diff --git a/changelog b/changelog
index 2532ed6..f8f6e9f 100644
--- a/changelog
+++ b/changelog
@@ -1,3 +1,90 @@
+20081204 tpd src/input/r21bugsbig.input cleanup
+20081204 tpd src/algebra/zerodim.spad cleanup
+20081204 tpd src/input/void.input cleanup
+20081204 tpd src/input/tutchap1.input cleanup
+20081204 tpd src/input/test.input cleanup
+20081204 tpd src/input/stream2.input cleanup
+20081204 tpd src/algebra/si.spad cleanup
+20081204 tpd src/input/sersolve.input cleanup
+20081204 tpd src/input/series.input cleanup
+20081204 tpd src/input/schaum9.input cleanup
+20081204 tpd src/input/schaum8.input cleanup
+20081204 tpd src/input/schaum7.input cleanup
+20081204 tpd src/input/schaum6.input cleanup
+20081204 tpd src/input/schaum5.input cleanup
+20081204 tpd src/input/schaum4.input cleanup
+20081204 tpd src/input/schaum3.input cleanup
+20081204 tpd src/input/schaum34.input cleanup
+20081204 tpd src/input/schaum33.input cleanup
+20081204 tpd src/input/schaum32.input cleanup
+20081204 tpd src/input/schaum31.input cleanup
+20081204 tpd src/input/schaum30.input cleanup
+20081204 tpd src/input/schaum2.input cleanup
+20081204 tpd src/input/schaum29.input cleanup
+20081204 tpd src/input/schaum28.input cleanup
+20081204 tpd src/input/schaum27.input cleanup
+20081204 tpd src/input/schaum26.input cleanup
+20081204 tpd src/input/schaum25.input cleanup
+20081204 tpd src/input/schaum24.input cleanup
+20081204 tpd src/input/schaum23.input cleanup
+20081204 tpd src/input/schaum22.input cleanup
+20081204 tpd src/input/schaum21.input cleanup
+20081204 tpd src/input/schaum20.input cleanup
+20081204 tpd src/input/schaum1.input cleanup
+20081204 tpd src/input/schaum19.input cleanup
+20081204 tpd src/input/schaum18.input cleanup
+20081204 tpd src/input/schaum17.input cleanup
+20081204 tpd src/input/schaum16.input cleanup
+20081204 tpd src/input/schaum15.input cleanup
+20081204 tpd src/input/schaum14.input cleanup
+20081204 tpd src/input/schaum13.input cleanup
+20081204 tpd src/input/schaum12.input cleanup
+20081204 tpd src/input/schaum11.input cleanup
+20081204 tpd src/input/schaum10.input cleanup
+20081204 tpd src/input/reclos.input cleanup
+20081204 tpd src/input/quat.input cleanup
+20081204 tpd src/input/patch51.input cleanup
+20081204 tpd src/input/page.input cleanup
+20081204 tpd src/input/op1.input cleanup
+20081204 tpd src/input/oct.input cleanup
+20081204 tpd src/algebra/oct.spad cleanup
+20081204 tpd src/input/nsfip.input cleanup
+20081204 tpd src/input/noonburg.input cleanup
+20081204 tpd src/input/ndftip.input cleanup
+20081204 tpd src/input/mset2.input cleanup
+20081204 tpd src/input/mpoly.input cleanup
+20081204 tpd src/input/matrix.input cleanup
+20081204 tpd src/input/matrix22.input cleanup
+20081204 tpd src/input/mappkg1.input cleanup
+20081204 tpd src/input/lupfact.input cleanup
+20081204 tpd src/input/lodo.input cleanup
+20081204 tpd src/input/intef2.input cleanup
+20081204 tpd src/input/intbypart.input cleanup
+20081204 tpd src/input/herm.input cleanup
+20081204 tpd src/input/heap.input cleanup
+20081204 tpd src/input/gonshor.input cleanup
+20081204 tpd src/input/fr.input cleanup
+20081204 tpd src/input/ffx72.input cleanup
+20081204 tpd src/input/exprode.input cleanup
+20081204 tpd src/input/equation2.input cleanup
+20081204 tpd src/input/elfuts.input cleanup
+20081204 tpd src/input/eigen.input cleanup
+20081204 tpd src/input/efi.input cleanup
+20081204 tpd src/input/directproduct.input cleanup
+20081204 tpd src/input/danzwill2.input cleanup
+20081204 tpd src/input/contfrac.input cleanup
+20081204 tpd src/input/clifford.input cleanup
+20081204 tpd src/input/classtalk.input cleanup
+20081204 tpd src/input/ch.input cleanup
+20081204 tpd src/input/calcprob.input cleanup
+20081204 tpd src/input/bugs.input cleanup
+20081204 tpd src/input/bini.input cleanup
+20081204 tpd src/input/besselk.input cleanup
+20081204 tpd src/input/assign.input cleanup
+20081204 tpd src/input/array2.input cleanup
+20081204 tpd src/input/alist.input cleanup
+20081204 tpd src/input/algfacob.input cleanup
+20081204 tpd src/input/Makefile fix self-referential input files
 20081204 tpd src/axiom-website/patches.html 20081204.01.tpd.patch
 20081204 tpd src/axiom-website/matrixinmatrix.jpg replace texmacs version
 20081204 tpd src/axiom-website/heatequation.jpg replace texmacs version
diff --git a/src/algebra/oct.spad.pamphlet b/src/algebra/oct.spad.pamphlet
index 2256066..98a3da0 100644
--- a/src/algebra/oct.spad.pamphlet
+++ b/src/algebra/oct.spad.pamphlet
@@ -87,7 +87,7 @@ associative, since $I*(J*K) \ne (I*J)*K$.
 )set message test on
 )set message auto off
 )clear all
---S 1
+--S 1 of 15
 oci1 := octon(1,2,3,4,5,6,7,8)
 --R 
 --R
@@ -95,7 +95,7 @@ oci1 := octon(1,2,3,4,5,6,7,8)
 --R                                                       Type: Octonion Integer
 --E 1
 
---S 2
+--S 2 of 15
 oci2 := octon(7,2,3,-4,5,6,-7,0)
 --R 
 --R
@@ -103,7 +103,7 @@ oci2 := octon(7,2,3,-4,5,6,-7,0)
 --R                                                       Type: Octonion Integer
 --E 2
 
---S 3
+--S 3 of 15
 oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))
 --R 
 --R
@@ -111,7 +111,7 @@ oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))
 --R                                                       Type: Octonion Integer
 --E 3
 
---S 4
+--S 4 of 15
 (oci1 * oci2) * oci3 - oci1 * (oci2 * oci3)
 --R 
 --R
@@ -119,7 +119,7 @@ oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))
 --R                                                       Type: Octonion Integer
 --E 4
 
---S 5
+--S 5 of 15
 [real oci1, imagi oci1, imagj oci1, imagk oci1, _
  imagE oci1, imagI oci1, imagJ oci1, imagK oci1]
 --R 
@@ -128,7 +128,7 @@ oci3 := octon(quatern(-7,-12,3,-10), quatern(5,6,9,0))
 --R                                                   Type: List PositiveInteger
 --E 5
 
---S 6
+--S 6 of 15
 q : Quaternion Polynomial Integer := quatern(q1, qi, qj, qk)
 --R 
 --R
@@ -136,7 +136,7 @@ q : Quaternion Polynomial Integer := quatern(q1, qi, qj, qk)
 --R                                          Type: Quaternion Polynomial Integer
 --E 6
 
---S 7
+--S 7 of 15
 E : Octonion Polynomial Integer:= octon(0,0,0,0,1,0,0,0)
 --R 
 --R
@@ -144,7 +144,7 @@ E : Octonion Polynomial Integer:= octon(0,0,0,0,1,0,0,0)
 --R                                            Type: Octonion Polynomial Integer
 --E 7
 
---S 8
+--S 8 of 15
 q * E
 --R 
 --R
@@ -152,7 +152,7 @@ q * E
 --R                                            Type: Octonion Polynomial Integer
 --E 8
 
