JONES (2) MORSE (3) BUCKINGHAM (4) TABULATED

Description

Non-bonded interactions are often used to model the hard core repulsion between par-
ticles. Most of the potentials in the section are therefore singular at zero distance, and
forces usually become very large for distances below the particle size. This is not a prob-
lem during the simulation, as particles will simply avoid overlapping. However, creating
an initial dense random configuration without overlap is often difficult.

By artificially capping the forces, it is possible to simulate a system with overlaps.
By gradually raising the cap value Fmax, possible overlaps become unfavorable, and the
system equilibrates to a overlap free configuration.

This command will cap the force to Fmax , i.e. for particle distances which would
lead to larger forces than Fmax, the force remains at Fmax. Accordingly, the potential
is replaced by replaced by rFmax. Particles placed exactly on top of each other will be
subject to a force of magnitude Fmax along the first coordinate axis.

The force capping is switched off by setting Fmax = 0. Note that force capping always
applies to all interactions of the corresponding type (e.g. all Lennard-Jones interactions)
regardless of the particle types.

If instead of a force capping value, the string “individual” is given, the force capping
can be set individually for each interaction. The capping radius is in this case not
derived from the potential parameters, but is given by an additional signal floating
point parameter to the interaction.

5.3 Bonded interactions

Syntax

inter bondid [interaction] [parameters]
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Description
Bonded interactions are identified by their bonded interaction type identificator
bondid , which is a non-negative integer. The inter bondid command is used to
specify the type and parameters of a bonded interaction, which applies to all par-
ticles connected explicitely by this bond using the part command (see section 4.1
on page 25). Therefore, defining a bond between two particles always involves two
steps: defining the interaction and applying it. Assuming that two particles with
ids 42 and 43 already exist, one can create e.g. a FENE-bond between them using

inter 1 fene 10.0 2.0
part 42 bond 1 43

If a FENE-bond with the same interaction parameters is required between several
particles (e.g. in a simple chain molecule), one can use the sampe type id :

inter 1 fene 10.0 2.0
part 42 bond 1 43; part 43 bond 1 44

Bonds can have more than just two bond partners. For the inter command that does
not play a role as it only specifies the parameters, only when applying the bond using
the bond particle, the number of involved particles plays a role. The number of involved
particles and their order, if important, is nevertheless specified here for completeness.

5.3.1 FENE bond

Syntax

inter bondid fene K ∆rmax [r0 ]

Description
This creates a bond type with identificator bondid with a FENE (finite extension nonlin-
ear expander) interaction. This is a rubber-band-like, symmetric interaction betweeen
two particles with prefactor K , maximal stretching ∆rmax and equilibrium bond length
r0 . The bond potential diverges at a particle distance r = r0−∆rmax and r = r0 +∆rmax.
It is given by

V (r) = −1
2

K ∆rmax
2 ln

[
1−

(
r − r0

∆rmax

)2
]
. (5.15)

5.3.2 Harmonic bond

Syntax

inter bondid harmonic K R

Description
This creates a bond type with identificator bondid with a classical harmonic potential.
It is a symmetric interaction between two particles. The potential is minimal at particle
distance r = R, and the prefactor is K. It is given by

V (r) =
1
2
K (r −R)2 (5.16)
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5.3.3 Subtracted Lennard-Jones bond

Syntax

inter bondid subt_lj reserved R

Description

This creates a “bond” type with identificator bondid , which acts between two particles
and actually subtracts the Lennard-Jones interaction between the involved particles. The
first parameter, reserved is a dummy just kept for compatibility reasons. The second
parameter, R, is used as a check: if any bond length in the system exceeds this value, the
program terminates. When using this interaction, it is worthwhile to consider capping
the Lennard-Jones potential appropriately so that round-off errors can be avoided.

This interaction is useful when using other bond potentials which already include
the short–ranged repulsion. This often the case for force fields or in general tabulated
potentials.

5.3.4 Rigid bonds

Syntax

inter bondid rigid_bond constrainedbondd istance positionalt olerance
velocityt olerance

Description Docs

5.3.5 Bond-angle interactions

Syntax

inter bondid angle K [φ0 ]
Required features: BOND_ANGLE_HARMONIC BOND_ANGLE_COSINE or BOND_ANGLE_-

COSSQUARE

Description

This creates a bond type with identificator bondid with an angle dependent potential.
This potential is defined between three particles. The particle for which the bond is
created, is the central particle, and the angle φ between the vectors from this particle
to the two others determines the interaction. K is the bending constant, and the op-
tional parameter phi0 is the equilibirum bond angle in radian ranging from 0 to π. If
this parameter is not given, it defaults to φ0 = π, which corresponds to a stretched
configuration. For example, for a bond defined by

part $p_2 bond 4 $p_1 $p_3

the minimal energy configurations are the following:
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~

p1 p2 p3 p1

p3

p2

inter 4 angle 1.0 [expr [PI]/2]inter 4 angle 1.0 [PI]

For the potential acting between the three particles, different choices are possible,
which have to be activated in myconfig.h

• Harmonic bond angle potential (requires feature BOND ANGLE HARMONIC):
A classical harmonic potential,

V (φ) =
K

2
(φ− φ0)2 . (5.17)

Unlike the two following variants, this potential has a kink at φ = φ0 + π and
accordingly a discontinuity in the force, and should therefore be used with caution.

• Cosine bond angle potential (requires feature BOND ANGLE COSINE):

V (α) = K [1− cos(φ− φ0)] (5.18)

Around φ0, this potenial is close to a harmonic one (both are 1/2(φ − φ0)2 in
leading order), but it is periodic and smooth for all angles φ.

• Cosine square bond angle potential (requires feature BOND ANGLE COSSQUARE):

V (α) =
K

2
[cos(φ)− cos(φ0)]2 (5.19)

This form is used for example in the GROMOS96 force field. The potential is
1/8(φ−φ0)4 around φ0, and therefore much flatter than the two potentials before.

5.3.6 Dihedral interactions

Syntax

inter bondid dihedral n K p

Description
This creates a bond type with identificator bondid with a dihedral potential, i.e. a four-
body-potential. In the following, let the particle for which the bond is created be particle
p2, and the other bond partners p1, p3, p4, in this order, i.e. part p2 bond bondid p1 p3 p4.
Then, the dihedral potential is given by

V (φ) = K [1− cos(nφ− p)] , (5.20)
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where n is the multiplicity of the potential (number of minimas) and can take any integer
value (typically from 1 to 6), p is a phase parameter and K is the bending constant of the
potential. φ is the dihedral angle between the particles defined by the particle quadrupel
p1, p2, p3 and p4, i.e. the angle between the planes defined by the particle triples p1, p2

and p3 and p2, p3 and p4:

φ

P1

P3
P4

P2

Together with appropriate Lennard-Jones interactions, this potential can mimic a large
number of atomic torsion potentials.

If you enable the feature OLD DIHEDRAL, then the old, less general form of the
potential is used:

V (φ) = K [1 + p cos(nφ)] , (5.21)

where p is rather a phase factor and can only take values p = ±1.

5.3.7 Tabulated bond interactions

Syntax

(1) inter bondid tabulated bond filename
(2) inter bondid tabulated angle filename
(3) inter bondid tabulated dihedral filename

Description
This creates a bond type with identificator bondid with a two-body bond length ((1)),
three-body angle ((2)) or four-body dihedral ((3)) tabulated potential. The tabulated
forces and energies have to be provided in a file filename, which is formatted identically
as the files for non-bonded tabulated potentials (see section5.2.11).

The potential is calculated as follows:

• Variant (1) is a two body interaction depending on the distance of two particles.
The force acts in the direction of the connecting vector between the particles.
The bond breaks above the tabulated range, but for distances smaller than the
tabulated range, a linear extrapolation based on the first two tabulated force values
is used.

• Variant (2) is a three-body angle interaction similar to the angle potential (see
section 5.3.5). It is assumed that the potential is tabulated for all angles between
0 and π, where 0 corresponds to a stretched polymer, and just as for the tabu-
lated pair potential, the forces are scaled with the inverse length of the connecting
vectors. The force on particles p1 and p3 (in the notation of section 5.3.5) acts
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perpendicular to the connecting vector between the particle and the center particle
p2 in the plane defined by the three particles. The force on the center particle p2

balances the other two forces.

• Variant (3) tabulates a torsional dihedral angle potential (see section 5.3.6). It
is assumed that the potential is tabulated for all angles between 0 and 2π. This
potential is not tested yet! Use on own risk, and please report your findings and
eventually necessary fixes.

5.3.8 Virtual bonds

Syntax

inter bondid virtual_bond

Description

This creates a virtual bond type with identificator bondid , i.e. a pair bond without
associated potential or force. It can used to specify topologies and for some analysis
that rely on bonds, or e.g. for bonds that should be displayed in VMD.

5.4 Coulomb interaction

Electrostatic interactions are very computation time-intensive. ESPResSo features some
state-of-the-art algorithms to deal with these interactions as efficiently as possible, but
almost all of them require some knowledge to use them properly. Uneducated use can
result in completely unphysical simulations.

Syntax

(1) inter coulomb 0.0
(2) inter coulomb [lB method ] [parameters]
(3) inter coulomb

Description

This command defines how ESPResSo deals with electrostatic interactions.
Variant (1) completely disables Coulomb interactions hence deactivating the electro-

static subsystem, while variant (2) sets up one of the methods described below to treat
electrostatic interactions. lB denotes the Bjerrum length, which measures the strength
of the electrostatic interaction. For a pair of particles at distance r with charge q each,
the interaction is given by

UC(r) = lBkBT
q2

r
. (5.22)

Using the electrostatic interaction also requires to assign charges to the particles. This
is done using the part command to set the charge q, e.g.

inter coulomb 1.0 p3m tune accuracy 1e-4
part 0 q 1.0; part 1 q -1.0
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Variant (3) returns the current parameters of the coulomb interaction as a tcl-list
using the same syntax as used to setup the method, e.g.

{coulomb 1.0 p3m 7.75 8 5 0.1138 0.0}
{coulomb epsilon 0.1 n_interpol 32768 mesh_off 0.5 0.5 0.5}

5.4.1 P3M

Syntax

(1) inter coulomb p3m rcut mesh cao alpha
(2) inter magnetic p3m rcut mesh cao alpha

Description
The variant (1) activates the P3M method to handle the electrostatic interactions (charge-
charge), whereas the variant (2) activates the P3M method to handle the magnetostatic
interactions (magnetic dipole-dipole) (aka dipolar-P3M).

For electrostatics the interaction is:

UC−P3M = `BkBT
q1q2

r
(5.23)

Here `B = e2
o/(4πεkBT ) is the Bjerrum length.

For magnetostatics the interaction is:

UD−P3M = `BmkBT

(
(~µi · ~µj)
r3

− 3(~µi · ~rij)(~µj · ~rij)
r5

)
(5.24)

Here ~rij = ~ri − ~rj , and `Bm is a non dimensional parameter similar to the Bjerrum
length in electrostatics which can help to tune the effect of the medium on the magnetic
interaction between two magnetic dipoles.

Make sure that you know the relevance of the P3M parameters before using P3M! If
you are not sure, read the following references [6, 8, 10, 3, 4, 5, 2, 1].

Tuning P3M

Syntax

inter ( coulomb | magnetic ) p3m ( tune | tunev2 ) accuracy accuracy
[r_cut rcut] [mesh mesh] [cao cao] [alpha α]

Description
Make sure you know how to tune p3m parameters before using the automatic tuning
feature.

For the charge-charge interaction the function utilizes the analytic expression of the
error estimate for the P3M method in the book of Hockney and Eastwood [8, eqn 8.23]
in order to obtain the rms error in the force for a system of N randomly distributed
particles in a cubic box. For the real space error the estimate of Kolafa and Perram[10]
is used. For the magnetic case, magnetic dipole-dipole interaction, the expressions of
the error estimate for the dipolar-P3M are those written in Cerda et al. [1]. At this
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moment, the P3M methods only work for cubic boxes. The magnetostatics must be
activated enabling the flag ”MAGNETOSTATICS” in the file ”myconfig.h”.

The two tuning methods follow different methods for determining the optimal param-
eter. While the tune version simply tests different values on a grid in the parameter
space, the tunev2 version uses a bisection to determine the optimal parameters. In
general, for small systems the tune version is faster, while for large systems tunev2 is
faster. The results of tunev2 are always at least as good as the parameters achievable
from the tune version, and normally the obtained accuracy is much closer to the desired
value.

During execution the tuning routines report the parameter sets tested, the correspond-
ing k-space and real-space errors and timings needed for force calculations (the setmd
variable timings controls the number of test force calculations). Since the error depends
on rcut/box l and αbox l the output is given in these units.

Note that any previous settings of rcut, cao and mesh will be remembered. So if you
want to retune your electrostatics, e.g. after a major system change, you should use

inter ( coulomb | magnetic ) lB p3m tune accuracy acc r_cut 0 mesh 0 cao 0

Some additional p3m parameters have preset value
epsilon = metallic

The dielectric constant of the surrounding medium, metallic (i.e.infinity) or some
finite positive number.

n_interpol = 32768

Number of interpolation points for the charge assignment function. When this is
set to 0, interpolation is turned off.

mesh_off = 0.5 0.5 0.5

Offset of the first mesh point from the lower left corner of the simulation box in units
of the mesh constant. As soon as p3m is turned on the additional parameters can be
changed with:

inter coulomb parametername value+

If only magnetic dipoles are present in the sytem (no charges present), it is advisable
to turn off the flag ”ELECTROSTATICS” in the file ”myconfig.h” to improve the per-
formance of the program. Mixed systems containing magnetic dipoles and charges can
be simulated without problem enabling both flags: ”ELECTROSTATICS” and ”MAG-
NETOSTATICS”. For each kind of particle one should use the prefered algorithm. For
magnetic dipole-dipole interactions the only algorithm implemented at this moment is
the dipolar-P3M. In principle there is no problem to use a non P3M method to deal with
charges (see folowing sections) while one uses dipolar-P3M to deal with the magnetic
dipoles. In case you use P3M for both charges and magnetic dipoles, make sure that
you tune each P3M method (coulomb/magnetic) to the desired accuracy.
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5.4.2 Debye-Hückel potential
How is the cutoff
handled? Why is
this not a normal
short-raged
potential? Syntax

inter coulomb dh κ rcut

Description
Defines the electrostatic potential by

UC−DH = `BkBT
q1q2exp(−κr)

r
(5.25)

For κ = 0, this corresponds to the plain coulomb potential.

5.4.3 MMM2D

Syntax

inter coulomb mmm2d maximal pairwise error [fixed far cutoff ]
[dielectric εt εm εb ] [dielectric-contrasts ∆t ∆b ]

Description
MMM2D coulomb method for systems with periodicity 1 1 0. Needs the layered cell
system. The performance of the method depends on the number of slices of the cell
system, which has to be tuned manually. It is automatically ensured that the maximal
pairwise error is smaller than the given bound. The far cutoff setting should only be
used for testing reasons, otherwise you are more safe with the automatical tuning. If
you even don’t know what it is, do not even think of touching the far cutoff. For details
on the MMM family of algorithms, refer to appendix ?? on page ??.

The last two, mutually exclusive arguments “dielectric” and “dielectric-constants”
allow to specify dielectric contrasts at the upper and lower boundaries of the simulation
box. The first form specifies the respective dielectric constants in the media, which
however is only used to calculate the contrasts. That is, specifying εt = εm = εb = const
is always identical to εt = εm = εb = 1. The second form specifies only the dielectric
contrasts at the boundaries, that is ∆t = εm−εt

εm+εt
and ∆b = εm−εb

εm+εb
. Using this form allows

to choose ∆t/b = −1, corresponding to metallic boundary conditions.

5.4.4 MMM1D

Syntax

(1) inter coulomb mmm1d switch radius [bessel cutoff ] maximal pairwise error
(2) inter coulomb mmm1d tune maximal pairwise error

Description
MMM1D coulomb method for systems with periodicity 0 0 1. Needs the nsquared cell
system (see section 6.4 on page 63). The first form sets parameters manually. The
switch radius determines at which xy-distance the force calculation switches from the
near to the far formula. If the Bessel cutoff is not explicitly given, it is determined from
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the maximal pairwise error, otherwise this error only counts for the near formula. The
second, tuning form just takes the maximal pairwise error and tries out a lot of switching
radii to find out the fastest one. If this takes too long, you can change the value of the
setmd variable timings, which controls the number of test force calculations. For details
on the MMM family of algorithms, refer to appendix ?? on page ??.

5.4.5 Maggs’ method

Syntax

inter coulomb maggs f mass mesh field friction [yukawa kappa rcut]

Description
This is an implementation of the instantaneous 1/r Coulomb interaction

U = `BkBT
q1q2

r
(5.26)

as the potential of mean force between charges which are dynamically coupled to a local
electromagnetic field.

Arguments
• f mass is the mass of the field degree of freedom and equals to the square root of

the inverted speed of light.

•mesh is the number of mesh points for the interpolation of the electromagnetic
field.

•field friction is the value of the friction coefficient for the transversal field degrees
of freedom (reserved for future development).

Unphysical self–energies that arise as a result of the lattice interpolation of charges, are
corrected by a subtraction scheme based either on the exact lattice Green’s function or
the combination of the direct subtraction scheme plus the Yukawa subtraction scheme
(second method).

For the case of Yukawa screened simulation (second method) one has to enter screening
parameter kappa and the cut-off of the Yukawa potential rcut.

5.4.6 ELC

Syntax

inter coulomb elc maximal pairwise error gap size [far cutoff ]

Description
This is a special procedure that converts a 3d method, i.e. P3M at the moment, to a
2d method, in computational order N. This is definitely faster than MMM2D for larger
numbers of particles (¿400 at reasonable accuracy requirements). The maximal pairwise
error is the LUB error of the force between any two charges without prefactors (see
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the papers). The gap size gives the height of the empty region between the system
box and the neighboring artificial images (again, see the paper). ESPResSo does not
make sure that the gap is actually empty, this is the users responsibility. The method
will compute fine of the condition is not fulfilled, however, the error bound will not be
reached. Therefore you should really make sure that the gap region is empty (e. g. by
constraints). The far cutoff finally is only intended for testing and allows to directly set
the cutoff. In this case, the maximal pairwise error is ignored. The periodicity has to
be set to 1 1 1 still, and the 3d method has to be set to epsilon metallic, i.e. metallic
boundary conditions. For details, see appendix ?? on page ??.

Make sure that you read the papers on ELC before using it !!! references

5.4.7 DLC

Syntax

inter magnetic mdlc accuracy gap size [far cutoff ]

Description

Like ELC but applied to the case of magnetic dipoles, but here the accuracy is the
one you wish for computing the energy. The far-cutoff is set to a value that, assuming
all dipoles to be as larger as the largest of the dipoles in the system, the error for the
energy would be smaller thant the value given by accuracy. At this moment you cannot
compute the accuracy for the forces, or torques, nonetheless, usually you will have an
error for forces and torques smaller than for energies. Thus, the error for the energies is
an upper boundary to all errors in the calculations.

At present, the program assumes that the gap wihtout particles is along the z-direction.
The gap-size is the length along the z-direction of the volume where particles are not
allowed to enter.

As a reference for DLC-method, see: A.Brodka, Chem. Phys. Let. 400, 62-67, (2004).

5.4.8 MDDS

Syntax

inter magnetic lB m mdds n_cut value n cut [far cutoff ]

Description

The command enables the magnetic dipolar direct sum. This method is not intendeed
to do simulations, rahter to check the results you get from Espresso. It is the exact
calculation all the other magnetic methods with PBC try to mimic but doing the cal-
culation faster. The value-n-cut is the number of replicas that should be taken into
account in each direction If Periodic Boundaries are not in 3 dimensions, the mehtod
takes only replicas in those directions which are periodic. Thus, using partially periodic
boundaries, once can easily calculate the values for 2D+h and 1D+h systems.
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5.4.9 DAWAANR

Syntax

inter magnetic lB m dawaanr [far cutoff ]

Description

The command enables the ”dipolar all-with-all and no replicas” method. It is a very
special method intended to calculations when you have a single magnetic polymer chain
inside and infinite volume where no replicas of the system exist along any of the direc-
tions in the space. You should setup formally a box length large enough for the initial
conformation to be in, but after that, the box has no use. No minimum image conven-
tion is used. You compute the interactions from the positions where the particles has
diffused to at each moment. You can use for particles not linked, but the method only
makes sense in the case you want to study the evolution of a single chain in the space.

Notice that P3M and any other methods that assumes PBC is of no practical use here.
A rough way to mimic it with P3M would be assigning a very long box, but it would be
a waste of time and resources.

5.5 Other interaction types

5.5.1 Fixing the center of mass

Syntax

inter typeid1 typeid1 comfixed flag

Description

This interaction type applies a constraint on particles of type typeid1 such that during
the integration the center of mass of these particles is fixed. This is accomplished as
follows: The sum of all the forces acting on particles of type typeid1 are calculated. These
include all the forces due to other interaction types and also the thermostat. Next a force
equal in magnitude, but in the oppositte direction is applied on the particles. This force
is divided equally on all the particles of type typeid1 , since currently there is no mass
concept in ESPResSo. Note that the syntax of the declaration of comfixed interaction
requires the same particle type to be input twice. If different particle types are given in
the input, the program exits with an error message. flag can be set to 1 (which turns
on the interaction) or 0 (to turn off the interaction).