---S 9
+--S 9 of 15
 E * q
 --R 
 --R
@@ -160,7 +160,7 @@ E * q
 --R                                            Type: Octonion Polynomial Integer
 --E 9
 
---S 10
+--S 10 of 15
 q * 1$(Octonion Polynomial Integer)
 --R 
 --R
@@ -168,7 +168,7 @@ q * 1$(Octonion Polynomial Integer)
 --R                                            Type: Octonion Polynomial Integer
 --E 10
 
---S 11
+--S 11 of 15
 1$(Octonion Polynomial Integer) * q
 --R 
 --R
@@ -176,7 +176,7 @@ q * 1$(Octonion Polynomial Integer)
 --R                                            Type: Octonion Polynomial Integer
 --E 11
 
---S 12
+--S 12 of 15
 o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI, oJ, oK)
 --R 
 --R
@@ -184,7 +184,7 @@ o : Octonion Polynomial Integer := octon(o1, oi, oj, ok, oE, oI, oJ, oK)
 --R                                            Type: Octonion Polynomial Integer
 --E 12
 
---S 13
+--S 13 of 15
 norm o
 --R 
 --R
@@ -193,7 +193,7 @@ norm o
 --R                                                     Type: Polynomial Integer
 --E 13
 
---S 14
+--S 14 of 15
 p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI, pJ, pK)
 --R 
 --R
@@ -201,7 +201,7 @@ p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI, pJ, pK)
 --R                                            Type: Octonion Polynomial Integer
 --E 14
 
---S 15
+--S 15 of 15
 norm(o*p)-norm(p)*norm(o)
 --R 
 --R
diff --git a/src/algebra/si.spad.pamphlet b/src/algebra/si.spad.pamphlet
index 2523adf..7d63f61 100644
--- a/src/algebra/si.spad.pamphlet
+++ b/src/algebra/si.spad.pamphlet
@@ -19,7 +19,7 @@ to Codemist Common Lisp but is not defined in Common Lisp.
 )set message test on
 )set message auto off
 )clear all
---S 1
+--S 1 of 11
 min()$SingleInteger
 --R 
 --R
@@ -27,7 +27,7 @@ min()$SingleInteger
 --R                                                          Type: SingleInteger
 --E 1
 
---S 2
+--S 2 of 11
 max()$SingleInteger
 --R 
 --R
@@ -35,7 +35,7 @@ max()$SingleInteger
 --R                                                          Type: SingleInteger
 --E 2
 
---S 3
+--S 3 of 11
 a := 1234 :: SingleInteger
 --R 
 --R
@@ -43,7 +43,7 @@ a := 1234 :: SingleInteger
 --R                                                          Type: SingleInteger
 --E 3
 
---S 4
+--S 4 of 11
 b := 124$SingleInteger
 --R 
 --R
@@ -51,7 +51,7 @@ b := 124$SingleInteger
 --R                                                          Type: SingleInteger
 --E 4
 
---S 5
+--S 5 of 11
 gcd(a,b)
 --R 
 --R
@@ -59,7 +59,7 @@ gcd(a,b)
 --R                                                          Type: SingleInteger
 --E 5
 
---S 6
+--S 6 of 11
 lcm(a,b)
 --R 
 --R
@@ -67,7 +67,7 @@ lcm(a,b)
 --R                                                          Type: SingleInteger
 --E 6
 
---S 7
+--S 7 of 11
 mulmod(5,6,13)$SingleInteger
 --R 
 --R
@@ -75,7 +75,7 @@ mulmod(5,6,13)$SingleInteger
 --R                                                          Type: SingleInteger
 --E 7
 
---S 8
+--S 8 of 11
 positiveRemainder(37,13)$SingleInteger
 --R 
 --R
@@ -83,7 +83,7 @@ positiveRemainder(37,13)$SingleInteger
 --R                                                          Type: SingleInteger
 --E 8
 
---S 9
+--S 9 of 11
 And(3,4)$SingleInteger
 --R 
 --R
@@ -91,7 +91,7 @@ And(3,4)$SingleInteger
 --R                                                          Type: SingleInteger
 --E 9
 
---S 10
+--S 10 of 11
 shift(1,4)$SingleInteger
 --R 
 --R
@@ -99,7 +99,7 @@ shift(1,4)$SingleInteger
 --R                                                          Type: SingleInteger
 --E 10
 
---S 11
+--S 11 of 11
 shift(31,-1)$SingleInteger
 --R 
 --R
diff --git a/src/algebra/zerodim.spad.pamphlet b/src/algebra/zerodim.spad.pamphlet
index 1bd9951..5b6d499 100644
--- a/src/algebra/zerodim.spad.pamphlet
+++ b/src/algebra/zerodim.spad.pamphlet
@@ -5349,7 +5349,7 @@ univariateSolve(ts)$pack
 --RType: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)
 --E 23
 
---S 24
+--S 24 of 28
 realSolve(ts)$pack
 --R 
 --R
diff --git a/src/input/Makefile.pamphlet b/src/input/Makefile.pamphlet
index 0d3b6b7..032ce85 100644
--- a/src/input/Makefile.pamphlet
+++ b/src/input/Makefile.pamphlet
@@ -403,16 +403,16 @@ The input files are not removed because this parallel builds
 create race conditions.
 <<regression tests>>=
 %.output: %.input
-	@ echo generic 17 running test file $* using $*.input 
-	@ echo ')set message test on' > $*.input 
-	@ echo ')set message auto off' >> $*.input 
-	@ echo ')read $*' >> $*.input 
-	@ echo ')lisp (bye)' >> $*.input 
+	@ echo generic 17 running test file $* using $*tpd.input 
+	@ echo ')set message test on' > $*tpd.input 
+	@ echo ')set message auto off' >> $*tpd.input 
+	@ echo ')read $*' >> $*tpd.input 
+	@ echo ')lisp (bye)' >> $*tpd.input 
 	@ if [ -z "${NOISE}" ] ; then \
-	   echo ")read $*.input" | ${TESTSYS} \
+	   echo ")read $*tpd.input" | ${TESTSYS} \
                 | egrep -v '(Timestamp|Version)' | tee $*.output ; \
 	  else \
-	   echo ")read $*.input" | ${TESTSYS} \
+	   echo ")read $*tpd.input" | ${TESTSYS} \
                 | egrep -v '(Timestamp|Version)' > $*.output ; \
 	  fi 
 #	@ rm $*.input 
diff --git a/src/input/algfacob.input.pamphlet b/src/input/algfacob.input.pamphlet
index b49b198..59dbd8d 100644
--- a/src/input/algfacob.input.pamphlet
+++ b/src/input/algfacob.input.pamphlet
@@ -119,7 +119,7 @@ h := (f*g)/(g*nilFactor(2,200))
 
 )clear all
 
---S 11  of 37
+--S 11 of 37
 (u,v,w) : FR POLY INT
 --R 
 --R                                                                   Type: Void
diff --git a/src/input/alist.input.pamphlet b/src/input/alist.input.pamphlet
index 0f3ad98..bd21f1b 100644
--- a/src/input/alist.input.pamphlet
+++ b/src/input/alist.input.pamphlet
@@ -97,7 +97,7 @@ al."katie" := [23,"female"]$Data
 --R                              Type: Record(monthsOld: Integer,gender: String)
 --E 9
 
---S 10 of 10 of 10
+--S 10 of 10
 delete!(al,1)
 --R 
 --R
diff --git a/src/input/array2.input.pamphlet b/src/input/array2.input.pamphlet
index fc9e320..ef9e74f 100644
--- a/src/input/array2.input.pamphlet
+++ b/src/input/array2.input.pamphlet
@@ -235,7 +235,7 @@ count(17,arr)
 --R                                                        Type: PositiveInteger
 --E 19
 
---S 20 of 20 of 20
+--S 20 of 20
 count(0,arr)
 --R 
 --R
diff --git a/src/input/assign.input.pamphlet b/src/input/assign.input.pamphlet
index cb16af8..adfc652 100644
--- a/src/input/assign.input.pamphlet
+++ b/src/input/assign.input.pamphlet
@@ -21,7 +21,7 @@
 