5.5.2 Pulling particles apart

Syntax

inter typeid1 typeid2 comforce flag dir force fratio
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Description
The comforce interaction type enables one to pull away particle groups of two different
types. It is mainly designed for pulling experiments on bundles. Within a bundle of
molecules of type number typeid1 lets mark one molecule as of type typeid2 . Using
comforce one can apply a force such that t2 can be pulled away from the bundle. The
comforcef lag is set to 1 to turn on the interaction, and to 0 otherwise. The pulling
can be done in two different directions. Either parallel to the major axis of the bundle
(dir = 0) or perpendicular to the major axis of the bundle (dir = 1). force is used
to set the magnitude of the force. fratio is used to set the ratio of the force applied
on particles of typeid1 vs. typeid2 . This is useful if one has to keep the total applied
force on the bundle and on the target molecule the same. A force of magnitude force
is applied on typeid2 particles, and a force of magnitude (force * fratio) is applied on
typeid1 particles.
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6 Setting up the system

6.1 setmd: Setting global variables.

Syntax

(1) setmd variable
(2) setmd variable [value]+

Description

Variant (1) returns the value of the ESPResSo global variable variable, variant (2) can
be used to set the variable variable to value. The ’+’ in variant (2) means that for some
variables more than one value can be given (example: setmd boxl 5 5 5). The following
global variables can be set:

Better throw some
out (e.g.
switches)?

Missing:
lattice switch,
dpd tgamma,
n rigidbonds

Which commands
can be used to set
the read-only
variables?

box_l (double[3]) Simulation box length.

document what
happens to the
particles when
box_l is changed!

cell_grid (int[3], read-only) Dimension of the inner cell grid.

cell_size (double[3], read-only) Box-length of a cell.

dpd_gamma (double, read-only) Friction constant for the DPD thermostat.

dpd_r_cut (double, read-only) Cutoff for DPD thermostat.

gamma (double, read-only) Friction constant for the Langevin thermostat.

integ_switch (int, read-only) Internal switch which integrator to use.

local_box_l (int[3], read-only) Local simulation box length of the nodes.

max_cut (double, read-only) Maximal cutoff of real space interactions.

max_num_cells (int) Maximal number of cells for the link cell algorithm. Reason-
able values are between 125 and 1000, or for some problems (nt otalparticles /
nnodes).

max_part (int, read-only) Maximal identity of a particle. This is in general not
related to the number of particles!

max_range (double, read-only) Maximal range of real space interactions: maxcut
+ skin.

max_skin (double, read-only) Maximal skin to be used for the link cell/verlet algo-
rithm. This is the minimum of cells ize - maxr ange.???
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min_num_cells (int) Minimal number of cells for the link cell algorithm. Reason-???

able values range in 1e − 6N2 to 1e − 7N2. In general just make sure that the
Verlet lists are not incredibly large. By default the minimum is 0, but for the
automatic P3M tuning it may be wise to larger values for high particle numbers.

n_layers (int, read-only) Number of layers in cell structure LAYERED (see sec-
tion 6.4 on page 63).

n_nodes (int, read-only) Number of nodes.

n_part (int, read-only) Total number of particles.

n_part_types (int, read-only) Number of particle types that were used so far in
the inter command (see chaptertcl:inter).

node_grid (int[3]) 3D node grid for real space domain decomposition (optional, if
unset an optimal set is chosen automatically).

nptiso_gamma0 (double, read-only) Docs missing.

nptiso_gammav (double, read-only) Docs missing.

npt_p_ext (double, read-only) Pressure for NPT simulations.

npt_p_inst (double) Pressure calculated during an NPT isotropic integration.

piston (double, read-only) Mass off the box when using NPT isotropic integrator.

periodicity (bool[3]) Specifies periodicity for the three directions. If the feature
PARTIAL PERIODIC is set, this variable can be set to (1,1,1) or (0,0,0) at the
moment. If not it is readonly and gives the default setting (1,1,1).

skin (double) Skin for the Verlet list.

temperature (double, read-only) Temperature of the simulation.

thermo_switch (double, read-only) Internal variable which thermostat to use.

time (double) The simulation time.

time_step (double) Time step for MD integration.

timings (int) Number of samples to (time-)average over.

transfer_rate (int, read-only) Transfer rate for VMD connection. You can use
this to transfer any integer value to the simulation from VMD.

verlet_flag (bool) Indicates whether the Verlet list will be rebuild. The program
decides this normally automatically based on your actions on the data.

verlet_reuse (double) Average number of integration steps the verlet list has been
re-used.
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6.2 thermostat: Setting up the thermostat

The thermostat command is used to change settings of the thermostat.
The different available thermostats will be described in the following subsections. Note

that for a simulation of the NPT ensemble, you need to use a standard thermostat for
the particle velocities (e.g. Langevin or DPD), and a thermostat for the box geometry
(e.g. the isotropic NPT thermostat).

You may combine different thermostats at your own risk by turning them on one by
one. Note that there is only one temperature for all thermostats.

6.2.1 Langevin thermostat

Syntax

thermostat langevin temperature gamma

Description

The Langevin thermostat consists of a friction and noise term coupled via the fluctuation-
dissipation theorem. The friction term is a function of the particle velocities.Reference

If the feature ROTATION is compiled in, the rotational degrees of freedom are also
coupled to the thermostat.

6.2.2 Dissipative Particle Dynamics (DPD) thermostat

Syntax

thermostat dpd temperature gamma r cut [ WF wf tgamma tr cut TWF twf ]

Description

Standard DPD thermostat

ESPResSo implements the DPD thermostat exactly as it is described in [17]. We use the
standard Velocity-Verlet integration scheme, e.g. the DPD only influences the calculation
of the forces. No special measurements have been taken into account to selfconsistently
determine the velocities and the dissipative forces as it is for example described in [13].
DPD adds a velocity dependent dissipative force and a random force to the usual con-
servative pairforces (e.g. Lennard-Jones).

The dissipative force is calculated by

~FDij = −ζwD(rij)(r̂ij · ~vij)r̂ij

The random force by

~FRij = σwR(rij)Θij r̂ij

where Θij ∈ [−0.5, 0.5[ is a uniformly distributed random number. The connection of
σ and ζ is given by the dissipation fluctuation theorem:
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(σwR(rij)2 = ζwD(rij)kBT

The parameters gamma r cut define the strength of the friction ζ and the cutoff
radius.

According to the optional parameter WF (can be set to 0 or 1, default is 0) of the
thermostat command the functions wD and wR are chosen in the following way ( rij <
r cut ) :

wD(rij) = (wR(rij))2 =
{

1− rij
rc

, WF = 0
1 , WF = 1

For rij ≥ r cut wD and wR are identical to 0 in both cases.
The friction (dissipative) and noise (random) term are coupled via the fluctuation-

dissipation theorem. The friction term is a function of the relative velocity of particle
pairs. The DPD thermostat is better for dynamics than the Langevin thermostat, since
it mimics hydrodynamics in the system.

When using a Lennard-Jones interaction, r cut = 2
1
6σ is a good value to choose, so

that the thermostat acts on the relative velocities between nearest neighbor particles.
Larger cutoffs including next nearest neighbors or even more are unphysical.

gamma is basically an inverse timescale on which the system thermally equilibrates.
Values between 0.1 and 1 are o.k, but you propably want to try this out yourself to get
a feeling for how fast temperature jumps during a simulation are. The dpd thermostat
does not act on the system center of mass motion. Therefore, before using dpd, you
have to stop the center of mass motion of your system, which you can achieve by using
the command galileiTransformParticles (see section ?? on page ??) . This may
be repeated once in a while for long runs due to round off errors (check this with the
command system_com_vel from section ?? on page ??).

Two restrictions apply for the dpd implementation of ESPResSo:

• As soon as at least one of the two interacting particles is fixed (see 4 on how to fix
a particle in space) the dissipative and the stochastic force part is set to zero for
both particles (you should only change this hardcoded behaviour if you are sure
not to violate the dissipation fluctuation theorem).

• DPD does not take into account any internal rotational degrees of freedom of the
particles if ROTATION is switched on. Up to the current version DPD only acts
on the translatorial degrees of freedom.

Transverse DPD thermostat

This is an extension of the above thermostat[9], which dampes the degrees of freedom
perpendicular on the axis between two particles. To switch it on, the feature TRANS -
DPD is required.

The dissipative force is calculated by
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~FDij = −ζwD(rij)(I − r̂ij ⊗ r̂ij) · ~vij

The random force by

~FRij = σwR(rij)(I − r̂ij ⊗ r̂ij) · ~Θij

The parameters tgamma tr cut define the strength of the friction and the cutoff in
the same way as above. NOTE: That this thermostat does NOT conserve angular
momentum!!!!

Interaction DPD thermostat

The DPD thermostat can also be set up as a normal interaction to make friction between
different particle types different.

Syntax

thermostat inter_dpd temperature

Description

and

Syntax

inter type1 type2 inter_dpd gamma r cut [ WF wf tgamma tr cut TWF twf ]
Required features: INTER_DPD

Description

Other DPD extensions

The features DPD MASS RED or DPD MASS LIN make the friction constant mass
dependent:

ζ → ζMij

and
ζ → ζMij

There are two cases implemented. DPD MASS RED uses the reduced mass:

Mij = 2
mimj

mi +mj

while DPD MASS LIN uses the real mass mass:

Mij =
mi +mj

2

The prefactors are such that equal masses result in a factor 1.
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6.2.3 Isotropic NPT thermostat

Syntax

thermostat npt_isotropic temperature gamma0 gammaV

Description

This theormstat is based on the Anderson thermostat and will thermalize the box ge-
ometry. It will only do isotropic changes of the box. Docs, reference

6.2.4 Turning off all thermostats

Syntax

thermostat off

Description

Turns off all thermostats and sets all thermostat variables to zero.

6.2.5 Getting the parameters

Syntax

thermostat

Description

Returns the thermostat parameters. Document return
format.

6.3 nemd: Setting up non-equilibrium MD

Syntax

(1) nemd exchange n slabs n exchange
(2) nemd shearrate n slabs shearrate
(3) nemd off
(4) nemd
(5) nemd profile
(6) nemd viscosity

Description

Use NEMD (Non Equilibrium Molecular Dynamics) to simulate a system under shear
with help of an unphysical momentum change in two slabs in the system.

Variants (1) and (2) will initialise NEMD. Two distinct methods exist. Both methods
divide the simulation box into n slab slabs that lie parallel to the x-y-plane and apply a
shear in x direction. The shear is applied in the top and the middle slabs. Note, that the
methods should be used with a DPD thermostat or in an NVE ensemble. Furthermore,
you should not use other special features like part fix or constraints inside the top
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and middle slabs. For further reference on how NEMD is implemented into ESPResSo
see [16].

Variant (1) chooses the momentum exchange method. In this method, in each step the
n exchange largest positive x-components of the velocity in the middle slab are selected
and exchanged with the n exchange largest negative x-components of the velocity in the
top slab.

Variant (2) chooses the shear-rate method. In this method, the targetted x-component
of the mean velocity in the top and middle slabs are given by

target velocity = ±shearrate
Lz
4

(6.1)

where Lz is the simulation box size in z-direction. During the integration, the x-
component of the mean velocities of the top and middle slabs are measured. Then,
the difference between the mean x-velocities and the target x-velocities are added to the
x-component of the velocities of the particles in the respective slabs.

Variant (3) will turn off NEMD, variant (4) will print usage information of the param-
eters of NEMD. Variant (5) will return the velocity profile of the system in x-direction
(mean velocity per slab).

Variant (6) will return the viscosity of the system, that is computed via

η =
F

γ̇LxLy
(6.2)

where F is the mean force (momentum transfer per unit time) acting on the slab, LxLy
is the area of the slab and γ̇ is the shearrate.

6.4 cellsystem: Setting up the cell system

This section deals with the flexible particle data organization of ESPResSo. Due to
different needs of different algorithms, ESPResSo is able to change the organization of
the particles in the computer memory, according to the needs of the used algorithms.
For details on the internal organization, refer to section 12.1 on page 131.

6.4.1 Domain decomposition

Syntax

cellsystem domain_decomposition [-no_verlet_list]

Description
This selects the domain decomposition cell scheme, using Verlet lists for the calculation
of the interactions. If you specify -no_verlet_list, only the domain decomposition is
used, but not the Verlet lists.

The domain decomposition cellsystem is the default system and suits most applica-
tions with short ranged interactions. The particles are divided up spatially into small

64



compartments, the cells, such that the cell size is larger than the maximal interaction
range. In this case interactions only occur between particles in adjacent cells. Since
the interaction range should be much smaller than the total system size, leaving out
all interactions between non-adjacent cells can mean a tremendous speed-up. Moreover,
since for constant interaction range, the number of particles in a cell depends only on
the density. The number of interactions is therefore of the order N instead of order N2

if one has to calculate all pair interactions.

6.4.2 N-squared

Syntax

cellsystem nsquare

Description
This selects the very primitive nsquared cellsystem, which calculates the interactions for
all particle pairs. Therefore it loops over all particles, giving an unfavorable computation
time scaling of N2. However, algorithms like MMM1D or the plain Coulomb interaction
in the cell model require the calculation of all pair interactions.

In a multiple processor environment, the nsquared cellsystem uses a simple particle
balancing scheme to have a nearly equal number of particles per CPU, i.e. n nodes have
m particles, and p−n nodes have m+1 particles, such that n∗m+(p−n)∗(m+1) = N ,
the total number of particles. Therefore the computational load should be balanced
fairly equal among the nodes, with one exception: This code always uses one CPU for
the interaction between two different nodes. For an odd number of nodes, this is fine,
because the total number of interactions to calculate is a multiple of the number of
nodes, but for an even number of nodes, for each of the p − 1 communication rounds,
one processor is idle.

E.g. for 2 processors, there are 3 interactions: 0-0, 1-1, 0-1. Naturally, 0-0 and 1-1 are
treated by processor 0 and 1, respectively. But the 0-1 interaction is treated by node 1
alone, so the workload for this node is twice as high. For 3 processors, the interactions
are 0-0, 1-1, 2-2, 0-1, 1-2, 0-2. Of these interactions, node 0 treats 0-0 and 0-2, node 1
treats 1-1 and 0-1, and node 2 treats 2-2 and 1-2.

Therefore it is highly recommended that you use nsquared only with an odd number
of nodes, if with multiple processors at all.

6.4.3 Layered cell system

Syntax

cellsystem layered n layers

Description
This selects the layered cell system, which is specifically designed for the needs of the
MMM2D algorithm. Basically it consists of a nsquared algorithm in x and y, but a
domain decomposition along z, i. e. the system is cut into equally sized layers along the
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z axis. The current implementation allows for the cpus to align only along the z axis,
therefore the processor grid has to have the form 1x1xN. However, each processor may
be responsible for several layers, which is determined by n layers, i. e. the system is
split into N*n layers layers along the z axis. Since in x and y direction there are no
processor boundaries, the implementation is basically just a stripped down version of
the domain decomposition cellsystem.
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7 Running the simulation

7.1 integrate: Running the simulation

Syntax

(1) integrate steps
(2) integrate set method [parameter ]...

Description Docs missing!

Which integrators
do exist?

7.2 change_volume: Changing the box volume

Syntax

(1) change_volume Vnew

(2) change_volume Lnew ( x | y | z | xyz )

Description

Changes the volume of either a cubic simulation box to the new volume Vnew or its
given x-/y-/z-/xyz-extension to the new box-length Lnew, and isotropically adjusts the
particles coordinates as well. The function returns the new volume of the deformed
simulation box.

7.3 Stopping particles

Syntax

(1) stopParticles
(2) stop_particles

Description

Halts all particles in the current simulation, setting their velocities and forces to zero.
Variant (2) does not provide feedback on the execution status.

7.4 velocities: Setting the velocities

Syntax

velocities vmax [start pid ] [count N ]
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Description

Sets the velocities of the particles with particle IDs between pid and pid +N to a random
vector with a length less than vmax, and returns the absolute value of the total velocity
assigned. By default, all particles are affected.

7.5 invalidate_system

Syntax

invalidate_system

DescriptionDocumentation
not up to date!

Forces a system re-init which, among others, causes the integrator to also update the
forces at its beginning (instead of re-using the values from the previous integration step).
This is particularly necessary to ensure continuity after setting a checkpoint: integrate
- set_checkpoint - integrate has only one call to ???, while read_checkpoint -???

integrate has two at the beginning of the 2nd integrate (because loading a new system
from disk typically requires re-initializing the system), and since ??? also uses the
thermostat which in turn draws random numbers, the two situations do not end up
at the same segment of the random number sequence, all random events will therefore
slightly differ. To prevent this, simply include a call to invalidate system upon setting
the checkpoint (this is being done automatically if using tcl checkpoint set and tcl -
checkpoint read beginning with v1.1 of ESPResSo), because in that case both scenarios
will call ??? twice at the beginning of the second integration phase thus having their
random number sequences in total sync.

7.6 Parallel tempering

Syntax

parallel_tempering::main -rounds N -swap swap -perform perform
[-init init ] [-values {Ti}] [-connect master ] [-port port ]
[-load jnode] [-resrate Nreset] [-info info]

Description

This command can be used to run a parallel tempering simulation. Since the simulation
routines and the calculation of the swap probabilities are provided by the user, the
method is not limited to sampling in the temperature space. However, we assume in
the following that the sampled values are temperatures, and call them accordingly. It is
possible to use multiple processors via TCP/IP networking, but the number of processors
can be smaller than the number of temperatures.

Arguments

• swap specifies the name of the routine calculating the swap probability for a sys-
tem. The routine has to accept three parameters: the id of the system to evaluate,
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and two temperatures T1 and T2 . The routine should return a list containing
the energy of the system at temperatures T1 and T2 , respectively.

• perform specifies the name of the routine performing the simulation between two
swap tries. The routine has to accept two parameters: the id of the system to
propagate and the temperature T at which to run it. Return values are ignored.

• init specifies the name of a routine initializing a system. This routine can for
example create the particles, perform some intial equilibration or open output
files. The routine has to accept two parameters: the id of the system to initialize
and its initial temperature T . Return values are ignored.

•R specifies the number of swap trial rounds; in each round, neighboring temper-
atures are tried for swapping alternatingly, i.e. with four temperatures, The first
swap trial round tries to swap 1↔ 2 and 3↔ 4, the second round 2↔ 3, and so
on.

•master the name of the host on which the parallel tempering master node is run-
ning.

• port the TCP/IP port on which the parallel tempering master should listen. This
defaults to 12000.

• jnode specifies how many systems to run per ESPResSo-instance. If this is more
than 1, it is the user’s responsibility to manage the storage of configurations, see
below for examples. This defaults to 1.

•Rreset specifies after how many swap trial rounds to reset the counters for the
acceptance rate statistics. This defaults to 10.

• info specifies which output the parallel tempering code should produce:
none parallel tempering will be totally quiet, except for fatal errors
comm information on client activities, such as connecting, is printed to stderr
all print lots of information on swap energies and probabilities to stdout. This

is useful for debugging and quickly checking the acceptance rates.
This defaults to all.

Introduction

The basic idea of parallel tempering is to run N simulations with configurations Ci in
parallel at different temperatures T1 < T2 < . . . < TN , and exchange configurations
between neighboring temperatures. This is done according to the Boltzmann rule, i.e.
the swap probability for two configurations A and B at two different parameters T1 and
T2 is given by

min (1, exp− [β(T2)UA(T2) + β(T1)UB(T1)− β(T1)UA(T1)− β(T2)UB(T2)]) , (7.1)

where UC(T ) denotes the potential energy of configuration C at parameter T and β(T )
the corresponding inverse temperature. If T is the temperature, UC is indepedent of T ,
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and β(T ) = 1/(kBT ). In this case, the swap probability reduces to the textbook result

min(1, exp− [(1/T2 − 1/T1) (UA − UB) /kB] . (7.2)

However, T can also be chosen to be any other parameter, for example the Bjerrum
length, i.e. the the strength of the electrostatic interaction. In this case, β(T ) = β is a
constant, but the energy UC(T ) of a configuration C depends on T , and one needs the
full expression (7.1). ESPResSo always uses this expression.

In practice, one does not swap configurations, but temperatures, simply because ex-
changing temperatures requires much less communication than exchanging the properties
of all particles.

Th ESPResSo implementation of parallel tempering repeatedly propagates all config-
urations Ci and tries to swap neighboring temperatures. After the first propagation,
the routine attempts to swap temperatures T1 and T2, T3 and T4, and so on. After the
second propagation, swaps are attempted between temperatures T2 and T3, T4 and T5,
and so on. For the propagation, parallel tempering relies on a user routine; typically,
one will simply propagate the configuration by a few 100 MD time steps.