 -- This file shows the difference between assignments and rewrite
 -- rules.
---S 1  of 11
+--S 1 of 11
 a := 1
 --R 
 --R
@@ -61,7 +61,7 @@ b              -- it is the value it had AT ASSIGNMENT
 --R                                                        Type: PositiveInteger
 --E 5
 
---S 6  of 11
+--S 6 of 11
 c == 1         -- c is a rule
 --R 
 --R                                                                   Type: Void
diff --git a/src/input/besselk.input.pamphlet b/src/input/besselk.input.pamphlet
index 7a31a2c..f0af678 100644
--- a/src/input/besselk.input.pamphlet
+++ b/src/input/besselk.input.pamphlet
@@ -20,7 +20,7 @@ Dover Publications, Inc. New York 1965. pp417-419
 )set message auto off
 )clear all
  
---S 1 of 4
+--S 1 of 6
 D(besselK(a,x),x)
 --R
 --R        - besselK(a + 1,x) - besselK(a - 1,x)
@@ -29,7 +29,7 @@ D(besselK(a,x),x)
 --R                                                     Type: Expression Integer
 --E 1
 
---S 2 of 4
+--S 2 of 6
 D(besselK(a,x),a)
 --R
 --R   (2)  besselK  (a,x)
@@ -37,25 +37,25 @@ D(besselK(a,x),a)
 --R                                                     Type: Expression Integer
 --E 2
 
---S 3 of 4
+--S 3 of 6
 integrate(D(besselK(a,x),a),a)
 --R
 --R   (3)  besselK(a,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 3
 
---S 4 of 4
+--S 4 of 6
 limit(D(besselK(a,x),a),a=1/2)
 --R
 --R   (4)  "failed"
 --R                                                    Type: Union("failed",...)
 --E 4
 
---S 5
+--S 5 of 6
 stegun(x)== %e^x * besselK(1,x)
 --E 5
 
---S 6
+--S 6 of 6
 [[0.1, 10.890182683 , stegun(0.1),  stegun(0.1)- 10.890182683 ],_
  [0.2,  5.833386037 , stegun(0.2),  stegun(0.2)-  5.833386037 ],_
  [0.3,  4.125157762 , stegun(0.3),  stegun(0.3)-  4.125157762 ],_
diff --git a/src/input/bini.input.pamphlet b/src/input/bini.input.pamphlet
index eac6e13..b03ce88 100644
--- a/src/input/bini.input.pamphlet
+++ b/src/input/bini.input.pamphlet
@@ -116,7 +116,7 @@ Paramaters $a,b$ and variables  $x,y$)
 <<*>>=
 )clear all
 
---S 1
+--S 1 of 276
 t1:=2*y^2*(y^2+x^2)+(b^2-3*a^2)*y^2-2*b*y^2*(x+y)+2*a^2*b*(y+x)_
     -a^2*x^2+a^2*(a^2-b^2)
 --R 
@@ -126,7 +126,7 @@ t1:=2*y^2*(y^2+x^2)+(b^2-3*a^2)*y^2-2*b*y^2*(x+y)+2*a^2*b*(y+x)_
 --R   2y  - 2b y  + (2x  - 2b x + b  - 3a )y  + 2a b y - a x  + 2a b x - a b  + a
 --E 1
 
---S 2
+--S 2 of 276
 t2:=4*y^3+4*y*(y^2+x^2)-2*b*y^2-4*b*y*(y+x)+2*(b^2-3*a^2)*y+2*a^2*b
 --R 
 --R
@@ -134,7 +134,7 @@ t2:=4*y^3+4*y*(y^2+x^2)-2*b*y^2-4*b*y*(y+x)+2*(b^2-3*a^2)*y+2*a^2*b
 --R   (2)  8y  - 6b y  + (4x  - 4b x + 2b  - 6a )y + 2a b
 --E 2
 
---S 3
+--S 3 of 276
 t3:=4*x*y^2-2*b*y^2-2*a^2*x+2*a^2*b
 --R 
 --R
@@ -148,7 +148,7 @@ Variables $x,y,z$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 276
 t1:=8*x^2-2*x*y-6*x*z+3*x+3*y^2-7*y*z+10*y+10*z^2-8*z-4
 --R 
 --R
@@ -156,7 +156,7 @@ t1:=8*x^2-2*x*y-6*x*z+3*x+3*y^2-7*y*z+10*y+10*z^2-8*z-4
 --R   (1)  10z  + (- 7y - 6x - 8)z + 3y  + (- 2x + 10)y + 8x  + 3x - 4
 --E 4
 
---S 5
+--S 5 of 276
 t2:=10*x^2-2*x*y+6*x*z-6*x+9*y^2-y*z-4*y-2*z^2+5*z-9
 --R 
 --R
@@ -164,7 +164,7 @@ t2:=10*x^2-2*x*y+6*x*z-6*x+9*y^2-y*z-4*y-2*z^2+5*z-9
 --R   (2)  - 2z  + (- y + 6x + 5)z + 9y  + (- 2x - 4)y + 10x  - 6x - 9
 --E 5
 
---S 6
+--S 6 of 276
 t3:=5*x^2+8*x*y+4*x*z+8*x+9*y^2-6*y*z+2*y-z^2-7*x+5
 --R 
 --R
@@ -178,7 +178,7 @@ Parameter $b$ and variables $c,d,p,q$
 <<*>>=
 
 )clear all
---S 7
+--S 7 of 276
 t1:=2*(b-1)^2 + 2*(q-p*q+p^2) + c^2*(q-1)^2 -2*b*q + 2*c*d*(1-q)*(q-p)_
     +2*b*p*q*d*(d-c) + b^2*d^2*(1-2*p) + 2*b*d^2*(p-q) + 2*b*d*c*(p-1)_
     +2*b*p*q*(c+1) + (b^2 - 2*b)*p^2*d^2 + 2*b^2*p^2 + 4*b*(1-b)*p_
@@ -202,7 +202,7 @@ t1:=2*(b-1)^2 + 2*(q-p*q+p^2) + c^2*(q-1)^2 -2*b*q + 2*c*d*(1-q)*(q-p)_
 --R     2b  - 4b + 2
 --E 7
 
---S 8
+--S 8 of 276
 t2:=d*(2*p+1)*(q-p) + c*(p+2)*(1-q) + b*(b-2)*d + b*(1-2*b)*p*d_
     +b*c*(q+p-p*q-1) + b*(b+1)*p^2*d
 --R 
@@ -215,7 +215,7 @@ t2:=d*(2*p+1)*(q-p) + c*(p+2)*(1-q) + b*(b-2)*d + b*(1-2*b)*p*d_
 --R     ((- 2b  + b - 1)d + (b + 1)c)p + (b  - 2b)d + (- b + 2)c
 --E 8
 
---S 9
+--S 9 of 276
 t3:=-b^2*(p-1)^2 + 2*p*(p-q) - 2*(q-1)
 --R 
 --R
@@ -223,7 +223,7 @@ t3:=-b^2*(p-1)^2 + 2*p*(p-q) - 2*(q-1)
 --R   (3)  (- 2p - 2)q + (- b  + 2)p  + 2b p - b  + 2
 --E 9
 
---S 10
+--S 10 of 276
 t4:=b^2 + 4*(p-q^2) + 3*c^2*(q-1)^2 - 3*d^2*(p-q)^2 + 3*b^2*d^2*(p-1)^2_
     +b^2*p*(p-2) + 6*b*d*c*(p+q+q*p-1)
 --R 
@@ -246,7 +246,7 @@ Paramters $a,b,c,d,e,f,g,h,k$ and variables $x,y$
 
 )clear all
 
---S 11
+--S 11 of 276
 t1:=a*x^2+b*x*y+c*x+d*y^2+e*y+f
 --R 
 --R
@@ -254,7 +254,7 @@ t1:=a*x^2+b*x*y+c*x+d*y^2+e*y+f
 --R   (1)  d y  + (b x + e)y + a x  + c x + f
 --E 11
 
---S 12
+--S 12 of 276
 t2:=b*x^2+4*d*x*y+2*e*x+g*y^2+h*y+k
 --R 
 --R
@@ -268,7 +268,7 @@ Paramters $a,b,c,d,e,f,g,h,k$ and variables $x,y,z$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 276
 t1:=x^2+a*y*z+d*x+g
 --R 
 --R
@@ -276,7 +276,7 @@ t1:=x^2+a*y*z+d*x+g
 --R   (1)  a y z + x  + d x + g
 --E 13
 
---S 14
+--S 14 of 276
 t2:=y^2+b*z*x+e*y+h
 --R 
 --R
@@ -284,7 +284,7 @@ t2:=y^2+b*z*x+e*y+h
 --R   (2)  b x z + y  + e y + h
 --E 14
 
---S 15
+--S 15 of 276
 t3:=z^2+c*x*y+f*z+k
 --R 
 --R
@@ -298,7 +298,7 @@ Parameters $a,b$ and variables $x,A,B$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 276
 t1:=(x^2-A)^2 + (x^3+b*x-B)*(x^3+b*x-B-a)^2
 --R 
 --R
@@ -313,7 +313,7 @@ t1:=(x^2-A)^2 + (x^3+b*x-B)*(x^3+b*x-B-a)^2
 --R     - B a  - 2B a - B  + A
 --E 16
 
---S 17
+--S 17 of 276
 t2:=4*x*(x^2-A)+(3*x^2+b)*(x^3+b*x-B-a)*(3*(x^3+b*x-B)-a)
 --R 
 --R
@@ -325,7 +325,7 @@ t2:=4*x*(x^2-A)+(3*x^2+b)*(x^3+b*x-B-a)*(3*(x^3+b*x-B)-a)
 --R     (3b  + 3a  + 12B a + 9B )x  + ((- 4a - 6B)b  - 4A)x + (a  + 4B a + 3B )b
 --E 17
 
---S 18
+--S 18 of 276
 t3:=12*x^2-4*A+6*x*(x^3+b*x-B-a)^2+4*(3*x^2+b)^2*(x^3+b*x-B-a)_
     +2*(x^3+b*x-B)*(3*x^2+b)^2+12*x*(x^3+b*x-B)*(x^3+b*x-B-a)
 --R 
@@ -338,7 +338,7 @@ t3:=12*x^2-4*A+6*x*(x^3+b*x-B-a)^2+4*(3*x^2+b)^2*(x^3+b*x-B-a)_
 --R     (6b  + 6a  + 24B a + 18B )x + (- 4a - 6B)b  - 4A
 --E 18
 
---S 19
+--S 19 of 276
 t4:=24*x+6*(x^3+b*x-B-a)^2+72*x*(x^3+b*x-B-a)*(3*x^2+b)+6*(3*x^2+b)^3_
     +36*x*(x^3+b*x-B)*(3*x^2+b)+12*(x^3+b*x-B)*(x^3+b*x-B-a)
 --R 
@@ -357,7 +357,7 @@ Parameters $a,b,c$ and variables $x,y[2],z[2]$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 276
 t1:=x+2*y1*z1+3*a*y1^2+5*y1^4+2*c*y1
 --R 
 --R
@@ -365,7 +365,7 @@ t1:=x+2*y1*z1+3*a*y1^2+5*y1^4+2*c*y1
 --R   (1)  2y1 z1 + 5y1  + 3a y1  + 2c y1 + x
 --E 20
 
---S 21
+--S 21 of 276
 t2:=x+2*y2*z2+3*a*y2^2+5*y2^4+2*c*y2
 --R 
 --R
@@ -373,7 +373,7 @@ t2:=x+2*y2*z2+3*a*y2^2+5*y2^4+2*c*y2
 --R   (2)  2y2 z2 + 5y2  + 3a y2  + 2c y2 + x
 --E 21
 
---S 22
+--S 22 of 276
 t3:=2*z2+6*a*y2+20*y2^3+2*c
 --R 
 --R
@@ -381,7 +381,7 @@ t3:=2*z2+6*a*y2+20*y2^3+2*c
 --R   (3)  2z2 + 20y2  + 6a y2 + 2c
 --E 22
 
---S 23
+--S 23 of 276
 t4:=3*z1^2+y1^2+b
 --R 
 --R
@@ -389,7 +389,7 @@ t4:=3*z1^2+y1^2+b
 --R   (4)  3z1  + y1  + b
 --E 23
 
---S 24
+--S 24 of 276
 t5:=3*z2^2+y2^2+b
 --R 
 --R
@@ -403,7 +403,7 @@ Paramters $a,b,c$ and variables $x,y[3],z[3]$
 <<*>>=
 )clear all
 
---S 25
+--S 25 of 276
 t1:=3*z1^2+y1^2+b
 --R 
 --R
@@ -411,7 +411,7 @@ t1:=3*z1^2+y1^2+b
 --R   (1)  3z1  + y1  + b
 --E 25
 
---S 26
+--S 26 of 276
 t2:=3*z1^2+y2^2+b
 --R 
 --R
@@ -419,7 +419,7 @@ t2:=3*z1^2+y2^2+b
 --R   (2)  3z1  + y2  + b
 --E 26
 
---S 27
+--S 27 of 276
 t3:=3*z3^2+y3^2+b
 --R 
 --R
@@ -427,7 +427,7 @@ t3:=3*z3^2+y3^2+b
 --R   (3)  3z3  + y3  + b
 --E 27
 
---S 28
+--S 28 of 276
 t4:=y1^2*z1+2*a*y1^3+4*y1^5+c*y1^2-z1^3-b*z1-y2^2*z2-2*a*y2^3_
     -4*y2^5-c*y2^2+z2^3+b*z2
 --R 
@@ -440,7 +440,7 @@ t4:=y1^2*z1+2*a*y1^3+4*y1^5+c*y1^2-z1^3-b*z1-y2^2*z2-2*a*y2^3_
 --R     2a y1  + c y1
 --E 28
 
---S 29
+--S 29 of 276
 t5:=y2^2*z2+2*a*y2^3+4*y2^5+c*y2^2-z2^3-b*z2-y3^2*z3-2*a*y3^3_
     -4*y3^5-c*y3^2+z3^3+b*z3
 --R 
@@ -453,7 +453,7 @@ t5:=y2^2*z2+2*a*y2^3+4*y2^5+c*y2^2-z2^3-b*z2-y3^2*z3-2*a*y3^3_
 --R     2a y2  + c y2
 --E 29
 
---S 30
+--S 30 of 276
 t6:=y3^2*z3+2*a*y3^3+4*y3^5+c*y3^2-z3^3-b*z3-y1^2*z1-2*a*y1^3_
     -4*y1^5-c*y1^2+z1^3+b*z1
 --R 
@@ -472,7 +472,7 @@ Paramters $a,b,c$ and variables $x,y[2],z[2]$
 <<*>>=
 )clear all
 
---S 31
+--S 31 of 276
 t1:=3*z1^2+y1^2+b
 --R 
 --R
@@ -480,7 +480,7 @@ t1:=3*z1^2+y1^2+b
 --R   (1)  3z1  + y1  + b
 --E 31
 
---S 32
+--S 32 of 276
 t2:=3*z2^2+y2^2+b
 --R 
 --R
@@ -488,7 +488,7 @@ t2:=3*z2^2+y2^2+b
 --R   (2)  3z2  + y2  + b
 --E 32
 
---S 33
+--S 33 of 276
 t3:=x+2*y1*z1+3*a*y1^2+5*y1^4+2*c*y1
 --R 
 --R
@@ -496,7 +496,7 @@ t3:=x+2*y1*z1+3*a*y1^2+5*y1^4+2*c*y1
 --R   (3)  2y1 z1 + 5y1  + 3a y1  + 2c y1 + x
 --E 33
 
---S 34
+--S 34 of 276
 t4:=x+2*y2*z2+3*a*y2^2+5*y2^4+2*c*y2
 --R 
 --R
@@ -504,7 +504,7 @@ t4:=x+2*y2*z2+3*a*y2^2+5*y2^4+2*c*y2
 --R   (4)  2y2 z2 + 5y2  + 3a y2  + 2c y2 + x
 --E 34
 