Details on usage and an example

The parallel tempering code has to be loaded explicitely by source "scripts/parallel_-
tempering.tcl" from the Espresso directory. To make use of the parallel tempering
tool, one needs to implement three methods: the propagation, the energy calculation
and an initialization routine for a configuration. A typical initialization routine will look
roughly like this:

proc init {id temp} {
# create output files for temperature temp
set f [open "out-$temp.dat" w]; close $f
init_particle_positions
thermostat langevin $temp 1.0
equilibration_integration
global config
set config($id) "{[part]} [setmd time]"

}

The last two lines are only necessary if each instance of ESPResSo handles more than
one configuration, e.g. if you have 300 temperatures, but only 10 ESPResSo processes
(i.e.-load 30). In this case, all user provided routines need to save and restore the
configurations. Saving the time is not necessary because the simulation tine across swaps
is not meaningful anyways; it is however convenient for investigating the (temperature-
)history of individual configurations.

A typical propagation routine accordingly looks like this

proc perform {id temp} {
global config
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particle delete
foreach p [lindex $config($id) 0] { eval part $p }
setmd time [lindex $config($id) 1]
thermostat langevin $temp 1.0
set f [open "out-$temp.dat" a];
integrate 1000
puts $f "[setmd time] [analyze energy]"
close $f
set config($id) "{[part]} [setmd time]"

}

Again, the saving and storing of the current particle properties in the config array are
only necessary if there is more than one configuration per process. In practice, one will
rescale the velocities at the beginning of perform to match the current temperature,
otherwise the thermostat needs a short time to equilibrate. The energies necessary to
determine the swap probablility are calculated like this:

proc swap {id temp1 temp2} {
global config
particle delete
foreach p $config($id) { eval part $p }
set epot [expr [analyze energy total] - [analyze energy kinetic]]
return "[expr $epot/$temp1] [expr $epot/$temp2]"

}

Note that only the potential energy is taken into account. The temperature enters only
indirectly through the inverse temperature prefactor, see Eqn. (7.1).

The simulation is then started as follows. One of the processes runs the command

for {set T 0} {$T < 3} {set T [expr $T + 0.01]} {
lappend temperatures $T }

parallel_tempering::main -load 30 -values $temperatures -rounds 1000 \
-init init -swap swap -perform perform

This command turns the ESPResSo instance executing it into the master part of the
parallel tempering simulation. It waits until a sufficient number of clients has connected.
This are additional ESPResSo instances, which are identical to the master script, except
that they execute

parallel_tempering::main -connect $host -load 30 \
-init init -swap swap -perform perform

Here, host is a variable containing the TCP/IP hostname of the computer running
the master process. Note that the master process waits until enough processes have
connected to start the simulation. In the example, there are 300 temperatures, and each
process, including the master process, will deal with 30 of them. Therefore, 1 master
and 9 slave processes are required. For a typical queueing system, a starting routine
could look like this:
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master=
for h in $HOSTS; do
if [ "$master" == "" ]; then
ssh $h "cd run; ./pt_test.tcl"
master=$h;

else
ssh $h "cd run; ./pt_test.tcl -connect $host"

fi
done

where pt_test.tcl passes the -connect option on to parallel_tempering::main.

Sharing data

Syntax

parallel_tempering::set_shareddata data

Description
can be used at any time by the master process to specify additional data that is available
on all processes of the parallel tempering simulation. The data is accessible from all
processes as parallel_tempering::shareddata.
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8 Analysis Intro: analyze can
measure
observables, but
also define
topologies and
store
configurations

8.1 Measuring observables

The analyze-command provides online-calculation of local and global observables.
Missing:
radial_density_map,
modes2d,
get_lipid_orients,
get_folded_positions,
bilayer_set,
bilayer_density_profile,
lipid_orient_order,
cell_gpb, Vkappa

8.1.1 Minimal distances between particles

Syntax

(1) analyze mindist [type list a type list b]
(2) analyze distto pid
(3) analyze distto x y z

Description
Variant (1) returns the minimal distance between two particles in the system. If the
type-lists are given, then the minimal distance between particles of only those types is
determined.
distto returns the minimal distance of all particles to particle pid (variant (2)), or

to the coordinates (x , y , z ) (Variant (3)).

8.1.2 Particles in the neighbourhood

Syntax

(1) analyze nbhood pid r catch
(2) analyze nbhood x y z rcatch

Description
Returns a Tcl-list of the particle ids of all particles within a given radius r catch around
the position of the particle with number pid in variant (1) or around the spatial coordi-
nate (x , y , z ) in variant (2).

8.1.3 Particle distribution

Syntax

analyze distribution part type list a part type list b
[rmin [rmax [rbins [log flag [int flag ]]]]]

Description
Returns its parameters and the distance distribution of particles with types specified in
part type list a around particles with types specified in part type list b with distances

73



between rmin and rmax , binned into rbins bins. The bins are either equidistant (if
log flag = 0) or logarithmically equidistant (if logf lag ≥ 1). If an integrated distribution
is required, use intf lag = 1. The distance is defined as the minimal distance between a
particle of one group to any of the other group.

Output format
The output corresponds to the blockfile format (see section 9.1 on page 88):

{ parameters }
{
{ r dist(r) }
...

}

8.1.4 Radial distribution function

Syntax

analyze ( rdf | <rdf> ) part type list a part type list b [rmin rmax rbins]

Description
Returns its parameters and the radial distribution function (rdf) of particles with types
specified in part type list a around particles with types specified in part type list b. The
range is given by rmin and rmax and is divided into rbins equidistant bins.

Output format
The output corresponds to the blockfile format (see section 9.1 on page 88):

{ parameters }
{
{ r rdf (r) }
...

}

8.1.5 Structure factor

Syntax

analyze structurefactor type order

Description
Returns the spherically averaged structure factor S(q) for particles of a given type type.
The S(q) is calculated for all possible wave vectors, 2π

L <= q <= 2π
L order . Do not chose

parameter order too large, becase the number of calculations grows as order3.

Output format
The output corresponds to the blockfile format (see section 9.1 on page 88):

74



{ q value S (q) value }
...

8.1.6 Van-Hove autocorrelation function G(r, t)

Syntax

analyze vanhove type rmin rmax rbins

Description

Returns the van Hove auto correlation function G(r, t) and the mean square displacement
msd(t) for particles of type ptype for the configurations stored in the array configs. This
tool assumes that the configurations stored with analyze append (see section 8.3 on
page 84) are stored at equidistant time intervals. G(r, t) is calculated for each multiple of
this time intervals. For each time t the distribution of particle displacements is calculated
acoording to the specification given by rmin, rmax and rbins. If the particles perform
a random walk (i.e. a normal diffusion process) G(r, t)/r2 is a gaussian distribution
for all times. Deviations of this behavior hint on another diffusion process or on the
fact that your system has not reached the diffusive regime. In this case it is also very
questionable to calculate a diffusion constant from the mean square displacement via
the Stokes-Einstein relation.

Output format

The output corresponds to the blockfile format (see section 9.1 on page 88):

{ msd { msd(0 ) msd(1 ) ... } }
{ vanhove { { G(0 , 0 ) G(1 , 0 ) ... }

{ G(0 , 1 ) G(1 , 1 ) ... }
...

}
}

The G(r, t) are normalized such that the integral over space always yields 1.

8.1.7 Center of mass

Syntax

analyze centermass partt ype

Description

Returns the center of mass of particles of the given type.
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8.1.8 Moment of intertia matrix

Syntax

(1) analyze momentofinertiamatrix typeid
(2) analyze find_principal_axis typeid

Description

Variant (1) returns the moment of inertia matrix for particles of given type typeid . The
output is a list of all the elements of the 3x3 matrix. Variant (2) returns the eigenvalues
and eigenvectors of the matrix.

8.1.9 Aggregation

Syntax

analyze aggregation dist criteria s mol id f mol id
[min contact [charge criteria]]

Description

Returns the aggregate size distribution for the molecules in the molecule id range
s mol id to f mol id . If any monomers in two different molecules are closer than
dist criteria they are considered to be in the same aggregate. One can use the op-
tional min contact parameter to specify a minimum number of contacts such that only
molecules having at least min contact contacts will be considered to be in the same
aggregate. The second optional parameter charge criteria enables one to consider ag-
gregation state of only oppositely charged particles.

8.1.10 Identifying pearl-necklace structures

Syntax

analyze necklace pearl treshold back dist space dist first length

Description

Algorithm for identifying pearl necklace structures for polyelectrolytes in poor solvent
[12]. The first three parameters are tuning parameters for the algorithm: pearl treshold
is the minimal number of monomers in a pearl. back dist is the number of monomers
along the chain backbone which are excluded from the space distance criterion to form
clusters. space dist is the distance between two monomers up to which they are consid-
ered to belong to the same clusters. The three parameters may be connected by scaling
arguments. Make sure that your results are only weakly dependent on the exact choice
of your parameters. For the algorithm the coordinates stored in partCfg are used. The
chain itself is defined by the identity first of its first monomer and the chain length
length. Attention: This function is very specific to the problem and might not give
useful results for other cases with similar structures.
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8.1.11 Finding holes

Syntax

analyze holes typeidprobe mesh size

Description

Function for the calculation of the unoccupied volume (often also called free volume)
in a system. Details can be found in Schmitz and Muller-Plathe [14]. It identifies free
space in the simulation box via a mesh based cluster algorithm. Free space is defined
via a probe particle and its interactions with other particles which have to be defined
through LJ interactions with the other existing particle types via the inter command
before calling this routine. A point of the mesh is counted as free space if the distance of
the point is larger than LJ cut+LJ offset to any particle as defined by the LJ interaction
parameters between the probe particle type and other particle types. How to use this
function: Define interactions between all (or the ones you are interested in) particle types
in your system and a fictious particle type. Practically one uses the van der Waals radius
of the particles plus the size of the probe you want to use as the Lennard Jones cutoff.
The mesh spacing is the box length divided by the meshs ize.

Output format

{ n holes mean hole size max hole size free volume fraction
{ sizes }
{ surfaces }
{ element lists }

}

A hole is defined as a continous cluster of mesh elements that belong to the unoccupied
volume. Since the function is quite rudimentary it gives back the whole information
suitable for further processing on the script level. sizes and surfaces are given in number
of mesh points, which means you have to calculate the actual size via the corresponding
volume or surface elements yourself. The complete information is given in the element -
lists for each hole. The element numbers give the position of a mesh point in the linear
representation of the 3D grid (coordinates are in the order x, y, z). Attention: the
algorithm assumes a cubic box. Surface results have not been tested. Requires the
feature LENNARD JONES. .

I think there is
still a bug in there
(Hanjo)

8.1.12 Energies

Syntax

(1) analyze energy
(2) analyze energy ( total | kinetic | coulomb | magnetic )
(3) analyze energy bonded bondid
(4) analyze energy nonbonded typeid1 typeid2
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Description

Describe the
different energies
components
returned by the
different
commands!

Returns the energies of the system. Variant (1) returns all the contributions to the
total energy. Variant (2) returns the numerical value of the total energy or its kinetic
or Coulomb or magnetic contributions only. Variants (3) and (4) return the energy
contributions of the bonded resp. non-bonded interactions.

Output format (variant (1))
{ energy value } { kinetic value } { interaction value } ...

8.1.13 Pressure

Syntax

(1) analyze pressure
(2) analyze pressure total
(3) analyze pressure ( totals | ideal | coulomb |

tot_nonbonded_inter | tot_nonbonded_intra )
(4) analyze pressure bonded bondid
(5) analyze pressure nonbonded typeid1 typeid2
(6) analyze pressure nonbonded_intra [typeid ]
(7) analyze pressure nonbonded_inter [typeid ]

Description
Computes the pressure and its contributions in the system. Variant (1) returns all
the contributions to the total pressure. Variant (2) will return the total pressure only.
Variants (3), (4) and (5) return the corresponding contributions to the total pressure.

Document
arguments
nb inter, nb intra,
tot nb inter and
tot nb intra

Description of how
electrostatic
contribution to
Pressure is
calculated

The pressure is calculated (if there are no electrostatic interactions) by

p =
2Ekinetic
V f

+

∑
j>i Fijrij

3V
(8.1)

where f is the number of degrees of freedom of each particle, V is the volume of the
system, Ekinetic is the kinetic energy, Fij the force between particles i and j, and rij is
the distance between them. The kinetic energy divided by the degrees of freedom is

2Ekinetic
f

=
1
3

∑
i

miv
2
i (8.2)

when the ROTATION option is turned off and

2Ekinetic
f

=
1
6

∑
i

(miv
2
i + Iiw

2
i )) (8.3)

when the ROTATION option is compiled in. Ii is the moment of inertia of the particle
and wi is the angular velocity.

Care should be taken when using constraints of any kind, since these are not accounted
for in the pressure calculations.
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The command is implemented in parallel.

Output format (variant (1))
{ { pressure total pressure }
{ ideal ideal gas pressure }
{ { bond type pressure }

...
}
{ { nonbonded type pressure }

...
}
{ coulomb pressure }

}

specifying the pressure, the ideal gas pressure, the contributions from bonded interac-
tions, the contributions from non-bonded interactions and the electrostatic contributions.

8.1.14 Stress Tensor

Syntax

(1) analyze stress_tensor
(2) analyze stress_tensor total
(3) analyze stress_tensor ( totals | ideal | coulomb |

tot_nonbonded_inter | tot_nonbonded_intra )
(4) analyze stress_tensor bonded bondt ype
(5) analyze stress_tensor nonbonded typeid1 typeid2
(6) analyze stress_tensor nonbonded_intra [typeid ]
(7) analyze stress_tensor nonbonded_inter [typeid ]

Description

Computes the stress tensor of the system. The various options are equivalent to those
described by analyze pressure in 8.1.13 on the preceding page. It is called a stress
tensor but the sign convention follows that of a pressure tensor.

The stress tensor is calculated by

p(kl) =
∑

imiv
(k)
i v

(l)
i

V
+

∑
j>i F

(k)
ij r

(l)
ij

V
(8.4)

where the notation is the same as for analyze pressure in 8.1.13 on the previous page
and the superscripts k and l correspond to the components in the tensors and vectors.
Note that the angular velocities of the particles are not included in the calculation of
the stress tensor. This means that when the ROTATION option is compiled in the
instantaneous pressure calculated with analyze pressure will be different from the
pressure implied by the stress tensor. However, the time averages should be in agreement.
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If the P3M and MMM1D electostatic methods are used, these interactions are not
included in the stress tensor. The DH and RF methods, in contrast, are included.

Care should be taken when using constraints of any kind, since these are not accounted
for in the stress tensor calculations.

The command is implemented in parallel.

Output format (variant (1))
{ { pressure total pressure tensor }
{ ideal ideal gas pressure tensor }
{ { bond type pressure tensor }

...
}
{ { nonbonded type pressure tensor }

...
}
{ coulomb pressure tensor }

}

specifying the pressure tensor, the ideal gas pressure tensor, the contributions from
bonded interactions, the contributions from non-bonded interactions and the electro-
static contributions.

8.1.15 Local Stress Tensor

Syntax

analyze local_stress_tensor periodic x periodic y periodic z range start x
range start y range start z range x range y range z bins x bins y
bins z

Description

Computes local stress tensors in the system. A cuboid is defined starting at the coordi-
nate (range start x ,range start y ,range start z ) and going to the coordinate (range start x+range x ,
range start y+range y , range start z+range z ). This cuboid in divided into bins x bins
in the x direction, bins y bins in the y direction and bins z bins in the z direction such
that the total number of bins is bins x*bins y*bins z . For each of these bins a stress
tensor is calculated using the Irving Kirkwood method. That is, a given interaction
contributes towards the stress tensor in a bin proportional to the fraction of the line
connecting the two particles that is within the bin.

If the P3M and MMM1D electostatic methods are used, these interactions are not
included in the local stress tensor. The DH and RF methods, in contrast, are included.

Care should be taken when using constraints of any kind, since these are not accounted
for in the local stress tensor calculations.

The command is implemented in parallel.
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Output format (variant (1))
{ { LocalStressTensor }
{ { x bin y bin z bin } { pressure tensor } }

...
}

specifying the local pressure tensor in each bin.

8.2 Topologies
Topologies intro

The analyze set command defines the structure of the current system to be used with
some of the analysis functions.

Syntax

(1) analyze set chains [chain start n chains chain length]
(2) analyze set chains

Description
Update
documentation for
set topologyVariant (1) defines a set of n chains chains of equal length chain length which start with

the particle with particle number chain start and are consecutively numbered (i.e. the
last particle in that topology has number chain start +n chains ∗chain length). Variant
(2) will return the chains currently stored.

8.2.1 Chains

All analysis functions in this section require the topology of the chains to be set correctly.
The topology can be provided upon calling. This (re-)sets the structure info permanently,
i.e. it is only required once.

End-to-end distance

Syntax

analyze ( re | <re> ) [chain start n chains chain length]

Description
Returns the quadratic end-to-end-distance and its root averaged over all chains. If <re>
is used, the distance is averaged over all stored configurations (see section 8.3 on page 84).

Output format
{ re error of re re2 error of re2 }

Radius of gyration

Syntax

analyze ( rg | <rg> ) [chain start n chains chain length]
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DescriptionReference?

Returns the radius of gyration averaged over all chains. If <rg> is used, the radius of
gyration is averaged over all stored configurations (see section 8.3 on page 84).

Output format
{ rg error of rg rg2 error of rg2 }

Hydrodynamic radius

Syntax

analyze ( rh | <rh> ) [chain start n chains chain length]

DescriptionReference?

Returns the hydrodynamic radius averaged over all chains. If <rh> is used, the hydody-
namic radius is averaged over all stored configurations (see section 8.3 on page 84).

Output format
{ rh error of rh }

Internal distances

Syntax

analyze ( internal_dist | <internal_dist> ) [chain start n chains chain length]

Description
Returns the averaged internal distances within the chains. If <internal_dist> is used,
the values are averaged over all stored configurations (see section 8.3 on page 84).

Output format
{ idf (0 ) idf (1 ) ... idf (chain length − 1 ) }

The index corresponds to the number of beads between the two monomers considered
(0 = next neighbours, 1 = one monomer in between, . . . ).

Bond distances

Syntax

analyze ( bond_dist | <bond_dist> ) [index index ]
[chain start n chains chain length]

Description
In contrast to analyze internal_dist, it does not average over the whole chain, but
rather takes the chain monomer at position index (default: 0, i.e. the first monomer
on the chain) to be the reference point to which all internal distances are calculated.
If <bond_dist> is used, the values will be averaged over all stored configurations (see
section 8.3 on page 84).
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Output format

{ bdf (0 ) bdf (1 ) ... bdf (chain length − 1 − index ) }

Bond lengths

Syntax

analyze ( bond_l | <bond_l> ) [chain start n chains chain length]

Description

Analyses the bond lengths of the chains in the system. Returns its average, the standard
deviation, the maximum and the minimum. If you want to look only at specific chains,
use the optional arguments, i.e. chain start = 2 ∗ MPC and n chains = 1 to only
include the third chain’s monomers. If <bond_l> is used, the value will be averaged over
all stored configurations (see section 8.3 on page 84).

Output format

{ mean stddev max min }

Form factor

Syntax

analyze ( formfactor | <formfactor> ) qmin qmax qbins
[chain start n chains chain length]

Description Check this!

Computes the spherically averaged form factor of a single chain, which is defined by

S(q) =
1

chain length

chain length∑
i,j=1

sin(qrij)
qrij

(8.5)

of a single chain, averaged over all chains for qbin + 1 logarithmically spaced q-vectors
qmin, . . . , qmax where qmin > 0 and qmax > qmin. If <formfactor> is used, the form
factor will be averaged over all stored configurations (see section 8.3 on page 84).

Output format

{
{ q S (q) }
...

}

with q ∈ {qmin, . . . , qmax}.
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Chain radial distribution function

Syntax

analyze rdfchain rmin rmax rbins [chains tart nchains chainl ength]

Description

Returns three radial distribution functions (rdf) for the chains. The first rdf is calculated
for monomers belonging to different chains, the second rdf is for the centers of mass of
the chains and the third one is the distribution of the closest distances between the
chains (i.e. the shortest monomer-monomer distances). The distance range is given by
rmin and rmax and it is divided into rbins equidistant bins.

Output format

{
{r rdf1 (r) rdf2 (r) rdf3 (r) }
...

}

g123
Title?

Syntax

(1) analyze ( <g1>| <g2>| <g3> ) [chains tart nchains chainl ength]
(2) analyze g123 [-init] [chains tart nchains chainl ength]

Description

Variant (1) returns
What’s the
difference between
g2 and g3???

• the mean-square displacement of the beads in the chain (<g1>)

• the mean-square displacement of the beads in the center of mass of the chain (<g2>)

• or the motion of the center of mass (<g3>)

averaged over all stored configurations (see section 8.3 on the next page).
Variant (2) returns all of these observables for the current configuration, as compared

to the reference configuration. The reference configuration is set, when the option -init
is used.