---S 35
+--S 35 of 276
 t5:=x*y1+z1^3+y1^2*z1+a*y1^3+y1^5+b*z1+c*y1^2-x*y2-z2^3-y2^2*z2_
     -a*y2^3-y2^5-b*z2-c*y2^2
 --R 
@@ -517,7 +517,7 @@ t5:=x*y1+z1^3+y1^2*z1+a*y1^3+y1^5+b*z1+c*y1^2-x*y2-z2^3-y2^2*z2_
 --R     y1  + a y1  + c y1  + x y1
 --E 35
 
---S 36
+--S 36 of 276
 t6:=(6*z1^2+18*a*z1*y1+6*y1-y1^3*z1+6*c*y1^2*z1-2*y1^2)_
     *(3*z2^2*y2+9*a*y2^2*z2+45*y2^4*z2-y2^3-3*x*z2+b*y2)_
     -(6*z2^2+18*a*z2*y2+60*y2^3*z2+6*c*y2^2*z2-2*y2^2)_
@@ -586,98 +586,98 @@ Variables $x[16]$
 <<*>>=
 )clear all
 
---S 37
+--S 37 of 276
 t1:=x4*x13 + x5*x14 + x6*(1-x13-x14)
 --R 
 --R
 --R   (1)  (- x14 - x13 + 1)x6 + x14 x5 + x13 x4
 --E 37
 
---S 38
+--S 38 of 276
 t2:=x4*x15 + x5*x16 - x6*(x15+x16)
 --R 
 --R
 --R   (2)  (- x16 - x15)x6 + x16 x5 + x15 x4
 --E 38
 
---S 39
+--S 39 of 276
 t3:=x7*x13 + x8*x14 + x9*(1-x13-x14)
 --R 
 --R
 --R   (3)  (- x14 - x13 + 1)x9 + x14 x8 + x13 x7
 --E 39
 
---S 40
+--S 40 of 276
 t4:=x7*x15 + x8*x16 - x9*(x15+x16)-1
 --R 
 --R
 --R   (4)  (- x16 - x15)x9 + x16 x8 + x15 x7 - 1
 --E 40
 
---S 41
+--S 41 of 276
 t5:=x10*x13 + x11*x14 + x12*(1-x13-x14)
 --R 
 --R
 --R   (5)  (- x12 + x11)x14 + (- x12 + x10)x13 + x12
 --E 41
 
---S 42
+--S 42 of 276
 t6:=x10*x15 + x11*x16 - x12*(x15+x16)
 --R 
 --R
 --R   (6)  (- x12 + x11)x16 + (- x12 + x10)x15
 --E 42
 
---S 43
+--S 43 of 276
 t7:=x1*x13 + x2*x14 + x3*(1-x13-x14)
 --R 
 --R
 --R   (7)  (- x14 - x13 + 1)x3 + x14 x2 + x1 x13
 --E 43
 
---S 44
+--S 44 of 276
 t8:=x1*x15 + x2*x16 - x3*(x15+x16)
 --R 
 --R
 --R   (8)  (- x16 - x15)x3 + x16 x2 + x1 x15
 --E 44
 
---S 45
+--S 45 of 276
 t9:=x1*x4*x13 + x2*x5*x14 + x3*x6*(1-x13-x14)-1
 --R 
 --R
 --R   (9)  (- x14 - x13 + 1)x3 x6 + x14 x2 x5 + x1 x13 x4 - 1
 --E 45
 
---S 46
+--S 46 of 276
 t10:=x1*x4*x15 + x2*x5*x16 - x3*x6*(x15+x16)
 --R 
 --R
 --R   (10)  (- x16 - x15)x3 x6 + x16 x2 x5 + x1 x15 x4
 --E 46
 
---S 47
+--S 47 of 276
 t11:=x1*x7*x13 + x2*x8*x14 + x3*x9*(1-x13-x14)
 --R 
 --R
 --R   (11)  (- x14 - x13 + 1)x3 x9 + x14 x2 x8 + x1 x13 x7
 --E 47
 
---S 48
+--S 48 of 276
 t12:=x1*x7*x15 + x2*x8*x16 - x3*x9*(x15+x16)
 --R 
 --R
 --R   (12)  (- x16 - x15)x3 x9 + x16 x2 x8 + x1 x15 x7
 --E 48
 
---S 49
+--S 49 of 276
 t13:=x1*x10*x13 + x2*x11*x14 + x3*x12*(1-x13-x14)
 --R 
 --R
 --R   (13)  (- x12 x14 - x12 x13 + x12)x3 + x11 x14 x2 + x1 x10 x13
 --E 49
 
---S 50
+--S 50 of 276
 t14:=x1*x10*x15 + x2*x11*x16 - x3*x12*(x15+x16)-1
 --R 
 --R
@@ -690,7 +690,7 @@ Variables $x,y,z,t$
 <<*>>=
 )clear all
 
---S 51
+--S 51 of 276
 t1:=2*x^2-2*y^2+2*z^2-2*t^2-1
 --R 
 --R
@@ -698,7 +698,7 @@ t1:=2*x^2-2*y^2+2*z^2-2*t^2-1
 --R   (1)  2z  - 2y  + 2x  - 2t  - 1
 --E 51
 
---S 52
+--S 52 of 276
 t2:=2*x^3-2*y^3+2*z^3-2*t^3-1
 --R 
 --R
@@ -706,7 +706,7 @@ t2:=2*x^3-2*y^3+2*z^3-2*t^3-1
 --R   (2)  2z  - 2y  + 2x  - 2t  - 1
 --E 52
 
---S 53
+--S 53 of 276
 t3:=2*x^4-2*y^4+2*z^4-2*t^4-1
 --R 
 --R
@@ -714,7 +714,7 @@ t3:=2*x^4-2*y^4+2*z^4-2*t^4-1
 --R   (3)  2z  - 2y  + 2x  - 2t  - 1
 --E 53
 
---S 54
+--S 54 of 276
 t4:=2*x^5-2*y^5+2*z^5-2*t^5-1
 --R 
 --R
@@ -728,7 +728,7 @@ Variables $x,y,z,t,u$
 <<*>>=
 )clear all
 
---S 55
+--S 55 of 276
 t1:=2*x^2-2*y^2+2*z^2-2*t^2+2*u^2-1
 --R 
 --R
@@ -736,7 +736,7 @@ t1:=2*x^2-2*y^2+2*z^2-2*t^2+2*u^2-1
 --R   (1)  2z  - 2y  + 2x  + 2u  - 2t  - 1
 --E 55
 
---S 56
+--S 56 of 276
 t2:=2*x^3-2*y^3+2*z^3-2*t^3+2*u^3-1
 --R 
 --R
@@ -744,7 +744,7 @@ t2:=2*x^3-2*y^3+2*z^3-2*t^3+2*u^3-1
 --R   (2)  2z  - 2y  + 2x  + 2u  - 2t  - 1
 --E 56
 
---S 57
+--S 57 of 276
 t3:=2*x^4-2*y^4+2*z^4-2*t^4+2*u^4-1
 --R 
 --R
@@ -752,7 +752,7 @@ t3:=2*x^4-2*y^4+2*z^4-2*t^4+2*u^4-1
 --R   (3)  2z  - 2y  + 2x  + 2u  - 2t  - 1
 --E 57
 
---S 58
+--S 58 of 276
 t4:=2*x^5-2*y^5+2*z^5-2*t^5+2*u^5-1
 --R 
 --R
@@ -760,7 +760,7 @@ t4:=2*x^5-2*y^5+2*z^5-2*t^5+2*u^5-1
 --R   (4)  2z  - 2y  + 2x  + 2u  - 2t  - 1
 --E 58
 
---S 59
+--S 59 of 276
 t5:=2*x^6-2*y^6+2*z^6-2*t^6+2*u^6-1
 --R 
 --R
@@ -779,7 +779,7 @@ Variables $x,y,z,t,u,v,w$
 <<*>>=
 )clear all
 