Output format (variant (1))
{ gi(0 ∗ dt) gi(1 ∗ dt) ... }

Output format (variant (2))
{ g1 (t) g2 (t) g3 (t) }
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8.3 Storing configurations

Some observables (i.e. non-static ones) require knowledge of the particles’ positions
at more than one or two times. Therefore, it is possible to store configurations for
later analysis. Using this mechanism, the program is also able to work quasi-offline by
successively reading in previously saved configurations and storing them to perform any
analysis desired afterwards.

Note that the time at which configurations were taken is not stored. The most observ-
ables that work with the set of stored configurations do expect that the configurations
are taken at equidistant timesteps.

Note also, that the stored configurations can be written to a file and read from it via
the blockfile command (see section 9.1 on page 88).

8.3.1 Storing and removing configurations

Syntax

(1) analyze append
(2) analyze remove [index ]
(3) analyze replace index
(4) analyze push [size]
(5) analyze configs config

Description
Variant (1) appends the current configuration to the set of stored configurations. Variant
(2) removes the index th stored configuration, or all, if index is not specified. Variant
(3) will replace the index th configuration with the current configuration.

Variant (4) will append the current configuration to the set of stored configuration
and remove configurations from the beginning of the set until the number of stored
configurations is equal to size. If size is not specified, only the first configuration in the
set is removed.

Variants (1) to (4) return the number of currently stored configurations.
Variant (5) will append the configuration config to the set of stored configurations.

config has to define coordinates for all configurations in the format:

{x1 y1 z1 x2 y2 z2 ... }

8.3.2 Getting the stored configurations

Syntax

(1) analyze configs
(2) analyze stored

Description
Variant (1) returns all stored configurations, while variant (2) returns only the number
of stored configurations.
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Output format (variant (1))
{
{x1 y1 z1 x2 y2 z2 ... }
...

}

8.4 Statistical analysis and plotting
Make this an
appendix?

8.4.1 Plotting

Syntax

plotObs file { x1:y1 x2:y2 ...} [titles { title1 title2 ...}]
[labels { xlabel [ylabel ] }] [scale gnuplot − scale]
[cmd gnuplot − command ] [out filebase]

Description

Uses gnuplot to create plots of the data in file and writes it to the file filebase.ps (de-
fault: file.ps). The data in file should be stored column-wise. x1 , x2 . . . and y1 , y2 . . .
denote the columns used for the data of the x- and y-axis, respectively.

Arguments

• [titles { title1 title2 ...}] can be used to specify the titles of the different
plots

• [labels { xlabel [ylabel ] }] will define the labels of the axis. If ylabel is omitted,
the filename file is used as label for the y-axis.

• [scale gnuplot − scale] will define the scaling of the axis (e.g. scale logscale xy)
(default: nologscale xy)

• [cmd gnuplot − command ] allows to pass any other commands to gnuplot. For
example, use plotObs ...cmd "set key left" to adjust the titles on the left
side.

• [out filebase] can be used to change the output file. By default, the plot will be
written to file.ps.

8.4.2 Joining plots

Syntax

plotJoin { source1 source2 ...} final

Description

Joins the plot files source1 , source2 , . . . into a single file final , while placing any two files
on one page. Note that the resulting files may be huge and therefore hard to print!
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8.4.3 Computing averages and errors

Syntax

(1) calcObAv file index [start ]
(2) calcObErr file index [start ]
(3) calcObsAv file { i1 i2 ...} [start ]
(4) nameObsAv file { name1 name2 ...} [start ]
(5) findObsAv val what

Description

These commands will compute mean values or errors of the data in file file. The data
in file should be stored column-wise. If start is specified, the first start lines will be
ignored.

Variant (1) returns the mean value of the column with index index in file, variant (2)
returns the error of its mean value. Variant (3) computes mean values and errors of the
observables with index i1 , i2 , . . . in file. It expects the first line of file to contain the
names of the columns, which it will also return.

In variant (4), the names used in the first line of file can be used to specify which
column is to be used. The mean value and its error are computed for each of the columns. ????

Variant (5) extracts the values whose names are given in the tcl-list val at their
respective positions in what , where what has the list-format as returned by variant (3),
returning just these values as tiny tcl-list.

Output format (variant (3))
{

#samples
{ name1 name2 ... }
{ mean1 mean2 ... }
{ error1 error2 ... }

}

Output format (variant (4))
{

#samples
mean1 mean2 ...
error1 error2 ...

}

8.5 uwerr: Computing statistical errors in time series

Syntax

(1) uwerr data nrep col [s tau] [plot]
(2) uwerr data nrep f [s tau [f args]] [plot]

87



Description
Calculates the mean value, the error and the error of the error for an arbitrary numerical
time series accordings to Wolff [18].

Arguments
• data is a matrix filled with the primary estimates ai,rα fromR replica withN1, N2, . . . , NR

measurements each.
How exactly does
the Tcl-list look
like?

data =



a1,1
1 a1,1

2 a1,1
3 · · ·

a2,1
1 a2,1

2 a2,1
3 · · ·

...
...

...
...

aN1,1
1 aN1,1

2 aN1,1
3 · · ·

a1,2
1 a1,2

2 a1,2
3 · · ·

...
...

...
...

aNR,R1 aNR,R2 aNR,R3 · · ·


•nrep is a vector whose elements specify the length of the individual replica.

nrep = (N1, N2, . . . , NR)

• f is a user defined Tcl function returning a double with first argument a vector
which has as many entries as data has columns. If f is given instead of the column,
the corresponding derived quantity is analyzed.

• f args are further arguments to f .

• s tau is the estimate S = τ/τint as explained in section (3.3) of [18]. The default
is 1.5 and it is never taken larger than minRr=1Nr/2.

• [plot] If plot is specified, you will get the plots of Γ/Γ(0) and τint vs. W . The
data and gnuplot script is written to the current directory.

Output format
mean error error of error act
error of act [Q ]

where act denotes the integrated autocorrelation time, and Q denotes a quality mea-
sure, i.e. the probability to find a χ2 fit of the replica estimates.

The function returns an error message if the windowing failed or if the error in one of
the replica is to large.
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9 Input / Output

9.1 blockfile: Using the structured file format

ESPResSo uses a standardized ASCII block format to write structured files for anal-
ysis or storage. Basically the file consists of blocks in curled braces, which have a
single word title and some data. The data itself may consist again of such blocks.
An example is:
{file {Demonstration of the block format}
{variable epsilon {_dval_ 1} }
{variable p3m_mesh_offset {_dval_ 5.0000000000e-01

5.0000000000e-01 5.0000000000e-01 } }
{variable node_grid {_ival_ 2 2 2 } }
{end}
Whitespace will be ignored within the format (space, tab and return).
The keyword variable should be used to indicate that a variable definition follows in

the form name data. data itself is a block with title _ival_ or _dval_ denoting integer
rsp. double values, which then follow in a whitespace separated list. Such blocks can be
read in conveniently using block_read_data and written using block_write_data.

Sampe C-code
doesn’t work, as
ESPResSo-library
has been removed!

9.1.1 Writing ESPResSo’s global variables

Syntax

(1) blockfile channel write variable {varname1 varname2 ...}
(2) blockfile channel write variable all

Description

Variant (1) writes the global variables varname1 varname2 . . . (which are known to the
setmd command (see section 6.1 on page 57) to channel . Variant (2) will write all known
global variables.

Note, that when the block is read, all variables with names listed in the Tcl variable
blockfile_variable_blacklist are ignored.

9.1.2 Writing Tcl variables

Syntax

(1) blockfile channel write tclvariable { varname1 varname2 ...}
(2) blockfile channel write tclvariable all
(2) blockfile channel write tclvariable reallyall
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Description

These commands will write Tcl global variables to channel . Global variables are those
declared in the top scope of the Tcl script, or those that were explicitly declared
global. When reading the block, all variables with names listed in the Tcl variable
blockfile_tclvariable_blacklist are ignored.

Variant (1) writes the Tcl global variables varname1 , varname2 , . . . to channel .
Variant (2) will write all Tcl variables to the file, with the exception of the inter-
nally predefined globals from Tcl (tcl_version, argv, argv0, argc, tcl_interactive,
auto_oldpath, errorCode, auto_path, errorInfo, auto_index, env, tcl_pkgPath,
tcl_patchLevel, tcl_libPath, tcl_library and tcl_platform). Variant (3) will even
write those.

9.1.3 Writing particles, bonds and interactions

Syntax

(1) blockfile channel write particles what ( range | all )
(2) blockfile channel write bonds range
(3) blockfile channel write interactions

DescriptionHow is a Tcl-range
specified?

Variant (1) writes particle information in a standardized format to channel . what can
be any list of parameters that can be specified in part parti d print, except for bonds.
Note that id and pos will automatically be added if missing. range is a Tcl list of ranges
which particles to write. The keyword all denotes all known particles.

Variant (2) writes the bond information in a standardized format to channel . The
involved particles and bond types must exist and be valid.

Variant (3) writes the interactions in a standardized format to channel .

9.1.4 Writing the random number generator states

Syntax

(1) blockfile channel write random
(2) blockfile channel write bit_random
(3) blockfile channel write seed
(4) blockfile channel write bitseed

Description

Variants (1) and (2) write the full information on the current states of the respecitve
random number generators (see section ?? on page ??) on any node to channel . Using
this information, it is possible to recover the exact states of the generators.

Variants (3) and (4) write only the seed(s) which were used to initialize the random
number generators. Note that this information is not sufficient to restore the full state of
a random number generator, because the internal state might contain more information.
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9.1.5 Writing all stored configurations

Syntax

blockfile channel write configs

Description

This command writes all configurations currently stored for off-line analysis (see sec-
tion 8.3 on page 84) to channel .

9.1.6 Writing arbitrary blocks

Syntax

(1) blockfile channel write start tag
(2) blockfile channel write end
(3) blockfile channel write tag [arg ]...

Description

channel has to be a Tcl channel. Variant (1) starts a block and gives it the title tag ,
variant (2) ends the block. Between two calls to the command, arbitrary data can be
written to the channel. When variant (3) is used, the function blockfile_write_tag is
called with all of the commands arguments. This function should then write the data.

Example
set file [open "data.dat" w]
blockfile $file write start "mydata"
puts $file "{This is my data!}"
blockfile $file write end

will write
{mydata {This is my data!}}

to the file data.dat.

9.1.7 Reading blocks

Syntax

(1) blockfile channel read start
(2) blockfile channel read toend
(3) blockfile channel read ( particles | interactions | bonds |

variable | seed | random | bitrandom | configs )
(4) blockfile channel read auto

Description

Variants (1) and (2) are the low-level block-reading commands. Variant (1) reads the
start part of a block and returns the block title, while variant (2) reads the block data
and returns it. Needs to be

rewritten!
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Variants (3) and (4) read whole blocks. Variant (3) reads the beginning of one block,
checks wether it contains data of the given type and reads it. Variant (4) reads in one
block and does the following:

1. if a procedure blockfile_read_auto_tag exists, this procedure takes over (tag
is the first expression in the block). For most block types, at least all mentioned
above, i.e. particles, interactions, bonds, seed, random, bitrandom, configs,
and variable, the corresponding procedure will overwrite the current information
with the information from the block.

2. if the procedure does not exist, it returns

{ usertag rest of block }

3. if the file is at the end, it returns eof

Variant (3) checks for a block with tag block and then again executes the corresponding
blockfile_read_auto_tag , if it exists.

In the contrary that means that for a new blocktype you will normally implement two
procedures:

blockfile_write_tag channel write tag arg...
which writes the block including the header and enclosing braces and

blockfile_read_auto_tag channel read auto
which reads the block data and the closing brace. The parameters write, read , tag and
auto are regular parameters which will always have the specified value. They occur just
for technical reasons.

In a nutshell: The blockfile command is provided for saving and restoring the current
state of ESPResSo, e.g. for creating and using checkpoints. Hence you can transfer all
accessible information from files to ESPResSo and vice versa.
set out [open "|gzip -c - > checkpoint.block.gz" "w"]
blockfile $out write variable all
blockfile $out write interactions
blockfile $out write random
blockfile $out write bitrandom
blockfile $out write particles "id pos type q v f" all
blockfile $out write bonds all
blockfile $out write configs
close $out

This example writes all global variables, all interactions, the full current state of
the random number generator, all information (i.e. id, position, type-number, charge,
velocity, forces, bonds) of all particles, and all stored particle configurations to the file
checkpoint.block.gz which is compressed on-the-fly. If you want to be able to read in
the information using ESPResSo, note that interactions must be stored before particles
before bonding information, as for the bonds to be set all particles and all interactions
must already be known to ESPResSo.
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set in [open "|gzip -cd checkpoint.block.gz" "r"]
while { [blockfile $in read auto] != "eof" } {}
close $in

This is basically all you need to restore the information in the blockfile, overwriting the
current settings in ESPResSo.

9.2 Checkpointing

The following procedures may be used to save and restore checkpoints to minimize the
hassel involved when your simulations crashes after long runs.

9.2.1 Creating a checkpoint

Syntax

checkpoint_set destination [numconfigs [tclvar [iaflag [varflag [ranflag ]]]]]

Description
Creates a checkpoint with path/filename destination (compressed if destination ends
with ’.gz’), saving the last #ofconfigs which have been appended using analyze append
(defaults to ’all’), adds all tcl-embedded variables specified in the tcl-list tclvar (defaults
to ’-’), all interactions (The inter command) / ESPResSo-variables (The setmd com-
mand) / random-number-generator informations (The t random command etc.) unless
their respective flags iaflag / varflag / ranflag are set to ’-’; you may however choose to
only include certain ESPResSo-variables (The setmd command) by providing their names
as a tcl-list in place of varflag . When you’re reading this, tcl checkpoint set will be using
the invalidate system command automatically; therefore continuing an integration after
setting a checkpoint or restarting it there by reading one should make absolutely no
difference anymore, since the current state of the random number generator(s) is/are
completely (re)stored to (from) the checkpoint and the integrator is forced to re-init the
forces (incl. thermostat) no matter what. It may be a good choice to use filenames such
as ’kremer checkpoint.[eval format 05 $integration step]’ or ’kremer checkpoint.029.gz’
for destination because the command stores all the names of checkpoints set to a file
derived from destination by replacing the very last suffix plus maybe ’.gz’ with ’.chk’ (in
the above examples: ’kremer checkpoint.chk’) which is used by tcl checkpoint read to
restore all checkpoints. Although ’checkpoint set destination’ without the optional pa-
rameters will store a complete checkpoint sufficient for re-starting the simulation later on,
you may run out of memory while trying to save a huge number of timesteps appended
(analyze append). Hence one should rather only save those configurations newly added
since the last checkpoint, i.e. if a checkpoint is created every 100,000 steps while a con-
figuration is appended every 500 steps you may want to use ’checkpoint set destination
200’ which saves the current configuration, all interactions, all bonds, the precise state of
the random number generator(s), and the last 200 entries appended to configs since the
last checkpoint was created. Since tcl checkpoint read reads in successively the check-
points given in the ’.chk’-file, the configs-array will nevertheless be completely restored
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to its original state although each checkpoint-file contains only a fraction of the whole
array.

9.2.2 Reading a checkpoint

Syntax

checkpoint_read source

Description

Restores all the checkpoints whose filenames are listed in source in the order given
therein, consequently putting the simulation into the state it was in when checkpoint_set
was called. If parts of the configs array are given in the files listed in source, it is assumed
that they represent a fraction of the whole array.

9.2.3 Writing a checkpoint 2

Syntax

(1) polyBlockWrite path ( param list | all ) part list

DescriptionTitle!

Clean up.
Describe
arguments in
argument env.

Variant (1) writes out the current ESPResSo-configuration as a blockfile, including pa-
rameters, interactions, particles, and bonds. path should contain the filename including
the full path to it. paraml ist gives a tcl-list of the ESPResSo-parameters to be saved; if
an empty list {} is supplied, no parameters are written. If all, all global variables are
written. This defaults to all. partl ist gives a list of the particle-properties (out of pos,
type, q, v, f) to be saved to disk; if an empty list {} is provided, no particles, no bonds,
and no interactions are written. Defaults to all particle properties. If the suffix of path
is .gz, the output will be compressed.

9.2.4 Writing a checkpoint 3

Syntax

(2) polyBlockWriteAll destination [( tclvar | all ) [( whatever |- )
[( state | seed |- )]]]

DescriptionTitle!

Clean up.
Describe
arguments in
argument env.

Variant (2) saves all current interactions, particles, bonds, and global variables to destination,
but in addition it also saves the tcl-variables specified by tclvar (if all, then all the vari-
ables in the active script are stored), it saves all the stored configurations if whatever is
whatever, but -. Furthermore, it saves the state (state) or the seed (seed) of the ran-
dom number generator. With this one can set real checkpoints which should reproduce
the script-state as precisely as possible.
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9.3 Writing PDB/PSF files

The PDB (Brookhaven Protein DataBase) format is a widely used format for describing
atomistic configurations. PSF is a format that is used by VMD to describe the topology
of a PDB file. You need the PDB and PSF files for example for IMD.

9.3.1 writepsf: Writing the topology

Syntax

writepsf file [-molecule] NP MPC NC I NpS NnS

Description

Writes the current topology to the file file (here, file is not a channel, since additional
information cannot be written anyway). NP , MPC and so on are parameters describing
a system consisting of equally long charged polymers, counterions and salt. This infor-
mation is used to set the residue name and can be used to color the atoms in VMD.
If you specify -molecule, the residue name is taken from the molecule identity of the
particle. Of course different kinds of topologies can also be handled by modified versions
of writepsf.

9.3.2 writepdb: Writing the coordinates

Syntax

(1) writepdb file
(2) writepdbfoldchains file chain start n chains chain length box l
(3) writepdbfoldtopo file shift

Description

Variant (1) writes the corresponding particle data.
Variant (2) writes folded particle data where the folding is performed on chain centers

of mass rather than single particles. In order to fold in this way the chain topology
and box length must be specified. Note that this method is outdated. Use variant (3)
instead.

Variant (3) writes folded particle data where the folding is performed on chain centers
of mass rather than single particles. This method uses the internal box length and
topology information from espresso. If you wish to shift particles prior to folding then
supply the optional shift information. shift should be a three member tcl list consisting
of x, y, and z shifts respectively and each number should be a floating point (ie with
decimal point).
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9.4 Writing VTF files

There are two commands in ESPResSo that support writing files in the VMD formats
VTF, VSF and VCF.1 The commands can be used to write the structure (writevsf)
and coordinates (writevcf) of the system to a single trajectory file (usually with the
extension .vtf), or to separate files (extensions .vsf and .vtf).

9.4.1 writevsf: Writing the topology

Syntax

writevsf channelId [( short | verbose )] [radius ( radii | auto )]
[typedesc typedesc]

Description

Writes a structure block describing the system’s structure to the channel given by
channelId . channelId must be an identifier for an open channel such as the return
value of an invocation of open. The atom ids used in the file are not necessarily identical
to ESPResSo’s particle ids. To get the atom id used in the vtf file from an ESPResSo
particle id, use the command vtfpid described below. This makes it easy to write addi-
tional structure lines to the file, e.g. to specify the resname of particle compounds, like
chains. The output of this command can be used for a standalone VSF file, or at the
beginning of a trajectory VTF file that contains a trajectory of a whole simulation.

Arguments

• [( short | verbose )] Specify, whether the output is in a human-readable, but
somewhat longer format (verbose), or in a more compact form (short). The
default is verbose.

• [radius ( radii | auto )] Specify the VDW radii of the atoms. radii is either
auto, or a Tcl-list describing the radii of the different particle types. When the
keyword auto is used and a Lennard-Jones interaction between two particles of
the given type is defined, the radius is set to be σLJ

2 plus the LJ shift. Otherwise,
the radius 0.5 is substituted. The default is auto.
Example: writevsf $file radius {0 2.0 1 auto 2 1.0}

• [typedesc typedesc] typedesc is a Tcl-list giving additional VTF atom-keywords
to specify additional VMD characteristics of the atoms of the given type. If no
description is given for a certain particle type, it defaults to name name type
type , where name is an atom name and type is the type id.
Example: writevsf $file typedesc {0 "name colloid" 1 "name pe"}

1A description of the format and a plugin to read the format in VMD is found in the subdirectory
vmdplugin/ of the ESPResSo source directory.
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9.4.2 writevcf: Writing the coordinates

Syntax

writevcf channelId [( short | verbose )] [( folded | absolute )]
[pids ( pids | all )]

Description

Writes a coordinate (or timestep) block that contains all coordinates of the system’s
particles to the channel given by channelId . channelId must be an identifier for an open
channel such as the return value of an invocation of open.

Arguments

• [( short | verbose )] Specify, whether the output is in a human-readable, but
somewhat longer format (verbose), or in a more compact form (short). The
default is verbose.

• [( folded | absolute )] Specify whether the particle positions are written in
absolute coordinates (absolute) or folded into the central image of a periodic
system (folded). The default is absolute.

• [pids ( pids | all )] Specify the coordinates of which particles should be writ-
ten. If all is used, all coordinates will be written (in the ordered timestep
format). Otherwise, pids has to be a Tcl-list specifying the pids of the particles.
The default is all.
Example: pids {0 23 42}

9.4.3 vtfpid: Translating ESPResSo particles ids to VMD particle ids

Syntax

vtfpid pid

Description

If pid is the id of a particle as used in ESPResSo, this command returns the atom id
used in the VTF, VSF or VCF formats.