---S 60
+--S 60 of 276
 t1:=y*w-1/2*z*w+t*w
 --R 
 --R
@@ -788,7 +788,7 @@ t1:=y*w-1/2*z*w+t*w
 --R          2
 --E 60
 
---S 61
+--S 61 of 276
 t2:=-2/7*u*w^2+10/7*v*w^2-20/7*w^3+t*u-5*t*v+10*t*w
 --R 
 --R
@@ -797,7 +797,7 @@ t2:=-2/7*u*w^2+10/7*v*w^2-20/7*w^3+t*u-5*t*v+10*t*w
 --R           7        7     7
 --E 61
 
---S 62
+--S 62 of 276
 t3:=2/7*y*w^2-2/7*z*w^2+6/7*t*w^2-y*t+z*t-3*t^2
 --R 
 --R
@@ -806,7 +806,7 @@ t3:=2/7*y*w^2-2/7*z*w^2+6/7*t*w^2-y*t+z*t-3*t^2
 --R           7             7            7
 --E 62
 
---S 63
+--S 63 of 276
 t4:=-2*v^3+4*u*v*w+5*v^2*w-6*u*w^2-7*v*w^2+15*w^3+42*y*v_
     -14*z*v-63*y*w+21*z*w-42*t*w+147*x
 --R 
@@ -819,7 +819,7 @@ t4:=-2*v^3+4*u*v*w+5*v^2*w-6*u*w^2-7*v*w^2+15*w^3+42*y*v_
 --R     (5v  + 4u v - 42t)w - 2v
 --E 63
 
---S 64
+--S 64 of 276
 t5:=-9/7*u*w^3+45/7*v*w^3-135/7*w^4+2*z*v^2-2*t*v^2-4*z*u*w+10*t*u*w_
     -2*z*v*w-28*t*v*w+4*z*w^2+86*t*w^2-42*y*z+14*z^2+42*y*t_
     -14*z*t-21*x*u+105*x*v-315*x*w
@@ -837,7 +837,7 @@ t5:=-9/7*u*w^3+45/7*v*w^3-135/7*w^4+2*z*v^2-2*t*v^2-4*z*u*w+10*t*u*w_
 --R     (- 28t v + 10t u)w - 2t v
 --E 64
 
---S 65
+--S 65 of 276
 t6:=6/7*y*w^3-9/7*z*w^3+36/7*t*w^3-2*x*v^2-4*y*t*w+6*z*t*w_
     -24*t^2*w+4*x*u*w+2*x*v*w-4*x*w^2+56*x*y-35*x*z+84*x*t
 --R 
@@ -852,7 +852,7 @@ t6:=6/7*y*w^3-9/7*z*w^3+36/7*t*w^3-2*x*v^2-4*y*t*w+6*z*t*w_
 --R                                          7
 --E 65
 
---S 66
+--S 66 of 276
 t7:=2*u*v*w-6*v^2*w-u*w^2+13*v*w^2-5*w^3+14*y*w-28*t*w
 --R 
 --R
@@ -860,7 +860,7 @@ t7:=2*u*v*w-6*v^2*w-u*w^2+13*v*w^2-5*w^3+14*y*w-28*t*w
 --R   (7)  14w y - 5w  + (13v - u)w  + (- 6v  + 2u v - 28t)w
 --E 66
 
---S 67
+--S 67 of 276
 t8:=u^2*w-3*u*v*w+5*u*w^2+14*y*w-28*t*w
 --R 
 --R
@@ -868,7 +868,7 @@ t8:=u^2*w-3*u*v*w+5*u*w^2+14*y*w-28*t*w
 --R   (8)  14w y + 5u w  + (- 3u v + u  - 28t)w
 --E 67
 
---S 68
+--S 68 of 276
 t9:=-2*z*u*w-2*t*u*w+4*y*v*w+6*z*v*w-2*t*v*w-16*y*w^2_
     -10*z*w^2+22*t*w^2+42*x*w
 --R 
@@ -878,7 +878,7 @@ t9:=-2*z*u*w-2*t*u*w+4*y*v*w+6*z*v*w-2*t*v*w-16*y*w^2_
 --R   (- 10w  + (6v - 2u)w)z + (- 16w  + 4v w)y + 42w x + 22t w  + (- 2t v - 2t u)w
 --E 68
 
---S 69
+--S 69 of 276
 t10:=28/3*y*u*w+8/3*z*u*w-20/3*t*u*w-88/3*y*v*w-8*z*v*w_
     +68/3*t*v*w+52*y*w^2+40/3*z*w^2-44*t*w^2-84*x*w
 --R 
@@ -893,7 +893,7 @@ t10:=28/3*y*u*w+8/3*z*u*w-20/3*t*u*w-88/3*y*v*w-8*z*v*w_
 --R       3        3
 --E 69
 
---S 70
+--S 70 of 276
 t11:=-4*y*z*w+10*y*t*w+8*z*t*w-20*t^2*w+12*x*u*w-30*x*v*w+15*x*w^2
 --R 
 --R
@@ -901,7 +901,7 @@ t11:=-4*y*z*w+10*y*t*w+8*z*t*w-20*t^2*w+12*x*u*w-30*x*v*w+15*x*w^2
 --R   (11)  (- 4w y + 8t w)z + 10t w y + (15w  + (- 30v + 12u)w)x - 20t w
 --E 70
 
---S 71
+--S 71 of 276
 t12:=-y^2*w+1/2*y*z*w+y*t*w-z*t*w+2*t^2*w-3*x*u*w+6*x*v*w-3*x*w^2
 --R 
 --R
@@ -910,7 +910,7 @@ t12:=-y^2*w+1/2*y*z*w+y*t*w-z*t*w+2*t^2*w-3*x*u*w+6*x*v*w-3*x*w^2
 --R          2
 --E 71
 
---S 72
+--S 72 of 276
 t13:=8*x*y*w-4*x*z*w+8*x*t*w
 --R 
 --R
@@ -923,7 +923,7 @@ Variables $x,y,z,t,u$
 <<*>>=
 )clear all
 
---S 73
+--S 73 of 276
 t1:=35*y^4-30*x*y^2-210*y^2*z+3*x^2+30*x*z-105*z^2+140*y*t-21*u
 --R 
 --R
@@ -931,7 +931,7 @@ t1:=35*y^4-30*x*y^2-210*y^2*z+3*x^2+30*x*z-105*z^2+140*y*t-21*u
 --R   (1)  - 105z  + (- 210y  + 30x)z + 35y  - 30x y  + 140t y + 3x  - 21u
 --E 73
 
---S 74
+--S 74 of 276
 t2:=5*x*y^3-140*y^3*z-3*x^2*y+45*x*y*z-420*y*z^2+210*y^2*t_
     -25*x*t+70*z*t+126*y*u
 --R 
@@ -949,7 +949,7 @@ Variables $x,y,z,t$
 <<*>>=
 )clear all
 
---S 75
+--S 75 of 276
 t1:=6*x*y^2*t-x^2*z*t-6*x*y*z*t+3*x*z^2*t-2*z^3*t-6*x*y^2+6*x*y*z-2*x*z^2
 --R 
 --R
@@ -957,7 +957,7 @@ t1:=6*x*y^2*t-x^2*z*t-6*x*y*z*t+3*x*z^2*t-2*z^3*t-6*x*y^2+6*x*y*z-2*x*z^2
 --R   (1)  - 2t z  + (3t - 2)x z  + ((- 6t + 6)x y - t x )z + (6t - 6)x y
 --E 75
 
---S 76
+--S 76 of 276
 t2:=-63*x*y^2*t^2+9*x^2*z*t^2+63*x*y*z*t^2+18*y^2*z*t^2-27*x*z^2*t^2_
     -18*y*z^2*t^2+18*z^3*t^2+78*x*y^2*t-78*x*y*z*t-18*y^2*z*t_
     +24*x*z^2*t+18*y*z^2*t-9*z^3*t-15*x*y^2+15*x*y*z-5*x*z^2
@@ -971,7 +971,7 @@ t2:=-63*x*y^2*t^2+9*x^2*z*t^2+63*x*y*z*t^2+18*y^2*z*t^2-27*x*z^2*t^2_
 --R     ((18t  - 18t)y  + (63t  - 78t + 15)x y + 9t x )z + (- 63t  + 78t - 15)x y
 --E 76
 