9.5 Online-visualisation with VMD

IMD (Interactive Molecular Dynamics) is the protocol that VMD uses to communicate
with a simulation. Tcl md implements this protocol to allow online visual analysis of
running simulations.

In IMD, the simulation acts as a data server. That means that a simulation can
provide the possibility of connecting VMD, but VMD need not be connected all the
time. You can watch the simulation just from time to time.

In the following the setup and usage of IMD is described.
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9.5.1 imd: Using IMD in the script

Syntax

(1) imd connect [port ]
(2) imd positions [( -unfolded |-fold_chains )]
(3) imd listen seconds
(4) imd disconnect

Description

In your simulation, the IMD connection is setup up using variant (1), where port is an
arbitrary port number (which usually has to be between 1024 and 65000). By default,
ESPResSo will try to open port 10000, but the port may be in use already by another
ESPResSo simulation. In that case it is a good idea to just try another port.

While the simulation is running, variant (2) can be used to transfer the current co-
ordinates to VMD, if it is connected. If not, nothing happens and the command just
consumes a small amount of CPU time. Note, that before you can transfer coordinates
to VMD, VMD needs to be aware of the structure of the system. For that, you first
need to load a corresponding structure file (PSF or VSF) into VMD. Also note, that
the command prepare_vmd_connection (see section ?? on page ??) can be used to
automatically set up the VMD connection and transfer the structure file.

By specifying -unfolded, the unfolded coordinates of the particles will transferred,
while -fold_chains will fold chains according to their centers of mass and retains bond-
ing connectivity. Note that this requires the chain structure to be specified first using
the analyze command.

Variant (3) can be used to let the simulation wait for seconds seconds or until IMD has
connected, before the script is continued. This is normally only useful in demo scripts,
if you want to see all frames of the simulation.

Variant (4) will terminate the IMD session. This is normally not only nice but also
the operating system will not free the port for some time, so that without disconnecting
for some 10 seconds you will not be able to reuse the port.

9.5.2 Using IMD in VMD

The PDB/PSF files created by ESPResSo via the command writepsf and writepdb can
be loaded into VMD. This should bring up an initial configuration.

Then you can use the VMD console to execute the command

imd connect host port

where host is the host running the simulation and port is the port it listens to. Note that
VMD crashes, if you do that without loading a structure file before. For more information
on how to use VMD to extract more information or hide parts of configuration, see the
VMD Quick Help.
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9.5.3 Automatically setting up a VMD connection

Syntax

prepare_vmd_connection [filename [wait [start ]]]

Description
To reduce the effort involved in setting up the IMD connection, starting VMD and
loading the structure file, ESPResSo provides the command prepare_vmd_connection.
It writes out the required PSF/PDB-files to filename.psf and filename.pdb (default for
filename is vmd), doing some nice stuff such as coloring the molecules, bonds and coun-
terions appropriately, rotating your viewpoint, and connecting your system to the visu-
alization server. When wait is provided, ESPResSo will wait for wait seconds before it
continues, giving VMD some time to start up and connect.

If start is 1 (the default), it will automatically try to start VMD and connect to the
ESPResSo simulation, otherwise it writes a corresponding script to the file vmd_start.script,
that can be executed via VMD, either from the command line

vmd -e vmd_start.script

or from the Tcl console of VMD with the command

play "vmd_start.script"

9.6 Errorhandling

Errors in the parameters are detected as early as possible, and hopefully self-
explanatory error messages returned without any changes to the data in the internal
data of ESPResSo. This include errors such as setting nonexistent properties of par-
ticles or simply misspelled commands. These errors are returned as standard Tcl
errors and can be caught on the Tcl level via
catch {script} err

When run noninteractively, Tcl will return a nice stack backtrace which allows to quickly
find the line causing the error.

However, some errors can only be detected after changing the internal structures, so
that ESPResSo is left in a state such that integration is not possible without massive
fixes by the users. Especially errors occuring on nodes other than the primary node fall
under this condition, for example a broken bond or illegal parameter combinations.

I do not
understand this.
How does the
error look?For error conditions such as the examples given above, a Tcl error message of the form

tcl error background 0 error a error b 1 error c

is returned. Following possibly a normal Tcl error message, after the background key-
word all severe errors are listed node by node, preceeded by the node number. A special
error is <consent>, which means that one of the slave nodes found exactly the same er-
rors as the master node. This happens mainly during the initialization of the integrate,
e.g. if the time step is not set. In this case the error message will be
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background_errors 0 {time_step not set} 1 <consent>

In each case, the current action was not fulfilled, and possibly other parts of the internal
data also had to be changed to allow ESPResSo to continue, so you should really know
what you do if you try and catch these errors.
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10 Auxilliary commands
Missing
commands:
Probably all from
scripts/auxiliary.tcl?
galileiTransformParticles,
system_com_vel

10.1 Finding particles and bonds

10.1.1 countBonds

Syntax

countBonds particlel ist

Description

Returns a Tcl-list of the complete topology described by particle list , which must have
the same format as the output of the command part (see section 4.1 on page 25).

The output list contains only the particle id and the corresponding bonding in-
formation, thus it looks like e.g.
{106 {0 107}} {107 {0 106} {0 108}} {108 {0 107} {0 109}} ...
{210 {0 209} {0 211}} {211 {0 210}} 212 213 ...

for a single chain of 106 monomers between particle 106 and 211, with additional loose
particles 212, 213, ... (e.g. counter-ions). Note, that the part command stores any
bonds only with the particle of lower particle number, which is why [part 109] would
only return ... bonds 0 110, therefore not revealing the bond between particle 109
and (the preceding) particle 108, while countBonds would return all bonds particle 109
participates in.

10.1.2 findPropPos

Syntax

findPropPos particlepropertyl ist property

Description

Returns the index of property within particlepropertyl ist , which is expected to have the
same format as [part particlei d]. If property is not found, -1 is returned.

This function is useful to access certain properties of particles without hard-wiring
their index-position, which might change in future releases of part.

Example

[lindex [part $i] [findPropPos [part $i] type]]

This returns the particle type id of particle i without fixing where exactly that informa-
tion has to be in the output of [part $i].
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10.1.3 findBondPos

Syntax

findBondPos particlepropertyl ist

Description
Returns the index of the bonds within particlepropertyl ist , which is expected to have the
same format as [part particle number]; hence its output is the same as [findPropPos
particlepropertyl ist bonds]. If the particle does not have any bonds, -1 is returned.

10.1.4 timeStamp

Syntax

timeStamp path prefix postfix suffix

Description
Modifies the filename contained within path to be preceded by a prefix and having
postfix before the suffix ; e.g.

timeStamp ./scripts/config.gz DH863 001 gz
returns ./scripts/DH863_config001.gz. If postfix is −1, the current date is used in the
format %y%m%d. This would results in ./scripts/DH863_config021022.gz on October
22nd, 2002.

10.2 Additional Tcl math-functions

The following procedures are found in scripts/ABHmath.tcl.

• CONSTANTS

– PI

returns π with 16 digits precision.
– KBOLTZ

Returns Boltzmann constant in Joule/Kelvin
– ECHARGE

Returns elementary charge in Coulomb
– NAVOGADRO

Returns Avogadro number
– SPEEDOFLIGHT

Returns speed of light in meter/second
– EPSILON0

Returns dielectric constant of vaccum in Coulomb2̂/(Joule meter)
– ATOMICMASS

Returns the atomic mass unit u in kilogramms
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• MATHEMATICAL FUNCTIONS

– sqr <arg>

returns the square of arg .
– min <arg1> <arg2>

returns the minimum of arg1 and arg2 .
– max <arg1> <arg2>

returns the maximum of arg1 and arg2 .
– sign <arg>

returns the signum-function of arg , namely +1 for arg > 0, -1 for < 0, and
=0 otherwise.

• RANDOM FUNCTIONS

– gauss_random

returns random numbers which have a Gaussian distribution
– dist_random <dist> [max]

returns random numbers in the interval [0, 1] which have a distribution ac-
cording to the distribution function p(x) dist which has to be given as a tcl
list containing equally spaced values of p(x). If p(x) contains values larger
than 1 (default value of max) the maximum or any number larger than that
has to be given max . This routine basically takes the function p(x) and places
it into a rectangular area ([0,1],[0,max]). Then it uses to random numbers
to specify a point in this area and checks wether it resides in the area under
p(x). Attention: Since this is written in tcl it is probably not the fastest way
to do this!

– vec_random [len]

returns a random vector of length len (uniform distribution on a sphere) This
is done by chosing 3 uniformly distributed random numbers [−1, 1] If the
length of the resulting vector is <= 1.0 the vector is taken and normalized to
the desired length, otherwise the procedure is repeated until succes. On aver-
age the procedure needs 5.739 random numbers per vector. (This is probably
not the most efficient way, but it works!) Ask your favorit mathematician for
a proof!

– phivec_random <v> <phi> [len]

return a random vector at angle phi with v and length len

• PARTICLE OPERATIONS

Operations involving particle positions. The parameters pi can either denote the
particle identity (then the particle position is extracted with the The part command
command) or the particle position directly When the optional box parameter for
minimum image conventions is omited the functions use the the setmd box_l
command.
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– bond_vec <p1> <p2>

Calculate bond vector pointing from particles p2 to p1 return = (p1 .pos -
p2 .pos)

– bond_vec_min <p1> <p2> [box]

Calculate bond vector pointing from particles p2 to p1 return = MinimumImage(p1 .pos
- p2 .pos)

– bond_length <p1> <p2>

Calculate bond length between particles p1 and p2
– bond_length_min <p1> <p2> [box]

Calculate minimum image bond length between particles p1 and p2
– bond_angle <p1> <p2> <p3> [type]

Calculate bond angle between particles p1 , p2 and p3 . If type is ”r” the
return value is in radiant. If it is ”d” the return value is in degree. The
default for type is ”r”.

– bond_dihedral <p1> <p2> <p3> <p4> [type]

Calculate bond dihedral between particles p1 , p2 , p3 and p4 If type is ”r”
the return value is in radiant. If it is ”d” the return value is in degree The
default for type is ”r”.

– part_at_dist <p> <dist>

return position of a new particle at distance dist from p with random orien-
tation

– part_at_angle <p1> <p2> <phi> [len]

return position of a new particle at distance len (default=1.0) from p2 which
builds a bond angle phi for (p1 , p2 , p-new)

– part_at_dihedral <p1> <p2> <p3> <theta> [phi] [len]

return position of a new particle at distance len (default=1.0) from p3 which
builds a bond angle phi (default=random) for (p2 , p3 , p-new) and a dihedral
angle theta for (p1 , p2 , p3 , p-new)

• INTERACTION RELATED

Help functions related to interactions implemented in ESPResSo.

– calc_lj_shift <lj_sigma> <lj_cutoff>

returns the value needed to shift the Lennard Jones potential to zero at the
cutoff.

• VECTOR OPERATIONS

A vector v is a tcl list of numbers with an arbitrary length Some functions are
provided only for three dimensional vectors. corresponding functions contain 3d
at the end of the name.

– veclen <v>
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return the length of a vector
– veclensqr <v>

return the length of a vector squared
– vecadd <a> <b>

add vector a to vector b: return = (a+b)
– vecsub <a> <b>

subtract vector b from vector a: return = (a-b)
– vecscale <s> <v>

scale vector v with factor s: return = (s*v)
– vecdot_product <a> <b>

calculate dot product of vectors a and b: return = (a.b)
– veccross_product3d <a> <b>

calculate the cross product of vectors a and b: return = (a x b)
– vecnorm <v> [len]

normalize a vector to length len (default 1.0)
– unitvec <p1> <p2>

return unit vector pointing from position p1 to position p2
– orthovec3d <v> [len]

return orthogonal vector to v with length len (default 1.0) This vector does
not have a random orientation in the plane perpendicular to v

– create_dihedral_vec <v1> <v2> <theta> [phi] [len]

create last vector of a dihedral (v1 , v2 , res) with dihedral angle theta and
bond angle (v2 , res) phi and length len (default 1.0). If phi is ommited or
set to rnd then phi is assigned a random value between 0 and 2 Pi.

• TCL LIST OPERATIONS

– average <list>

Returns the avarage of the provided list
– list_add_value <list> <val>

Add val to each element of list
– flatten <list>

flattens a nested list
– list_contains <list> <val>

Checks wether list contains val . returns the number of occurences of val in
list .

• REGRESSION

– LinRegression <l>

l is a list x1 y1 x2 y2 ... of points. LinRegression returns the least-square
linear fit a*x+b and the standard errors da and db.
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– LinRegressionWithSigma <l>

l is a list x1 y1 s1 x2 y2 s2 ... of points with standard deviations. LinRegres-
sion returns the least-square linear fit a*x+b plus the standard errors da and
db, cov(a,b) and chi.

10.2.1 t_random

• Without further arguments,

t_random

returns a random double between 0 and 1 using the ’ran1’ random number gener-
ator from Numerical Recipes.

• t_random int <n>

returns a random integer between 0 and n-1.

• t_random seed

returns a tcl-list with the seeds of the random number generators on each of the
’n nodes’ nodes, while

t_random seed <seed(0)> ... <seed(n_nodes-1)>

sets those seeds to the new values respectively, re-initialising the random num-
ber generators on each node. Note that this is automatically done on invoking
Espresso, however due to that your simulation will always start with the same ran-
dom sequence on any node unless you use this tcl-command to reset the sequences’
seeds.

• Since internally the random number generators’ random sequences are not based
on mere seeds but rather on whole random number tables, to recover the exact
state of the random number generators at a given time during the simulation run
(e. g. for saving a checkpoint) requires knowledge of all these values. They can be
accessed by

t_random stat

which returns a tcl-list with all status informations for any node (e. g. 8 nodes =>
approx. 350 parameters). To overwrite those internally in Espresso (e. g. upon
restoring a checkpoint) submit the whole list back using

t_random stat <status-list>

with status − list being the tcl-list mentioned above without any braces. Be careful!
A complete recovery of the current state of the simulation is only possible if you
make sure to include a call to The invalidate system command after you saved
the checkpoint (tcl checkpoint set will do this automatically for you), because the
integration algorithm re-uses the old forces calculated in the previous time-step;
if something has changed in the system (or if it has just been read from a file)
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the forces are re-derived (including application of the thermostat and its random
numbers) leading to slightly different results compared to the uninterrupted run
(see The invalidate system command for details)!

The C implementation is t random

10.2.2 The bit_random command

• Without further arguments,

bit_random

returns a random double between 0 and 1 using the R250 generator XOR-ing a
table of 250 linear independent integers.

• bit_random seed

returns a tcl-list with the seeds of the random number generators on each of the
’n nodes’ nodes, while

bit_random seed <seed(0)> ... <seed(n_nodes-1)>

sets those seeds to the new values respectively, re-initialising the random num-
ber generators on each node. Note that this is automatically done on invoking
Espresso, however due to that your simulation will always start with the same ran-
dom sequence on any node unless you use this tcl-command to reset the sequences’
seeds.

• Since internally the random number generators’ random sequences are not based
on mere seeds but an array of 250 linear independent integers whose bits are used
as matrix elements which are XOR-ed, to recover the exact state of the random
number generators at a given time during the simulation run (e. g. for saving a
checkpoint) requires knowledge of all these values. They can be accessed by

bit_random stat

which returns a tcl-list with all status informations for any node (e. g. 8 nodes
=> approx. 2016 parameters). To overwrite those internally in Espresso (e. g.
upon restoring a checkpoint) submit the whole list back using

bit_random stat <status-list>

with ¡status-list¿ being the tcl-list mentioned above without any braces. Be careful!
A complete recovery of the current state of the simulation is only possible if you
make sure to include a call to The invalidate system command after you saved
the checkpoint (tcl checkpoint set will do this automatically for you), because the
integration algorithm re-uses the old forces calculated in the previous time-step;
if something has changed in the system (or if it has just been read from a file)
the forces are re-derived (including application of the thermostat and its random
numbers) leading to slightly different results compared to the uninterrupted run
(see The invalidate system command for details)!
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• Note further that the bit-wise display of integers, as it is used by this random
number generator, is platform dependent. As long as you stay on the same archi-
tecture this doesn’t matter at all; however, it wouldn’t be wise to use a checkpoint
including the state of the R250 to restart the simulation on a different platform
- most likely, the integers will have a different bit-muster leading to a completely
different random matrix. So, if you’re using this random number generator, always
remain on the same platform!

10.3 Checking for features of ESPResSo

In an ESPResSo-Tcl-script, you can get information whether or not one or some of the
features are compiled into the current program with help of the following Tcl-commands:

• code_info

provides information on the version, compilation status and the debug status of the
used code. It is highly recommended to store this information with your simulation
data in order to maintain the reproducibility of your results. Exemplaric output:

ESPRESSO: v1.5.Beta (Neelix), Last Change: 23.01.2004
{ Compilation status { PARTIAL_PERIODIC } { ELECTROSTATICS }
{ EXTERNAL_FORCES } { CONSTRAINTS } { TABULATED }
{ LENNARD_JONES } { BOND_ANGLE_COSINE } }
{ Debug status { MPI_CORE FORCE_CORE } }

• has_feature <feature> ...

tests, if feature is compiled into the ESPResSo kernel. A list of possible features
and their names can be found here.

• require_feature <feature> ...

tests, if feature is feature is compiled into the ESPResSo kernel, will exit the script
if it isn’t and return the error code 42. A list of possible features and their names
can be found here.
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11 External package: mbtools

mbtools1 is a set of tcl packages for setting up, analyzing and running simulations of
lipid membrane systems.

mbtools comes with a basic set of tabulated forces and potentials for lipid interactions
and some example scripts to help explain the syntax of the commands. If you make use
of mbtools or of these potentials please acknowledge us with a citation to:

* Cooke, I. R., Kremer, K. and Deserno, M. (2005): Tunable, generic model for fluid
bilayer membranes, Phys. Rev. E. 72 - 011506

11.1 Introduction

mbtools is located in the folder Espresso/packages/mbtools.
One of the main features of mbtools is the ability to easily create initial lipid config-

urations with interesting geometries. These include flat membranes, cylinders, spheres,
toroids, and randomly distributed gases. Each of these shapes is referred to as a geom-
etry and any number of geometries can be combined in a single simulation. Once the
geometry has been chosen the user specifies the molecules which should be placed in
this geometry. For example one could choose sphere as a geometry and then define two
different lipids and/or a protein to be placed on the sphere. Within reason (e.g. size
restrictions) it should be possible to use any mixture of known molecule types on any
geometry. The molecule types available at present include proteins, lipids of any length,
and spherical colloids.

mbtools includes several miscellaneous utility procedures for performing tasks such
as warmup, setting tabulated interactions, designating molecules to be trapped and a
variety of topology related sorting or data analysis functions.

The analysis part of the mbtools package is designed to wrap together all the analysis
for a simulation into a single simple interface. At the beginning of the simulation the
user specifies which analyses should be performed by appending its name and arguments
to a variable, analysis_flags. After the analysis is setup one can then simply call do_-
analysis to perform all the specified proceedures. Analysis will store a data value each
time do_analysis is called. Then when a call to print_averages is made the average
of all stored values is printed to a file and the store of values is reset to nil.

1This documentation was written by Ira R. Cooke and published on his website. It has been transcripted
by Tristan Bereau.
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11.2 Installing and getting started

Since mbtools is provided as part of the espresso molecular dynamics simulation package
you will need to download and install Espresso before you can use it. Espresso can be
downloaded free from http://www.espresso.mpg.de.

Once you have installed espresso you can find mbtools by looking inside the packages
subdirectory. Inside the packages/mbtools directory you will see a directory for each
of the mbtools subpackages as well as an examples directory. All of the examples scripts
should work out of the box except those involving colloids which require you to install
icover.sh (see documentation for hollowsphere molecule type). To run the simplebilayer
example cd to the examples directory and then type:

$ESPRESSO_SOURCE/$PLATFORM/Espresso scripts/main.tcl simplebilayer.tcl

The first part of this command is simply the full path to the appropriate espresso exe-
cutable on your machine (You might have to use Espresso_bin when running on multiple
processors). Obviously you will need to have the $ESPRESSO_SOURCE and $PLATFORM en-
vironment variables set for it to work. After this executable the relative paths to two
tcl scripts are given. The first of these main.tcl is given as an argument to espresso
and is therefore interpreted first by the espresso tcl interpreter. The second tcl script
simplebilayer.tcl is in turn passed as an argument to main.tcl.

Why separate the tcl commands into two files ?
This is really a matter of preference but if we keep all of the key commands and

complex coding in a single file main.tcl and delegate simple parameter setting to a
separate file it tends to be much easier to manage large numbers of jobs with regularly
changing requirements. Regardless of your personal preferences, the important point to
note is that all of the important commands are contained in main.tcl and you should
probably start there to get an understanding for how mbtools works.

Running the simplebilayer example should produce a directory called simplebilayer
which contains the output from your simulation. To view the results cd to the simplebi-
layer directory and look at the contents. The directory contains many files including:

• The configurations generated during warmup : warm.∗.gz

• pdb files corresponding to warmup configurations : warm.vmd∗.gz

• The configurations generated during the main run : simplebilayer.∗.gz

• pdb files corresponding to main run configs : simplebilayer.vmd∗.gz

• The most recently generated checkpoint file : checkpoint.latest.gz

• A directory containing the second most recent checkpoint file : checkpoint_bak

• A file containing the topology of the system : simplebilayer.top

• The original parameter file with which you ran the simulation : simplebilayer.tcl

110



• A original parameter file with which you ran the simulation : simplebilayer.tcl

• Files containing analysis output for example : time_vs_boxl_tmp

• Force and energy tables : ∗.tab

• VMD script for visualising the warmup : warm_animation.script

• VMD script for visualising the main trajectory : vmd_animation.script

To visualise your results using the vmd scripts you need to make sure that you have
vmd installed properly and that you have the special vmd procedures used by the espresso
team (i.e. support for the loadseries command). Then you can visualise by typing:

vmd -e vmd_animation.script

11.3 The main.tcl script

The main.tcl file provided in the examples/scripts directory is a relatively complete
script written using mbtools. It is designed to run all of the examples provided but no
more. No doubt you will need to extend it for your own purposes.

11.3.1 Variables used by main.tcl

main.tcl expects the user to set various parameters in a parameters.tcl file (e.g.
simplebilayer.tcl). Some of these parameters have defaults and generally don’t need
to be worried about except for specific cases. In the following list variables that have no
default and therefore must be set in the parameter file are noted with an asterisk.

• thermo [Langevin] The type of thermostat to be used. Set to DPD for a dpd
thermostat. Any other value gives a langevin

• dpd gamma Required if you set the thermo to DPD

• dpd r cut Required if you set the thermo to DPD

• warmup temp [$systemtemp] The temperature at which the warmup is performed.
The default behaviour is to use the system temperature

• warmsteps [100] Number of integrate steps per warmup cycle

• warmtimes [20] Number of calls to integrate over which the warmup occurs

• free warmsteps [0] Warmup steps to be used for the warmup that occurs after
particles are freed of any temporary constraints.

• free warmtimes [0] Warmup times to be used for the warmup that occurs after
particles are freed of any temporary constraints.
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• npt [off ] Whether to use the constant pressure barostat

• p ext The pressure you want to simulate at. Required if npt is set to on

• piston mass box mass. Required if npt is set to ”on”

• gamma 0 Required if npt is on. Usually set to 1 as for langevin gamma

• gamma v Required if npt is on. Box friction

• use vmd [offline] vmd mode

• mgrid [8] The number of meshpoints per side for dividing the bilayer plane into a
grid

• stray cut off [1000.0] Distance of the end tail bead from the bilayer midplane
beyond which a lipid is deemed to have strayed from the membrane bulk.

• ∗systemtemp The temperature of the simulation during the main run

• ∗outputdir Directory for output

• ∗tabledir Directory where forcetables are kept

• ∗ident a name for the simulation

• ∗topofile the name of the file where the topology is written. Usually $ident.top

• ∗tablenames A list of forcetable names to be used

• ∗setbox l Box dimensions

• ∗bonded parms A complete list of the bonded interactions required

• ∗nb interactions A complete list of the non-bonded interactions required

• ∗system specs A list of system specifications (see documentation for the setup_-
system command in 11.5)

• ∗moltypes A list of molecule types (see documentation in 11.5)

• ∗warm time step timestep to be used during warmup integration

• ∗main time step timestep for the main integration run

• ∗verlet skin skin used for verlet nesting list criterion

• ∗langevin gamma langevin friction term

• ∗int n times number of times to do main integration

• ∗int steps number of steps in each main integration
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• ∗analysis write frequency How often to calculate the analysis

• ∗write frequency How often to print out configurations

• vmdcommands a list of additional lines of commands to be written to the vmd_-
animation.script file

11.4 Analysis

The analysis package is designed to help organise the many possible analysis routines
that can be performed during a simulation. This documentation describes the basic user
interface commands and then all of the possible analysis routines. Instructions on how
to add a new analysis routine are given at the end of this section.

11.4.1 Basic commands

The following commands comprise the user interface to the analysis package.
At the start of a simulation all of the analysis that is to be performed is specified

using the setup_analysis command. Each time you want the analysis performed a call
to do_analysis should be made. One can then call print_averages to write results to
file.

::mbtools::analysis::setup_analysis : -outputdir.arg -suffix.arg
-iotype.arg -g.arg -str.arg

• commands [./] A tcl list where each element of the list is a string specifying the
name and complete argument list for a particular analysis to be carried out.

• outputdir [./] The directory where analysis output files will be created

• suffix [tmp] Suffix that will be appended to standard file names for analysis output

• iotype [a] The iotype that will be used when opening files for analysis. For an
explanation of the different iotypes see the documentation for the standard tcl
command open

• g [8] Number of grid points per side with which to divide the bilayer for height
profile analyses

• str [4.0] Distance of a tail bead from bilayer midplane beyond which a lipid is
deemed to be a stray lipid.

Sets up the analysis package for a simulation run or analysis run that is about to be
performed. This routine needs to be called before any analysis can be performed.

::mbtools::analysis::do_analysis :
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Calls all of the analyze routines corresponding to commands setup in setup_analysis.
do_analysis should be called only after setup_analysis has already been called.

::mbtools::analysis::reset_averages :

Calls all of the resetav routines corresponding to commands setup in setup_analysis.
These routines vary from command to command but they typically reset the storage
and counter variables used for analysis results. reset_averages is typically only called
internally by print_averages

::mbtools::analysis::print_averages :

Calls all of the printav routines corresponding to commands setup in setup_analysis.
These routines typically print results to a file buffer. After printing the reset_averages
routine is called internally. print_averages should be called only after setup_analysis
has already been called.

11.4.2 Available analysis routines

boxl : -verbose : output || time_vs_boxl

Simply obtains the box dimensions from ESPResSo.

clusters : -alipid.arg -verbose : output || time_vs_clust,
sizehisto.[format %05d $time]

• alipid [1.29] Value for the area per lipid to be used in a making a rough calculation
of the area of clusters

Calls the espresso command analyze aggregation which groups molecules in the sys-
tem into aggregates. Output to time_vs_clust is: maximum cluster size, minimum
cluster size, average size of clusters including those of size 2 or greater, standard de-
viation of clusters including those of size 2 or greater, number of clusters of size 2 or
greater, total average cluster size, total cluster size standard deviation, total number
of clusters, length of the interface between clusters, standard deviation of the interface
length, number of clusters for which length was calculate.

Additionally, at each call of print_averages the complete size histogram is printed
to a file with the formatted name sizehisto.[format %05d $time].

density_profile : -nbins.arg -hrange.arg -beadtypes.arg
-colloidmoltypes.arg -r.arg -nogrid
-verbose : output || av_zprof

• nbins [100] Number of slices into which the height range is divided for the purpose
of calculating densities
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• hrange [6] The maximum vertical distance from the bilayer midplane for which to
calculate densities. Note that the complete vertical range is therefore 2*varhrange

• beadtypes [0] A tcl list of the bead types for which to calculate a density profile

• colloidmoltypes [] A tcl list of molecule types identifying the molecules which are
colloids in the system. The default value is a null list

• r [0] A tcl list of sphere radii corresponding to the radii for each colloid type in the
system. If this is non-zero the density profile will be calculated in spherical shells
about the colloids in the system identified via colloidmoltypes or if colloidmoltypes
is not set then the system center of mass is assumed for the colloid/vesicle center

• nogrid If this is set a grid mesh will not be used to refine the density profile
calculation by taking into account vertical differences between mesh points

Calculates the number density of each of the beadtypes given in beadtypes as a function
of the vertical distance from the bilayer midplane. Lipids are also sorted according to
their orientation and assigned to upper or lower leaflets accordingly. Thus for a system
with 3 beadtypes we would obtain 6 columns of output corresponding to 0 (lower) 1
(lower) 2 (lower) 2 (upper) 1 (upper) 0 (upper) where the number refers to the bead
type and upper or lower refers to the bilayer leaflet.

energy : -verbose : output || time_vs_energy

Obtains the internal energies of the system from the analyze energy command of
ESPResSo.

flipflop : -verbose : output || time_vs_flip

Makes a call to the analyze get_lipid_orients command of ESPResSo and compares
this with a reference set of lipid orients obtained at the start of the simulation with
setup_analysis. Based on this comparison the number of lipids which have flipped
from their original positions is calculated

fluctuations : -verbose : output || powav.dat

Routine for calculating the power spectrum of height and thickness fluctuations for a flat
bilayer sheet. Uses the modes_2d routine in ESPResSo to calculate the height and thick-
ness functions and perform the fft. See the documentation in the file fluctuations.tcl
for detail on what is calculated and how to obtain a stiffness value from the resulting
output. Note that this routine causes a crash if it detects a large hole in the bilayer.

localheights : -range.arg -nbins.arg -rcatch.arg -verbose :
output || av_localh

• range [1.0] Range of local height deviations over which to bin
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• nbins [100] Number of slices to divide up the height range into for the purposes of
creating a profile

• rcatch [1.9] The distance about a single lipid to use a starting value for finding the
6 closest neighbours

For each lipid we calculate its 6 nearest neighbours and then calculate the height differ-
ence between the central lipid and these neighbours. Taking these 6 values for each lipid
we then create a histogram of number densities as a function of the height difference.

localorients : -range.arg -nbins.arg -verbose : output || av_localo

• range [1.0] Range of orientation deviations to consider

• nbins [100] Number of bins to use for histogram

Calculates the projection of the lipid orientation vector onto the xy plane for each lipid
and then bins the absolute values of these vectors.

orient_order : -verbose : output || time_vs_oop

Calculates the orientational order parameter S for each lipid through a call to the
espresso command analyze lipid_orient_order.

stress_tensor : -verbose : output || time_vs_stress_tensor

Calculates all 9 elements of the pressure tensor for the system through a call to the
espresso command analyze stress_tensor

pressure : -verbose : output || time_vs_pressure

Calculates the isotropic pressure through a call to analyze pressure. Results are
printed as a list of the various contributions in the following order: p inst , total , ideal ,
FENE , harmonic, nonbonded . Where p inst is the instantaneous pressure obtained
directly from the barostat.

stray : -verbose : output || time_vs_stray

Calculates the number of stray lipids based on a call to analyze get_lipid_orients.

11.4.3 Adding a new routine

To add a new analysis routine you should create a new file called myanalysis.tcl which
will contain all of your code. At the top of this file you should declare a namespace for
your analysis code and include all of the internal variables inside that namespace as
follows;
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namespace eval ::mbtools::analysis::myanalysis {
variable av_myresult
variable av_myresult_i
variable f_tvsresult
variable verbose

namespace export setup_myanalysis
namespace export analyze_myanalysis
namespace export printav_myanalysis
namespace export resetav_myanalisis

}

Import your new file into the analysis package by adding a line like the following to
the analysis.tcl file.

source [file join [file dirname [info script]] myanalysis.tcl]

You then need to implement the following essential functions within your new names-
pace.

• ::mbtools::analysis::myanalysis::setup_myanalysis { args }
Typically you would use this function to initialise variables and open files.

Called by ::mbtools::analysis::setup_analysis. Arguments are allowed.

• ::mbtools::analysis::myanalysis::printav_myanalysis { void }
This function should print results to a file.

Called by ::mbtools::analysis::print_averages. Arguments are not allowed.

• ::mbtools::analysis::myanalysis::analyze_myanalysis { void }
This function performs the actual analysis and should update the storage and
averaging variables. Called by ::mbtools::analysis::do_analysis. Arguments
are not allowed.

• ::mbtools::analysis::myanalysis::resetav_myanalysis { void }
This function should update averages and reset variables accordingly depending
on your requirements.

Called by ::mbtools::analysis::reset_averages. Arguments are not allowed.

If any of these functions is not implemented the program will probably crash.

11.5 System generation

Package for setting up lipid membrane systems in a variety of geometrical shapes.
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11.5.1 Basic commands

::mbtools::system_generation::setup_system : [system_specs]
[iboxl] [moltypes]

• system_specs This is a list of structures called system specifications. Each such
system specification in turn should be a list consisting of a geometry and a list
detailing the number of each molecule type i.e.

set system_spec { geometry n_molslist }

The geometry should be specified as a list with two elements. The first element
should be a string “geometry” identifying this list as a geometry. The second
element is a string containing the name of a geometry type mygeometry followed
by arguments to be passed to the routine create_mygeometry.

The n molslist should be specified as a list with two elements. The first element
should be a string “n molslist” identifying this list as an n molslist. The second
element is a list each element of which specifies a molecule type and the number
of such molecules.

• boxl A list containing the lengths of each of the box side lengths.

• moltypes A list, each element of which specifies a molecule type and type informa-
tion. The exact format and requirements of this list are detailed for each molecule
separately (see below for a list of molecule types and their requirements) however
regardless of mol type the first two elements of the list must be a moltypeid and a
string specifying the moltype respectively.

Sets up the system including generating topologies and placing molecules into specified
geometries. Each geometry and list of molecules to be placed into that geometry are
grouped into a system spec.

Example:
The following code sets out the molecule types to be used in the simulation by setting

a list called moltypes. In this case two different lipid types are setup and assigned to
moltypeids 0 and 1 respectively. Moltype 0 will consist of three beads per lipid, the
first of which is of atomtype 0 and the second and third of which are of atomtype 1.
Bonds in the lipid will be of type 0 and 1 respectively.(see the ::mbtools::system_-
generation::place_lipid_linear function for further details).

set moltypes [list { 0 lipid { 0 1 1 } { 0 1 } }
{ 1 lipid { 0 2 2 2 } { 0 2 } } ]

We then construct system specs for a flat bilayer and a spherical bilayer and group
these into a system specs list.

First the spherical system specs
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set geometry { geometry "sphere -shuffle -c { 0.0 0.0 15.0 } " }
set n_molslist { n_molslist { { 0 1000 } } }
lappend spherespec $geometry
lappend spherespec $n_molslist

The flat system spec

set geometry { geometry "flat -fixz" }
set n_molslist { n_molslist { { 1 3000 } } }
lappend bilayerspec $geometry
lappend bilayerspec $n_molslist

Now group together the systemspecs into a master list

lappend system_specs $spherespec
lappend system_specs $bilayerspec

Make the call to setup_system

::mbtools::system_generation::setup_system $system_specs
[setmd box_l] $moltypes

::mbtools::system_generation::get_trappedmols :

returns the internal list variable trappedmols which keeps track of all molecules that have
been trapped by their center of mass. This function should be called after setup and
would then typically be passed to the function ::mbtools::utils:trap_mols.

::mbtools::system_generation::get_userfixedparts :

returns the internal list variable userfixedparts which keeps track of all particles that
have been fixed in position during the setup. This is useful for later releasing particles
after warmup routines have been completed.

::mbtools::system_generation::get_middlebead :

returns the internal variable middlebead .

11.5.2 Available geometries

flat : -fixz -bondl.arg -crystal -half

• fixz Fix the vertical positions of all particles. The ids of these particles are
added to the list of userfixedparts which can later be obtained through a call
to ::mbtools::system_generation::get_userfixedparts.

• crystal Sets lipids on a grid, instead of randomly.
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• half Creates a halfbilayer (i.e. periodic only along one direction). Useful to mea-
sure a line tension.

Creates a flat bilayer in the XY plane by random placement of lipids.

sphere : -c.arg -initarea.arg -bondl.arg -shuffle

• c [{0.0 0.0 0.0}] The location of the center of the sphere relative to the center
of the box

• initarea [1.29] An initial guess for the area per lipid. This guess is used to compute
initial sphere dimensions based on the number of lipids. This initial guess is then
iteratively refined until all lipids can be fit uniformly on the sphere.

• shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because the lipids will be placed on the sphere in the order they
appear in the topology

Creates a spherical vesicle by placing molecules in an ordered manner at uniform density
on the surface of the sphere. Molecules are assumed to have a uniform cross sectional
area and closely matched (though not identical) lengths. The radius of the vesicle will
depend on the number of lipids and the area per lipid.

torus : -c.arg -initarea.arg -ratio.arg -bondl.arg -shuffle

• c [{0.0 0.0 0.0}] The location of the center of the torus relative to the center of
the box.

• initarea [1.29] An initial guess for the area per lipid. This guess is used to compute
initial radii based on the number of lipids. This initial guess is then iteratively
refined until all lipids can be fit uniformly on the torus.

• ratio [1.4142] Ratio of major toroidal radius to minor toroidal radius. Default
value is for the Clifford torus.

• shuffle shuffle the topology prior to placing the lipids. This is required for a random
lipid distribution because the lipids will be placed on the torus in the order they
appear in the topology.

Creates a toroidal vesicle by placing molecules in an ordered manner at uniform density
on the surface of the torus. Molecules are assumed to have a uniform cross sectional
area and closely matched (though not identical) lengths. The two radii of the torus will
depend on the number of lipids, the area per lipid and the ratio between radii.

cylinder : -c.arg -initarea.arg -bondl.arg -shuffle

• c [0.0 0.0 0.0]
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• initarea [1.29]

• shuffle shuffle the topology prior to placing the lipids.

Creates a cylinder which spans the box along one dimension by placing molecules uni-
formly on its surface. Works in a similar way to the sphere routine.

random : -exclude.arg -shuffle -bondl.arg

• exclude.arg [] an exclusion zone definition suitable for passing to

::mbtools::utils::isoutside.

• shuffle shuffle the topology prior to placing the lipids.

Places molecules randomly in space with a (sortof) random orientation vector. If an
exclusion zone is defined no molecules will be placed such that their centers of mass are
within the zone.

readfile : -ignore.arg -f.arg -t.arg

• ignore.arg [] particle properties to be ignored during the file read.

• f .arg [] The file containing the configuration to be used for setup. Must be an
espresso blockfile with box length, particle and bonding information.

• t .arg [] The topology file corresponding to the file to be read.

• tol .arg [0.000001] Tolerance for comparison of box dimensions.

Use particle positions contained in a file to initialise the locations of particles for a
particular geometry. The box dimensions in the file and those set by the user are
compared and an error is returned if they are not the same to within a tolerance value
of tol . Even though we read from a file we also generate a topology from the nmolslist
and this topology is compared with the topology that is read in to check if the number
of particles are the same.

singlemol : -c.arg -o.arg -trapflag.arg -ctrap.arg
-trapspring.arg -bondl.arg

• c.arg [ 0.0 0.0 0.0 ] The molecule center. Exactly what this means depends on
the molecule type.

• o.arg [ 0.0 0.0 1.0 ] The orientation vector for the molecule. This is also molecule
type dependent

• trapflag .arg [ 0 0 0 ] Set this optional argument to cause a molecule to be trapped
by its center of mass. You should give three integers corresponding to each of the
three coordinate axes. If a value of 1 is given then motion in that axis is trapped.
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• ctrap.arg [ ”” ] Set this optional argument to the central point of the trap. This
works much like an optical trap in that molecules will be attracted to this point
via a simple harmonic spring force

• trapspring .arg [ 20 ] The spring constant for the trap potential (harmonic spring).

Simply place a single molecule at the desired position with the desired orientation.

11.5.3 Adding a new geometry

To create a routine for setting up a system with a new type of geometry mygeom. Start
by creating a new file mygeom.tcl inside the system_generation directory. The new file
should declare a new namespace mygeom as a sub namespace of ::mbtools::system_-
generation and export the proceedure create_mygeom. Thus your mygeom.tcl file
should begin with the lines

namespace eval ::mbtools::system_generation::mygeom {
namespace export create_mygeom

}

Import your new file into the system_generation package by adding a line like the
following to the system_generation.tcl file

source [file join [file dirname [info script]] mygeom.tcl]

You then need to implement the create_mygeom proceedure within your new names-
pace as follows

::mbtools::system_generation::mygeom::create_mygeom args

11.5.4 Available molecule types

lipid : typeinfo : { moltypeid "lipid" particletypelist
bondtypelist }

• particletypelist A list of the particle types for each atom in the lipid. The particles
are placed in the order in which they appear in this list.

• bondtypelist A list of two bondtypeids. The first id is used for bonds between
consecutive beads in the lipid. The second bondtypeid defines the pseudo bending
potential which is a two body bond acting across beads separated by exactly one
bead.

Places atoms in a line to create a lipid molecule.

hollowsphere : typeinfo : { moltypeid "hollowsphere"
sphereparticlelist bondtype natomsfill }
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• sphereparticlelist A list of the particle types for each atom in the hollowsphere.
The atoms that make up the outer shell must be listed first followed by the atoms
that make up the inner filling.

• bondtype The typeid for bonds linking atoms in the outer shell.

• natomsfill Number of filler atoms. The atom types for these will be obtained from
the last natomsfill in the sphereparticlelist .