---S 77
+--S 77 of 276
 t3:=18*x^2*y^2*t-3*x^3*z*t-18*x^2*y*z*t+12*x*y^2*z*t+5*x^2*z^2*t_
     -12*x*y*z^2*t+6*x*z^3*t-8*z^4*t-18*x^2*y^2+18*x^2*y*z-12*x*y^2*z_
     -4*x^2*z^2+12*x*y*z^2-6*x*z^3
@@ -985,7 +985,7 @@ t3:=18*x^2*y^2*t-3*x^3*z*t-18*x^2*y*z*t+12*x*y^2*z*t+5*x^2*z^2*t_
 --R     ((12t - 12)x y  + (- 18t + 18)x y - 3t x )z + (18t - 18)x y
 --E 77
 
---S 78
+--S 78 of 276
 t4:=-x^2*y*t+3*x*y^2*t+10*y^3*t-15*y^2*z*t+3*y*z^2*t-3*x*y^2-10*y^3+x*y*z_
     +15*y^2*z-5*y*z^2
 --R 
@@ -1001,14 +1001,14 @@ Variables $x,y,z,t,u,v,w,a,b,c$
 <<*>>=
 )clear all
 
---S 79
+--S 79 of 276
 t1:=y*t-y*u-u*b+u*c
 --R 
 --R
 --R   (1)  (- u + t)y + (c - b)u
 --E 79
 
---S 80
+--S 80 of 276
 t2:=2*x*y^2*t-x*y^2*u-2*y^2*t*v+y^2*u*v-x*y*z*a+12*x*t^2*a-4*x*t*u*a_
     -x*u^2*a+y*z*v*a-2*t*u*v*a+u^2*v*a-x*u*w*a+u*v*w*a-6*x*z*a*b
 --R 
@@ -1021,7 +1021,7 @@ t2:=2*x*y^2*t-x*y^2*u-2*y^2*t*v+y^2*u*v-x*y*z*a+12*x*t^2*a-4*x*t*u*a_
 --R     (- a u w - a u  - 4a t u + 12a t )x + a u v w + (a u  - 2a t u)v
 --E 80
 
---S 81
+--S 81 of 276
 t3:=x*y^2*z-y^2*z*v+6*x*z*t*a+x*z*u*a-z*u*v*a-2*x*y*z*b+2*y*z*v*b_
     -2*x*u*w*b+2*u*v*w*b-12*x*z*b^2+x*y*z*c-y*z*v*c+x*u*w*c_
     -u*v*w*c+6*x*z*b*c
@@ -1038,14 +1038,14 @@ t3:=x*y^2*z-y^2*z*v+6*x*z*t*a+x*z*u*a-z*u*v*a-2*x*y*z*b+2*y*z*v*b_
 --R     (c - 2b)u w x + (- c + 2b)u v w
 --E 81
 
---S 82
+--S 82 of 276
 t4:=x*y*u-y*u*v+3*x*z*a+3*x*t*b+x*u*b-u*v*b
 --R 
 --R
 --R   (4)  3a x z + (u x - u v)y + (b u + 3b t)x - b u v
 --E 82
 
---S 83
+--S 83 of 276
 t5:=5*x^2*y*t-5*x^2*y*u-10*x*y*t*v+10*x*y*u*v+5*y*t*v^2-5*y*u*v^2_
     -6*x^2*z*a-12*x*z*v*a+4*x^2*t*b-7*x^2*u*b+16*x*t*v*b+8*x*u*v*b_
     -2*t*v^2*b-u*v^2*b+8*x^2*t*c+x^2*u*c-10*x*t*v*c-2*x*u*v*c_
@@ -1063,7 +1063,7 @@ t5:=5*x^2*y*t-5*x^2*y*u-10*x*y*t*v+10*x*y*u*v+5*y*t*v^2-5*y*u*v^2_
 --R     ((c - b)u + (2c - 2b)t)v
 --E 83
 
---S 84
+--S 84 of 276
 t6:=-9*x^4*t*v*c+9*x^4*u*v*c-18*x^3*t*v^2*c-9*x^3*u*v^2*c+3*x^4*y*t_
     -4*x^4*y*u-9*x^3*y*t*v+10*x^3*y*u*v+9*x^2*y*t*v^2-6*x^2*y*u*v^2_
     -3*x*y*t*v^3-2*x*y*u*v^3+2*y*u*v^4-6*x^4*z*a-45*x^3*z*v*a_
@@ -1093,14 +1093,14 @@ t6:=-9*x^4*t*v*c+9*x^4*u*v*c-18*x^3*t*v^2*c-9*x^3*u*v^2*c+3*x^4*y*t_
 --R     (- b u - 3b t)v x + b u v
 --E 84
 
---S 85
+--S 85 of 276
 t7:=w*b-t*c+u*c-w*c
 --R 
 --R
 --R   (7)  (- c + b)w + c u - c t
 --E 85
 
---S 86
+--S 86 of 276
 t8:=-6*z*t*v*a+x*z*w*a-z*v*w*a-2*x*w^2*b+2*v*w^2*b+12*z*v*b^2_
     +x*y*z*c-y*z*v*c+x*w^2*c-v*w^2*c-2*x*z*b*c-4*z*v*b*c+x*z*c^2-z*v*c^2
 --R 
@@ -1113,7 +1113,7 @@ t8:=-6*z*t*v*a+x*z*w*a-z*v*w*a-2*x*w^2*b+2*v*w^2*b+12*z*v*b^2_
 --R     (c - 2b)w x + (- c + 2b)v w
 --E 86
 
---S 87
+--S 87 of 276
 t9:=-12*t^2*v*a+6*t*u*v*a+2*x*t*w*a-x*u*w*a-2*t*v*w*a+u*v*w*a_
     -x*w^2*a+v*w^2*a+6*z*v*a*b+2*x*y*t*c-x*y*u*c-2*y*t*v*c+y*u*v*c_
     -x*z*a*c+z*v*a*c
@@ -1126,14 +1126,14 @@ t9:=-12*t^2*v*a+6*t*u*v*a+2*x*t*w*a-x*u*w*a-2*t*v*w*a+u*v*w*a_
 --R   (- a w  + (- a u + 2a t)w)x + a v w  + (a u - 2a t)v w + (6a t u - 12a t )v
 --E 87
 
---S 88
+--S 88 of 276
 t10:=3*z*v*a+3*t*v*b-x*t*c+t*v*c-x*w*c+v*w*c
 --R 
 --R
 --R   (10)  3a v z + (- c w - c t)x + c v w + (c + 3b)t v
 --E 88
 
---S 89
+--S 89 of 276
 t11:=-12*x*z*v*a-6*z*v^2*a-2*x^2*t*b+2*x^2*u*b+16*x*t*v*b-10*x*u*v*b_
     +4*t*v^2*b+8*u*v^2*b+5*x^2*w*b-10*x*v*w*b+5*v^2*w*b-x^2*t*c_
     +x^2*u*c+8*x*t*v*c-2*x*u*v*c-7*t*v^2*c+u*v^2*c-5*x^2*w*c_
@@ -1151,7 +1151,7 @@ t11:=-12*x*z*v*a-6*z*v^2*a-2*x^2*t*b+2*x^2*u*b+16*x*t*v*b-10*x*u*v*b_
 --R     ((c + 8b)u + (- 7c + 4b)t)v
 --E 89
 
---S 90
+--S 90 of 276
 t12:=-18*x^2*u*v^3*b-9*x*u*v^4*b-9*x^2*u*v^3*c+9*x*u*v^4*c-3*x^3*z*v*a_
     -27*x^2*z*v^2*a-45*x*z*v^3*a-6*z*v^4*a-3*x^3*t*v*b_
     -27*x^2*t*v^2*b-45*x*t*v^3*b-6*t*v^4*b-3*x^3*v*w*b_
@@ -1183,70 +1183,70 @@ Varables $x,y,z,t,u,v,a,A,B,C,D,E,F$
 <<*>>=
 )clear all
 