Creates a sphere of beads arranged such that they have an approximate spacing of bondl
and such that they optimally cover the sphere. The optimal covering is obtained using
the icover routines which are copyright R. H. Hardin, N. J. A. Sloane and W. D. Smith,
1994, 2000. Thus the routine will only work if you have installed icover and if you can
successfully run it from the command line in the directory that you started your espresso
job. These routines are serious overkill so if anybody can think of a nice simple algorithm
for generating a covering of the sphere let us know.

protein : typeinfo : { moltypeid "protein" particletypelist
bondtypelist }

• particletypelist A list of the particle types for each atom in the protein.

• bondtypelist A list of bondtypeids.

Create a protein molecule.

spanlipid : typeinfo : { moltypeid "protein" particletypelist
bondtypelist }

• particletypelist A list of the particle types for each atom in the lipid. Since this
is a spanning lipid the first and last elements of this list would typically be head
beads.

• bondtypelist A list of two bondtypeids with the same meaning as explained above
for standard lipids.

Create a lipid which spans across the bilayer.

11.5.5 Adding a new molecule type

To add a new molecule type you need to define a proceedure which determines how the
atoms that make up the molecule should be placed. This proc will live directly in the
::mbtools::system_generation namespace. Examples can be found in place.tcl.

In order to register your new molecule type to allow placement in any geometry you
need to add a call to it in the function ::mbtools::system_generation::placemol.
Make sure that all arguments to your place_mymolecule routine are included in this
function call.
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11.6 Utils

Useful utilities routines for various types. Includes file management, basic geometry and
math procedures.

11.6.1 Setup commands

::mbtools::utils::setup_outputdir : [outputdir] -paramsfile.arg
-tabdir.arg -tabnames.arg -startf.arg -ntabs.arg

• outputdir Complete path of the directory to be setup. At least the parent of the
directory must exist

• paramfile [] Name of a file to be copied to the output directory

• tabdir [] Full path name of the directory where forcetables are kept

• tabnames [] Complete list of forcetables to be used in the simulation. These will
be copied to the output directory

This routine is designed to setup a directory for simulation output. It copies forcetables
and the parameter file to the directory after creating it if necessary.

::mbtools::utils::read_startfile : [file]

• file Complete path of the file to be read. Should be an espresso blockfile.

Read in particle configuration from an existing file or simulation snapshot

::mbtools::utils::read_checkpoint : [dir]

• dir Directory containing the checkpoint file which must be called checkpoint.latest.gz.

Read in a checkpoint and check for success. Warn if the checkpoint does not exist.

::mbtools::utils::read_topology : [file]

• file Complete path of the file that contains the topology information.

Read in the topology from a file and then execute the analyze set "topo_part_sync"
command of ESPResSo.

::mbtools::utils::set_topology : [topo]

• topo A valid topology.

Set the given topology and then execute the analyze set "topo_part_sync" command
of ESPResSo.
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::mbtools::utils::set_bonded_interactions : [bonded_parms]

• bondedparms A list of bonded interactions. Each element of this list should contain
all the appropriate arguments in their correct order for a particular call to the
espresso inter command. See the espresso inter command for a list of possible
bonded interactions and correct syntax.

Set all the bonded interactions.

::mbtools::utils::set_nb_interactions : [nb_parms]

• nb parms A list of interactions. Each element of this list should contain all the
appropriate arguments in their correct order for a particular call to the espresso
inter command. See the espresso inter command for a list of possible non-bonded
interactions and correct syntax.

Set all the bonded interactions.

::mbtools::utils::init_random : [n_procs]

• n procs The number of processors used in this job.

Initialize the random number generators on each processor based on the current time
with a fixed increment to the time seed used for each proc.

::mbtools::utils::initialize_vmd : [flag] [outputdir]
[ident] -extracommands.arg

• flag Depending on the value of this parameter initialize vmd to one of its possible
states:

– interactive : VMD is started and a connection to espresso established for
immediate viewing of the current espresso process. With some luck this might
even work sometimes! If VMD doesn’t get a proper connection to espresso
then it will crash.

– offline : Just constructs the appropriate psf and vmd_animation.script
files and writes them to the output directory so that pdb files generated with
writepdb can be viewed with vmd -e vmd_animation.script.

– default : Any value other than those above for flag will just result in vmd not
being initialized.

• outputdir The directory where vmd output will be written.

• ident A basename to be be given to vmd files.

• extracommands [] A list of strings each of which will be written to the end of the
vmd_animationscript. Use this to give additional commands to vmd.

Prepare for vmd output.
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11.6.2 Warmup commands

::mbtools::utils::warmup : [steps] [times] -mindist.arg
-cfgs.arg -outputdir.arg -vmdflag.arg -startcap.arg
-capgoal.arg

• steps number of integration steps used in each call to integrate.

• times number of times to call the integrate function during warmup.

• mindist [0] Terminate the warmup when the minimum particle distance is greater
than this criterion. A value of 0 (default) results in this condition being ignored.
If a condition is imposed this routine can become very very slow for large systems.

• cfgs [-1] Write out a configuration file every cfgs calls to integrate.

• outputdir [./] The directory for writing output.

• vmdflag [offline] If this flag is set to ”offline” (default) pdb files will be generated
for each configuration file generated.

• startcap [5] Starting value for the forcecap.

• capgoal [1000] For the purposes of calculating a cap increment this value is used
as a goal. The final forcecap will have this value.

Perform a series of integration steps while increasing forcecaps from an initially small
value.

11.6.3 Topology procs

::mbtools::utils::maxpartid : [topo]

• topo A valid topology.

Find the maximum particle id in a given topology.

::mbtools::utils::maxmoltypeid : [topo]

• topo A valid topology.

Find the maximum molecule type id.

::mbtools::utils::listnmols : [topo]

• topo A valid topology.

Construct a list with the number of molecules of each molecule type.

::mbtools::utils::minpartid : [topo]
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• topo A valid topology.

Minimum particle id for the given topology.

::mbtools::utils::minmoltype : [topo]

• topo A valid topology/

Minimum molecule type id for this topology.

::mbtools::utils::listmoltypes : [topo]

• topo A valid topology.

Make a list of all the molecule types in a topology. Makes a check for duplication which
would occur for an unsorted topology.

::mbtools::utils::listmollengths : [topo]

• topo A valid topology.

Works out the length (number of atoms) of each molecule type and returns a list of these
lengths.

11.6.4 Math procs

::mbtools::utils::dot_product : A B

Returns A dot B

::mbtools::utils::matrix_vec_multiply : A B

Return the product of a matrix A with a vector B

::mbtools::utils::calc_proportions : ilist

Calculate the number of times each integer occurs in the list ilist.

::mbtools::utils::average : data from to

• data A list of numbers to be averaged

• from Optional starting index in data

• to Optional ending index in data

Calculate the mean of a list of numbers starting from from going up to to.

::mbtools::utils::stdev : data from to
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• data A list of numbers to find the std deviation of

• from Optional starting index in data

• to Optional ending index in data

Calculate the standard deviation of a list of numbers starting from from going up to to.

::mbtools::utils::acorr : data

• data Data for which an autocorrelation is to be calculated

Calculate an autocorrelation function on a set of data.

::mbtools::utils::distance : pos1 pos2

• pos1 A position vector

• pos2 A position vector

Calculate the distance between two points whose position vectors are given.

::mbtools::utils::normalize : vec

• vec The vector to be normalised

Normalize a vector

::mbtools::utils::scalevec : vec scale

• vec The vector to be scaled

• scale Scaling factor

Multiply all elements of a vector by a scaling factor

::mbtools::utils::uniquelist : original

• original A list possibly containing duplicate elements

Construct a list of all the unique elements in the original list removing all duplication.
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11.6.5 Miscellaneous procs

::mbtools::utils::trap_mols : molstotrap

• molstotrap A list of trap values for molecules. This list would typically be obtained
by calling ::mbtools::get_trappedmols immediately after the system has been
setup.

Set the trap value for a list of molecules.

::mbtools::utils::isoutside : [pos] [zone]

• pos The point whose status is to be determined

• zone An exclusion zone. This will be a tcl list. The first element of the list must
be a string with the name of the exclusion zone type and subsequent elements will
be further information about the exclusion zone. Available zones are:

– sphere : center zone

Determines whether the point at pos is outside the exclusion zone. Returns 1 if it is and
0 if it is not.

::mbtools::utils::calc_com : mol

• mol The molecule

Calculate the center of mass of a molecule.

::mbtools::utils::centersofmass_bymoltype : [moltypes]

• moltypes A list of molecule type ids

Determine the center of mass of every molecule whose type matches an item in the list
moltypes. Returns a nested list where each element in the list is itself a list of centers
of mass for a given moltype.

11.7 mmsg

mmsg is designed to provide a more controlled way of printing messages than the simple
puts commands of Tcl. It has an ability to turn on or off messages from particular
namespaces.
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11.7.1 Basic commands

The following commands represent the standard interface for the mmsg package. For
consistency one should use these instead of a bare puts to standard out. mbtools makes
extensive use of these commands.

::mmsg::send : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

The mmsg equivalent of puts. Designed for printing of simple status or progress mes-
sages.

::mmsg::err : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints error messages and causes program to exit.

::mmsg::warn : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints warning messages.

::mmsg::debug : [namespace] [string] { [newline] }

• namespace A namespace. Typically this should be the current namespace which
one can get via namespace current

• string The message you want printed

• newline [yes] Set this to anything other than ”yes” and no carriage return will be
used after the message

Prints debug messages.
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11.7.2 Control commands

mmsg does several checks before it decides to print a message. For any given message
type it checks if that message type is allowed. It also checks to see if the namespace
given as an argument is in the allowable namespaces list. The default behaviour is to
print from the main mbtools namespaces and the global namespace

{ :: ::mbtools::system_generation ::mbtools::utils ::mbtools::analysis }

Note that children of these namespaces must be explicitly enabled. All message types
except debug are also enabled by default. The following commands allow this default
behaviour to be changed.

::mmsg::setnamespaces : namespacelist

• namespacelist A list of all namespaces from which messages are to be printed

Allows control over which namespaces messages can be printed from.

::mmsg::enable : type

• type A string indicating a single message type to enable. Allowable values are
”err”, ”debug”, ”send” and ”warn”

Allows particular message types to be enabled: For example one could enable debug
output with

mmsg::enable "debug"

::mmsg::disable : type

• type A string indicating a single message type to disable. Allowable values are
”err”, ”debug”, ”send” and ”warn”

Allows particular message types to be disabled: For example one could disable warning
output with

mmsg::enable "warn"
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12 Under the hood

• Implementation issues that are interesting for the user

• Main loop in pseudo code (for comparison)

12.1 Internal particle organization

Since basically all major parts of the main MD integration have to access the particle
data, efficient access to the particle data is crucial for a fast MD code. Therefore the
particle data needs some more elaborate organisation, which will be presented here. A
particle itself is represented by a structure (Particle) consisting of several substructures
(e. g. ParticlePosition, ParticleForce or ParticleProperties), which in turn represent
basic physical properties such as position, force or charge. The particles are organised
in one or more particle lists on each node, called Cell cells. The cells are arranged by
several possible systems, the cellsystems as described above. A cell system defines a way
the particles are stored in ESPResSo, i. e. how they are distributed onto the processor
nodes and how they are organised on each of them. Moreover a cell system also defines
procedures to efficiently calculate the force, energy and pressure for the short ranged
interactions, since these can be heavily optimised depending on the cell system. For
example, the domain decomposition cellsystem allows an order N interactions evaluation.

Technically, a cell is organised as a dynamically growing array, not as a list. This
ensures that the data of all particles in a cell is stored contiguously in the memory.
The particle data is accessed transparently through a set of methods common to all cell
systems, which allocate the cells, add new particles, retrieve particle information and
are responsible for communicating the particle data between the nodes. Therefore most
portions of the code can access the particle data safely without direct knowledge of the
currently used cell system. Only the force, energy and pressure loops are implemented
separately for each cell model as explained above.

The domain decomposition or link cell algorithm is implemented in ESPResSo such
that the cells equal the ESPResSo cells, i. e. each cell is a separate particle list. For an
example let us assume that the simulation box has size 20×20×20 and that we assign 2
processors to the simulation. Then each processor is responsible for the particles inside
a 10 × 20 × 20 box. If the maximal interaction range is 1.2, the minimal possible cell
size is 1.25 for 8 cells along the first coordinate, allowing for a small skin of 0.05. If one
chooses only 6 boxes in the first coordinate, the skin depth increases to 0.467. In this
example we assume that the number of cells in the first coordinate was chosen to be 6
and that the cells are cubic. ESPResSo would then organise the cells on each node in
a 6 × 12 × 12 cell grid embedded at the centre of a 8 × 14 × 14 grid. The additional
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cells around the cells containing the particles represent the ghost shell in which the
information of the ghost particles from the neighbouring nodes is stored. Therefore the
particle information stored on each node resides in 1568 particle lists of which 864 cells
contain particles assigned to the node, the rest contain information of particles from
other nodes.a

Classically, the link cell algorithm is implemented differently. Instead of having sep-
arate particle lists for each cell, there is only one particle list per node, and a the cells
actually only contain pointers into this particle list. This has the advantage that when
particles are moved from one cell to another on the same processor, only the pointers have
to be updated, which is much less data (4 rsp. 8 bytes) than the full particle structure
(around 192 bytes, depending on the features compiled in). The data storage scheme
of ESPResSo however requires to always move the full particle data. Nevertheless, from
our experience, the second approach is 2-3 times faster than the classical one.

To understand this, one has to know a little bit about the architecture of modern
computers. Most modern processors have a clock frequency above 1GHz and are able
to execute nearly one instruction per clock tick. In contrast to this, the memory runs
at a clock speed around 200MHz. Modern double data rate (DDR) RAM transfers up
to 3.2GB/s at this clock speed (at each edge of the clock signal 8 bytes are transferred).
But in addition to the data transfer speed, DDR RAM has some latency for fetching the
data, which can be up to 50ns in the worst case. Memory is organised internally in pages
or rows of typically 8KB size. The full 2 × 200 MHz data rate can only be achieved if
the access is within the same memory page (page hit), otherwise some latency has to be
added (page miss). The actual latency depends on some other aspects of the memory
organisation which will not be discussed here, but the penalty is at least 10ns, resulting in
an effective memory transfer rate of only 800MB/s. To remedy this, modern processors
have a small amount of low latency memory directly attached to the processor, the cache.

The processor cache is organised in different levels. The level 1 (L1) cache is built
directly into the processor core, has no latency and delivers the data immediately on
demand, but has only a small size of around 128KB. This is important since modern
processors can issue several simple operations such as additions simultaneously. The
L2 cache is larger, typically around 1MB, but is located outside the processor core and
delivers data at the processor clock rate or some fraction of it.

In a typical implementation of the link cell scheme the order of the particles is fairly
random, determined e. g. by the order in which the particles are set up or have been
communicated across the processor boundaries. The force loop therefore accesses the
particle array in arbitrary order, resulting in a lot of unfavourable page misses. In the
memory organisation of ESPResSo, the particles are accessed in a virtually linear order.
Because the force calculation goes through the cells in a linear fashion, all accesses to a
single cell occur close in time, for the force calculation of the cell itself as well as for its
neighbours. Using the domain decomposition cell scheme, two cell layers have to be kept
in the processor cache. For 10000 particles and a typical cell grid size of 20, these two
cell layers consume roughly 200 KBytes, which nearly fits into the L2 cache. Therefore
every cell has to be read from the main memory only once per force calculation.
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13 Getting involved

• What to do when you want to become involved

• How to submit a bug report

• Reference to developer’s guide
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A ESPResSo quick reference

part pid [pos x y z ] [type typeid ] [v vx vy vz ] [f fx fy fz ]
[bond bondid pid2 ...] [q charge] 1 [quat q1 q2 q3 q4 ] 2

[omega x y z ] 2 [torque x y z ] 2

[[un]fix x y z ] 3 [ext_force x y z ] 3 [exclude pid2...] 4

[exclude delete pid2...] 4 [mass mass] 5 [dipm moment ] 6

[dip dx dy dz ] 6

Required features: 1 ELECTROSTATICS 2 ROTATION 3 EXTERNAL_FORCES 4 EXCLUSION
5 MASS 6 DIPOLES

25

part pid print [( id | pos | type | folded_position | type | q | v | f |
fix | ext_force | bond | connections [range] )]...

part

26

part pid delete
part deleteall

27

part auto_exclusions [range]
part delete_exclusions

27

polymer num polymers monomers per chain bond length
[start pid ] [pos x y z ] [mode ( RW | SAW | PSAW ) [shield [trymax]]]
[charge q ] 1 [distance dcharged] 1 [types typeidneutral [typeidcharged]]
[bond bondid ] [angle φ [θ [x y z ]]] [constraints] 2

Required features: 1 ELECTROSTATICS 2 CONSTRAINTS

28

counterions N [start pid ] [mode ( SAW | RW ) [shield [trymax ]]]
[charge val ] 1 [type typeid ]

Required features: 1 ELECTROSTATICS

30

salt N+ N− [start pid ] [mode ( SAW | RW ) [shield [trymax]]]
[charges val+ [val−]] 1 [types typeid+ [typeid−]] [rad r ]

Required features: 1 ELECTROSTATICS

30

diamond a bond length monomers per chain [counterions NCI]
[charges valnode valmonomer valCI] 1 [distance dcharged] 1 [nonet]

Required features: 1 ELECTROSTATICS

31

icosaeder a monomers per chain [counterions NCI]
[charges valmonomers valCI] 1 [distance dcharged] 1

Required features: 1 ELECTROSTATICS

31

crosslink num polymer monomers per chain [start pid ] [catch rcatch]
[distLink link dist ] [distChain chain dist ] [FENE bondid ]
[trials trymax]

32
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constraint wall normal nx ny nz dist d type id
constraint sphere center cx cy cz radius rad direction direction type

id
constraint cylinder center cx cy cz axis nx ny nz radius rad length

length direction direction type id
constraint maze nsphere n dim d sphrad rs cylrad rc type id
constraint pore center cx cy cz axis nx ny nz radius rad length length

type id
constraint rod center cx cy lambda lambda 1

constraint plate height h sigma sigma 1

constraint ext_magn_field fx fy fz 2,3

constraint plane cell x y z type id
Required features: CONSTRAINTS 1 ELECTROSTATICS 2 ROTATION 3 DIPOLES

33

constraint delete [num] 34

constraint force n 34
constraint [num] 35

inter 36
inter type1 type2 lennard-jones ε σ rcut cshift roff [rcap rmin]
Required features: LENNARD_JONES

36

inter type1 type2 lj-gen ε σ rcut cshift roff e1 e2 b1 b2

Required features: LENNARD_JONES_GENERIC

37

inter type1 type2 lj-cos ε σ rcut roff

inter type1 type2 lj-cos2 ε σ roff ω

Required features: LJCOS LJCOS2

37

inter type1 type2 lj-angle ε σ rcut b1a b1b b2a b2b

Required features: LJ_ANGLE

38

inter type1 type2 smooth-step σ1 n ε k0 σ2 rcut

Required features: SMOOTH_STEP

38

inter type1 type2 bmhtf-nacl A B C D σ rcut

Required features: BMHTF_NACL

39

inter type1 type2 morse ε α rmin rcut

Required features: MORSE

40

inter type1 type2 buckingham A B C D rcut rdiscont εshift

Required features: BUCKINGHAM

40

inter type1 type2 soft-sphere a n rcut roffset

Required features: SOFT_SPHERE

41

inter type1 type2 gay-berne ε0 σ0 rcutoff k1 k2 µ ν

Required features: ROTATION

41

inter type1 type2 tabulated filename
Required features: TABULATED

41
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inter type1 type2 tunable_slip T γL rcut δt vx vy vz

Required features: TUNABLE_SLIP

42

inter ljforcecap ( Fmax | individual )
inter morseforcecap ( Fmax | individual )
inter buckforcecap ( Fmax | individual )
inter tabforcecap ( Fmax | individual )
Required features: LENNARD_JONES MORSE BUCKINGHAM TABULATED

43

inter bondid fene K ∆rmax [r0 ] 44

inter bondid harmonic K R 44
inter bondid subt_lj reserved R 45

inter bondid rigid_bond constrainedbondd istance positionalt olerance
velocityt olerance

45

inter bondid angle K [φ0 ]
Required features: BOND_ANGLE_HARMONIC BOND_ANGLE_COSINE or BOND_ANGLE_-

COSSQUARE

46

inter bondid dihedral n K p 46
inter bondid tabulated bond filename
inter bondid tabulated angle filename
inter bondid tabulated dihedral filename

46

inter bondid virtual_bond 47
inter coulomb 0.0
inter coulomb [lB method ] [parameters]
inter coulomb

48

inter coulomb p3m rcut mesh cao alpha
inter magnetic p3m rcut mesh cao alpha

49

inter ( coulomb | magnetic ) p3m ( tune | tunev2 ) accuracy accuracy
[r_cut rcut] [mesh mesh] [cao cao] [alpha α]

49

inter coulomb dh κ rcut 50
inter coulomb mmm2d maximal pairwise error [fixed far cutoff ]

[dielectric εt εm εb ] [dielectric-contrasts ∆t ∆b ]
50

inter coulomb mmm1d switch radius [bessel cutoff ] maximal pairwise error
inter coulomb mmm1d tune maximal pairwise error

52

inter coulomb maggs f mass mesh field friction [yukawa kappa rcut] 52

inter coulomb elc maximal pairwise error gap size [far cutoff ] 52

inter magnetic mdlc accuracy gap size [far cutoff ] 53

inter magnetic lB m mdds n_cut value n cut [far cutoff ] 53

inter magnetic lB m dawaanr [far cutoff ] 54

inter typeid1 typeid1 comfixed flag 54
inter typeid1 typeid2 comforce flag dir force fratio 55
setmd variable
setmd variable [value]+

55
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thermostat langevin temperature gamma 55

thermostat dpd temperature gamma r cut [ WF wf tgamma tr cut TWF twf ] 57

thermostat inter_dpd temperature 59

inter type1 type2 inter_dpd gamma r cut [ WF wf tgamma tr cut TWF twf ]
Required features: INTER_DPD

59

thermostat npt_isotropic temperature gamma0 gammaV 61

thermostat off 61
thermostat 62
nemd exchange n slabs n exchange
nemd shearrate n slabs shearrate
nemd off
nemd
nemd profile
nemd viscosity

62

cellsystem domain_decomposition [-no_verlet_list] 62

cellsystem nsquare 62

cellsystem layered n layers 63

integrate steps
integrate set method [parameter ]...

64

change_volume Vnew

change_volume Lnew ( x | y | z | xyz )
64

stopParticles
stop_particles

66

velocities vmax [start pid ] [count N ] 66

invalidate_system 66

parallel_tempering::main -rounds N -swap swap -perform perform
[-init init ] [-values {Ti}] [-connect master ] [-port port ]
[-load jnode] [-resrate Nreset] [-info info]

66

parallel_tempering::set_shareddata data 67

analyze mindist [type list a type list b]
analyze distto pid
analyze distto x y z

67

analyze nbhood pid r catch
analyze nbhood x y z rcatch

71

analyze distribution part type list a part type list b
[rmin [rmax [rbins [log flag [int flag ]]]]]

72

analyze ( rdf | <rdf> ) part type list a part type list b [rmin rmax rbins] 72

analyze structurefactor type order 72

analyze vanhove type rmin rmax rbins 73

analyze centermass partt ype 73
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analyze momentofinertiamatrix typeid
analyze find_principal_axis typeid

74

analyze aggregation dist criteria s mol id f mol id
[min contact [charge criteria]]

74

analyze necklace pearl treshold back dist space dist first length 75

analyze holes typeidprobe mesh size 75

analyze energy
analyze energy ( total | kinetic | coulomb | magnetic )
analyze energy bonded bondid
analyze energy nonbonded typeid1 typeid2

75

analyze pressure
analyze pressure total
analyze pressure ( totals | ideal | coulomb |

tot_nonbonded_inter | tot_nonbonded_intra )
analyze pressure bonded bondid
analyze pressure nonbonded typeid1 typeid2
analyze pressure nonbonded_intra [typeid ]
analyze pressure nonbonded_inter [typeid ]

76

analyze stress_tensor
analyze stress_tensor total
analyze stress_tensor ( totals | ideal | coulomb |

tot_nonbonded_inter | tot_nonbonded_intra )
analyze stress_tensor bonded bondt ype
analyze stress_tensor nonbonded typeid1 typeid2
analyze stress_tensor nonbonded_intra [typeid ]
analyze stress_tensor nonbonded_inter [typeid ]

76

analyze local_stress_tensor periodic x periodic y periodic z range start x
range start y range start z range x range y range z bins x bins y
bins z

77

analyze set chains [chain start n chains chain length]
analyze set chains

78

analyze ( re | <re> ) [chain start n chains chain length] 79

analyze ( rg | <rg> ) [chain start n chains chain length] 80

analyze ( rh | <rh> ) [chain start n chains chain length] 80

analyze ( internal_dist | <internal_dist> ) [chain start n chains chain length]80

analyze ( bond_dist | <bond_dist> ) [index index ]
[chain start n chains chain length]

81

analyze ( bond_l | <bond_l> ) [chain start n chains chain length] 81

analyze ( formfactor | <formfactor> ) qmin qmax qbins
[chain start n chains chain length]

81

analyze rdfchain rmin rmax rbins [chains tart nchains chainl ength] 82
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analyze ( <g1>| <g2>| <g3> ) [chains tart nchains chainl ength]
analyze g123 [-init] [chains tart nchains chainl ength]

82

analyze append
analyze remove [index ]
analyze replace index
analyze push [size]
analyze configs config

83

analyze configs
analyze stored

83

plotObs file { x1:y1 x2:y2 ...} [titles { title1 title2 ...}]
[labels { xlabel [ylabel ] }] [scale gnuplot − scale]
[cmd gnuplot − command ] [out filebase]

84

plotJoin { source1 source2 ...} final 84

calcObAv file index [start ]
calcObErr file index [start ]
calcObsAv file { i1 i2 ...} [start ]
nameObsAv file { name1 name2 ...} [start ]
findObsAv val what

85

uwerr data nrep col [s tau] [plot]
uwerr data nrep f [s tau [f args]] [plot]

85

blockfile channel write variable {varname1 varname2 ...}
blockfile channel write variable all

86

blockfile channel write tclvariable { varname1 varname2 ...}
blockfile channel write tclvariable all
blockfile channel write tclvariable reallyall

86

blockfile channel write particles what ( range | all )
blockfile channel write bonds range
blockfile channel write interactions

88

blockfile channel write random
blockfile channel write bit_random
blockfile channel write seed
blockfile channel write bitseed

88

blockfile channel write configs 89

blockfile channel write start tag
blockfile channel write end
blockfile channel write tag [arg ]...

89

blockfile channel read start
blockfile channel read toend
blockfile channel read ( particles | interactions | bonds | variable |

seed | random | bitrandom | configs )
blockfile channel read auto

90

checkpoint_set destination [numconfigs [tclvar [iaflag [varflag [ranflag ]]]]] 90
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checkpoint_read source 90

polyBlockWrite path ( param list | all ) part list 92

polyBlockWriteAll destination [( tclvar | all ) [( whatever |- )
[( state | seed |- )]]]

93

writepsf file [-molecule] NP MPC NC I NpS NnS 93

writepdb file
writepdbfoldchains file chain start n chains chain length box l
writepdbfoldtopo file shift

93

writevsf channelId [( short | verbose )] [radius ( radii | auto )]
[typedesc typedesc]

94

writevcf channelId [( short | verbose )] [( folded | absolute )]
[pids ( pids | all )]

94

vtfpid pid 95

imd connect [port ]
imd positions [( -unfolded |-fold_chains )]
imd listen seconds
imd disconnect

96

prepare_vmd_connection [filename [wait [start ]]] 96

countBonds particlel ist 97
findPropPos particlepropertyl ist property 98

findBondPos particlepropertyl ist 100

timeStamp path prefix postfix suffix 100
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B Features

This chapter describes the features that can be activated in ESPResSo. Even if possible, it
is not recommended to activate all features, because this will negatively effect ESPResSo’s
performance.

Features can be activated in the configuration header myconfig.h (see section 3.2 on
page 20). Too activate FEATURE, add the following line to the header file:

#define FEATURE

B.1 General features
This list is not
complete! To get a
full list of available
features, look into
myconfig-sample.h.

• PARTIAL_PERIODIC By default, all coordinates in ESPResSo are periodic. With
PARTIAL_PERIODIC turned on, the ESPResSo global variable periodic (see sec-
tion 6.1 on page 57) controls the periodicity of the individual coordinates. Note
that this slows the integrator down by around 10− 30%.

• ELECTROSTATICS This switches on the various electrostatics algorithms, such as
P3M. See section 5.4 on page 49 for details on these algorithms.

• MAGNETOSTATICS In analogy to ELECTROSTATICS, this switches on the various
magnetostatics algorithms, such as P3M. See section 5.4 on page 49 for details on
these algorithms. Requires DIPOLES and ROTATION.

• DIPOLES This activates the dipole-moment property of particles; you probably
also want to activate MAGNETOSTATICS to get any interactions for the dipoles.
Requires ROTATION.

• ROTATION Switch on rotational degrees of freedom for the particles, as well as the
corresponding quaternion integrator. See section ?? on page ?? for details. Note,
that when the feature is activated, every particle has three additional degrees of
freedom, which for example means that the kinetic energy changes at constant
temperature is twice as large.Docs for rotation

missing

• EXTERNAL_FORCES Allows to define an arbitrary constant force for each particle
individually. Also allows to fix individual coordinates of particles, e.g. keep them
at a fixed position or within a plane.

• CONSTRAINTS Turns on various spatial constraints such as spherical compartments
or walls. This constraints interact with the particles through regular short ranged
potentials such as the Lennard–Jones potential. See section 4.3 on page 33 for
possible constraint forms.
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• TUNABLE_SLIP Switch on tunable slip conditions for planar wall boundary condi-
tions. See section 5.2.12 on page 43 for details.

• MASS Allows particles to have individual masses. Note that some analysis proce-
dures have not yet been adapted to take the masses into account correctly.

• EXCLUSIONS Allows to exclude specific short ranged interactions within molecules.

• COMFORCE Docs missing

• COMFIXED Docs missing

• MOLFORCES Docs missing

• BOND_CONSTRAINT Turns on the RATTLE integrator which allows for fixed lengths
bonds between particles. How to use it?

• OLD_RW_VERSION This switches back to the old, wrong random walk code of the
polymer. Only use this if you rely on the old behaviour and know what you are
doing.

In addition, there are switches that enable additional features in the integrator or
thermostat:

• NEMD Enables the non-equilbrium (shear) MD support (see section ?? on page ??).
Docs missing

• NPT Enables an on–the–fly NPT integration scheme (see section ?? on page ??). Docs missing

• DPD Enables the dissipative particle dynamics thermostat (see section ?? on page ??).

• TRANS_DPD Enables the transversal dissipative particle dynamics thermostat (see
section 6.2.2 on page 60).

• INTER_DPD Enables the dissipative particle dynamics thermostat implemented as
an interaction, allowing to choose different parameters between different particle
types (see section 6.2.2 on page 61).

• DPD_MASS_RED Enables masses in DPD using reduced, dimensionless mass units.

• DPD_MASS_LIN Enables masses in DPD using absolute mass units.

• LB Enables the lattice-Boltzmann fluid code (see section ?? on page ??). Docs missing
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B.2 Interactions

The following switches turn on various short ranged interactions (see section 5.2 on
page 36):

• TABULATED Enable support for user–defined interactions.

• LENNARD_JONES Enable the Lennard–Jones potential.

• LENNARD_JONES_GENERIC Enable the generic Lennard–Jones potential with config-
urable exponents and individual prefactors for the two terms.

• LJCOS Enable the Lennard–Jones potential with a cosine–tail.

• LJCOS2 Same as LJCOS, but using a slightly different way of smoothing the con-
nection to 0.

• LJ_ANGLE Enable the directional Lennard–Jones potential.

• MORSE Enable the Morse potential.

• BUCKINGHAM Enable the Buckingham potential.

• SOFT_SPHERE Enable the soft sphere potential.

• SMOOTH_STEP Enable the smooth step potential, a step potential with two length
scales.

• BMHTF_NACL Enable the Born-Meyer-Huggins-Tosi-Fumi potential, which can be
used to model salt melts.

Some of the short range interactions have additional features:

• LJ_WARN_WHEN_CLOSE This adds an additional check to the Lennard–Jones po-
tentials that prints a warning if particles come too close so that the simulation
becomes unphysical.

• OLD_DIHEDRAL Switch the interface of the dihedral potential to its old, less flexible
form. Use this for older scripts that are not yet adapted to the new interface of
the dihedral potential.

If you want to use bondangle potentials, you currently need to choose the type by
the feature (see section 5.3.5 on page 46). This will change in the near future to three
independent angle potentials:

• BOND_ANGLE_HARMONIC

• BOND_ANGLE_COSINE

• BOND_ANGLE_COSSQUARE
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B.3 Debug messages

Finally, there are a number of flags for debugging. The most important one are

• ADDITIONAL_CHECKS Enables numerous additional checks which can detect incon-
sistencies especially in the cell systems. This checks are however too slow to be
enabled in production runs.

• MEM_DEBUG Enables an internal memory allocation checking system. This produces
output for each allocation and freeing of a memory chunk, and therefore allows to
track down memory leaks. This works by internally replacing malloc, realloc
and free.

The following flags control the debug output of various sections of Espresso. You will
however understand the output very often only by looking directly at the code.

• COMM_DEBUG Output from the asynchronous communication code.

• EVENT_DEBUG Notifications for event calls, i. e. the on_? functions in initialize.c.
Useful if some module does not correctly respond to changes of e. g. global vari-
ables.

• INTEG_DEBUG Integrator output.

• CELL_DEBUG Cellsystem output.

• GHOST_DEBUG Cellsystem output specific to the handling of ghost cells and the
ghost cell communication.

• GHOST_FORCE_DEBUG

• VERLET_DEBUG Debugging of the Verlet list code of the domain decomposition cell
system.

• LATTICE_DEBUG Universal lattice structure debugging.

• HALO_DEBUG

• GRID_DEBUG

• PARTICLE_DEBUG Output from the particle handling code.

• P3M_DEBUG

• ESR_DEBUG debugging of P3Ms real space part.

• ESK_DEBUG debugging of P3Ms k–space part.

• EWALD_DEBUG

• FFT_DEBUG Output from the unified FFT code.
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• MAGGS_DEBUG

• RANDOM_DEBUG

• FORCE_DEBUG Output from the force calculation loops.

• PTENSOR_DEBUG Output from the pressure tensor calculation loops.

• THERMO_DEBUG Output from the thermostats.

• LJ_DEBUG Output from the Lennard–Jones code.

• MORSE_DEBUG Output from the Morse code.

• FENE_DEBUG

• ONEPART_DEBUG Define to a number of a particle to obtain output on the forces
calculated for this particle.

• STAT_DEBUG

• POLY_DEBUG

• MOLFORCES_DEBUG

• LB_DEBUG Output from the lattice–Boltzmann code.

• ASYNC_BARRIER Introduce a barrier after each asynchronous command completion.
Helps in detection of mismatching communication.

• FORCE_CORE Causes ESPResSo to try to provoke a core dump when exiting unex-
pectedly.

• MPI_CORE Causes ESPResSo to try this even with MPI errors.
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C Sample scripts

In the directory ESPResSo/samples you find several scripts that can serve as samples
how to use ESPResSo.

lj liquid.tcl Simple Lennard-Jones particle liquid. Shows the basic features of ESPResSo:
How to set up system parameters, particles and interactions. How to warm up and
integrate. How to write parameters, configurations and observables to files. How
to handle the connection to VMD.

kremerGrest.tcl This reproduces the data of Kremer and Grest [11]: Multiple systems
with different number of neutral polymer chains of various lengths are simulated for
very long times at melt density 0.85 while their static and some dynamic properties
are measured. Shows the advanced features of ESPResSo: How to run several sim-
ulations from a single script. How to use online-analysis (The analyze command)
with comparision to expectation values. How to get averages of the observables.
How to set/restore checkpoints (Using Checkpoints, saving configurations) includ-
ing auto-detection of previously derived parts of the simulation(s). How to create
gnuplots from within the script and combine multiple plots onto duplex pages (Sta-
tistical Analysis and Creating Gnuplots). In the end the script will provide plots
of all important quantities as .ps- and .pdf-files while compressing the data-files.
Note however, that the simulation uses the original time scale, hence it may take
quite some time to finish.

pe solution.tcl Polyelectrolyte solution under poor solvent condition. Test case for com-
parison with data produced by polysim9 from M.Deserno. Note that the equili-
bration of this system takes roughly 15000τ .

pe analyze.tcl Example for doing the analysis after the actual simulation run (offline
analysis). Calculates the integrated ion distribution P (r) for several different time
slaps, compares them and presents the final result using gnuplot to generate some
ps-files.

harmonic oscillator.tcl A chain of harmonic oscillators. This is a T = 0 simulation to
test the energy conservation.

espresso logo.tcl The ESPResSo-logo, the exploding espresso cup, has been created with
this script. It is a regular simulation of a polyelectrolyte solution. It makes use of
some nice features of the part command (see section 4.1 on page 25, namely the
capability to fix a particle in space and to apply an external force.
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watch.tcl Script to visualize any of your productions. Use the -h option when calling
it to see how it works.
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D Conversion of Deserno files

The following procedures are found in scripts/convertDeserno.tcl.

• convertDeserno2MD <source_file> <destination_file>

converts the particle configuration stored in source file from Deserno-format into
blockfile-format, importing everything to ESPResSo and writing it to destination file.
The full particle information, bonds, interactions, and parameters will be converted
and saved. If destination file is ”-1”, the data is only loaded into ESPResSo and
nothing is written to disk. If destination file has the suffix .gz, the output-file will
be compressed. The script uses some assumptions, e. g. on the particle type numbers
of The part command for polymers, counter-ions, or on sigma, shift, offset for
Lennard-Jones-potentials (The inter command; current defaults are 2.0, 0, 0, re-
spectively); these are all set by

initConversion

(which is automatically called by convertDeserno2MD) so have a look at the source-
code of convertDeserno.tcl in the scripts-directory for a complete list of as-
sumptions. However, if for some reasons different values need to be set, it is possible
to bypass the initialization routine and/or override the default values, e. g. by
explicitly executing initConversion, afterwards overwriting all variables which need
to be re-set, and manually invoking the main conversion script

convertDeserno2MDmain <source_file> <destination_file>

to complete the process.

• convertMD2Deserno <source_file> <destination_file>

converts the particle configuration stored in the ESPResSo-blockfile source file into
a Deserno-compatible destination file. If source file is ”-1”, the data is entirely
taken from ESPResSo without loading anything from disk. If source file has the
suffix .gz, it is assumed to be compressed; otherwise it will be treated as con-
taining plain text. Since Deserno stores much more than ESPResSo does due to a
centralized vs. a local storage policy, it depends on correct values for the following
properties, which therefore should be contained in source file:

1. the particle type number used for polymers, counter-ions, and salt-molecules
(defaults are: set type_P 0, set type_CI 1, and set type_S 2

2. the bond type number used for FENE-interactions (default is: set type_-
FENE 0)
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As for convertDeserno2MD, the defaults are set upon initialization by

initConversion

(which is automatically called by convertMD2Deserno as well), but may be over-
written the same way as explained for tcl convertDeserno2MD. However, parame-
ters stored in source file cannot (and will not) be overwritten, because they were
part of the system originally saved and should not be altered initially. Note, that
some entries in a Deserno-file cannot be determined at all, these are by default set
to

set prefix AA0000
set postfix 0
set seed -1
set startTime -1
set endTime -1
set integrationSteps -1
set saveResults -1
set saveConfig -1
set subbox_1D -1
set ip -1
set step -1

but of course may be overwritten as well after calling initConversion and before
continuing with

convertMD2DesernoMain <source_file> <destination_file>

the actual conversion process. The Deserno-format assumes knowledge of the topol-
ogy, hence a respective analysis is conducted to identify the type and structure of
the polymer network. The script allows for randomly stored polymer solutions and
melts, no matter how they’re messed up; however, crosslinked networks need to
be aligned to be recognized correctly, i.e. they must be set up consecutively, such
that the first chain with $MPC monomers corresponds to the first $MPC particles
in [part], the 2nd one to the $MPC following particles, etc. etc.

• It is now possible to save the whole state of ESPResSo, including all parameters
and interactions. These scripts make use of that advantage by storing everything
they find in the Deserno-file - but vice versa they also expect you to provide a
blockfile containing all possible informations.

These conversion scripts have been tested with both polymer melts and end-to-end-
crosslinked networks in systems with or without counterions. It should work with addi-
tional salt-molecules or neutral networks as well, although that hasn’t been tested yet
- if you’ve some of these systems in a Deserno-formated file, please submit them for
extensive analysis.
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E Maggs algorithm
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dpd_gamma, 53
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integrate (Tcl-command), 62
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bond-angle, 42
bonded, 40
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dihedral, 43
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Lennard-Jones, 33
Lennard-Jones cosine, 34
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MDDS method, 50, 51
MMM1D, 48
MMM2D, 48
Morse, 36
non-bonded, 32
P3M, 46
rigid bond, 42
smooth-step, 35
soft-sphere, 37
subtracted Lennard-Jones, 42
tabulated, 38
tabulated bond, 44
Tunable-slip boundary interactions,

39
interactive mode, 20
internal distances within a chain, 77
invalidate_system (Tcl-command), 63

length unit, 5
Lennard-Jones cosine interaction, 34
Lennard-Jones interaction, 33
local stress tensor, 75
local_box_l (global variable), 53

Maggs’ method, 49
make, 8
max_cut (global variable), 53
max_num_cells (global variable), 53
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max_part (global variable), 53
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MDDS method, 50, 51
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myconfig.h, 16
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physical units, 5
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prepare_vmd_connection, 94
salt, 26
setmd, 53
stop_particles, 62
stopParticles, 62
thermostat, 55
uwerr, 82
velocities, 62
writepdb, 90
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