---S 91
+--S 91 of 276
 t1:=v*A
 --R 
 --R
 --R   (1)  A v
 --E 91
 
---S 92
+--S 92 of 276
 t2:=u*A+14*B
 --R 
 --R
 --R   (2)  A u + 14B
 --E 92
 
---S 93
+--S 93 of 276
 t3:=z*A
 --R 
 --R
 --R   (3)  A z
 --E 93
 
---S 94
+--S 94 of 276
 t4:=u*a*A+3*z*A+2*t*A+168*B
 --R 
 --R
 --R   (4)  3A z + A a u + 2A t + 168B
 --E 94
 
---S 95
+--S 95 of 276
 t5:=y*A+5*u*B
 --R 
 --R
 --R   (5)  A y + 5B u
 --E 95
 
---S 96
+--S 96 of 276
 t6:=5*v*C+21*D
 --R 
 --R
 --R   (6)  5C v + 21D
 --E 96
 
---S 97
+--S 97 of 276
 t7:=10*u*C+14*E
 --R 
 --R
 --R   (7)  10C u + 14E
 --E 97
 
---S 98
+--S 98 of 276
 t8:=-5*y*C-u*E+105*F
 --R 
 --R
 --R   (8)  - 5C y - E u + 105F
 --E 98
 
---S 99
+--S 99 of 276
 t9:=5*z*C+2*u*D
 --R 
 --R
 --R   (9)  5C z + 2D u
 --E 99
 
---S 100
+--S 100 of 276
 t10:=-2/7*v^2+t-4*u-A
 --R 
 --R
@@ -1255,7 +1255,7 @@ t10:=-2/7*v^2+t-4*u-A
 --R           7
 --E 100
 
---S 101
+--S 101 of 276
 t11:=-2/7*u^2+y-B
 --R 
 --R
@@ -1264,14 +1264,14 @@ t11:=-2/7*u^2+y-B
 --R             7
 --E 101
 
---S 102
+--S 102 of 276
 t12:=7*u-C
 --R 
 --R
 --R   (12)  7u - C
 --E 102
 
---S 103
+--S 103 of 276
 t13:=3/7*v^3-2*t*v+6*u*v-7*z-D
 --R 
 --R
@@ -1280,7 +1280,7 @@ t13:=3/7*v^3-2*t*v+6*u*v-7*z-D
 --R                7
 --E 103
 
---S 104
+--S 104 of 276
 t14:=9/7*u*v^2-2*t*u+16*u^2-6*z*v-42*y-E
 --R 
 --R
@@ -1289,7 +1289,7 @@ t14:=9/7*u*v^2-2*t*u+16*u^2-6*z*v-42*y-E
 --R                        7
 --E 104
 
---S 105
+--S 105 of 276
 t15:=3/7*u^3-2*y*u+7*x-F
 --R 
 --R
@@ -1304,7 +1304,7 @@ Variables $x,y,z,t$
 <<*>>=
 )clear all
 
---S 106
+--S 106 of 276
 t1:=-2*y^3*z+6*x^2*z*t-6*x*y*z*t+3*y^2*z*t-y*z*t^2-6*x^2*t+6*x*y*t-2*y^2*t
 --R 
 --R
@@ -1312,7 +1312,7 @@ t1:=-2*y^3*z+6*x^2*z*t-6*x*y*z*t+3*y^2*z*t-y*z*t^2-6*x^2*t+6*x*y*t-2*y^2*t
 --R   (1)  (- 2y  + 3t y  + (- 6t x - t )y + 6t x )z - 2t y  + 6t x y - 6t x
 --E 106
 
---S 107
+--S 107 of 276
 t1:=18*x^2*y*z^2-18*x*y^2*z^2+18*y^2*z^2-63*x^2*z^2*t+63*x*y*z^2*t_
     -27*y^2*z^2*t+9*y*z^2*t^2-18*x^2*y*z+18*x*y^2*z-9*y^3*z_
     +78*x^2*z*t-78*x*y*z*t+24*y^2*z*t-15*x^2*t+15*x*y*t-5*y^2*t
@@ -1329,7 +1329,7 @@ t1:=18*x^2*y*z^2-18*x*y^2*z^2+18*y^2*z^2-63*x^2*z^2*t+63*x*y*z^2*t_
 --R     - 15t x
 --E 107
 
---S 108
+--S 108 of 276
 t1:=-8*y^4*z+12*x^2*y*z*t-12*x*y^2*z*t+6*y^3*z*t+18*x^2*z*t^2_
     -18*x*y*z*t^2+5*y^2*z*t^2-3*y*z*t^3-12*x^2*y*t+12*x*y^2*t_
     -6*y^3*t-18*x^2*t^2+18*x*y*t^2-4*y^2*t^2
@@ -1343,7 +1343,7 @@ t1:=-8*y^4*z+12*x^2*y*z*t-12*x*y^2*z*t+6*y^3*z*t+18*x^2*z*t^2_
 --R     - 6t y  + (12t x - 4t )y  + (- 12t x  + 18t x)y - 18t x
 --E 108
 
---S 109
+--S 109 of 276
 t1:=10*x^3*z-15*x^2*y*z+3*x*y^3*z+3*x^2*z*t-x*z*t^2-10*x^3+15*x^2*y_
     -5*x*y^2-3*x^2*t+x*y*t
 --R 
@@ -1359,28 +1359,28 @@ Variables $a,b,c,d,e,f,g,h$
 <<*>>=
 )clear all
 
---S 110
+--S 110 of 276
 t1:=a-f
 --R 
 --R
 --R   (1)  - f + a
 --E 110
 
---S 111
+--S 111 of 276
 t2:=b-g-h
 --R 
 --R
 --R   (2)  - h - g + b
 --E 111
 
---S 112
+--S 112 of 276
 t3:=c+d+e-1
 --R 
 --R
 --R   (3)  e + d + c - 1
 --E 112
 
---S 113
+--S 113 of 276
 t4:=b*c+a*d-1/2
 --R 
 --R
@@ -1389,7 +1389,7 @@ t4:=b*c+a*d-1/2
 --R                    2
 --E 113
 
---S 114
+--S 114 of 276
 t5:=b^2*c+a^2*d-1/3
 --R 
 --R
@@ -1398,7 +1398,7 @@ t5:=b^2*c+a^2*d-1/3
 --R                    3
 --E 114
 
---S 115
+--S 115 of 276
 t6:=a*c*g-1/6
 --R 
 --R
@@ -1413,14 +1413,14 @@ Variables $a,b,c,d,e,f,g,h,i,j,k,l,m$
 <<*>>=
 )clear all
 
---S 116
+--S 116 of 276
 t1:=d+e+f+g-1
 --R 
 --R
 --R   (1)  g + f + e + d - 1
 --E 116
 
---S 117
+--S 117 of 276
 t2:=c*d+b*e+a*f-1/2
 --R 
 --R
@@ -1429,7 +1429,7 @@ t2:=c*d+b*e+a*f-1/2
 --R                          2
 --E 117
 
---S 118
+--S 118 of 276
 t3:=c^2*d+b^2*e+a^2*f-1/3
 --R 
 --R
@@ -1438,7 +1438,7 @@ t3:=c^2*d+b^2*e+a^2*f-1/3
 --R                          3
 --E 118
 
---S 119
+--S 119 of 276
 t4:=a*e*i+a*d*l+b*d*m-1/6
 --R 
 --R
@@ -1447,7 +1447,7 @@ t4:=a*e*i+a*d*l+b*d*m-1/6
 --R                                6
 --E 119
 
---S 120
+--S 120 of 276
 t5:=c^3*d+b^3*e+a^3*f-1/4
 --R 
 --R
@@ -1456,7 +1456,7 @@ t5:=c^3*d+b^3*e+a^3*f-1/4
 --R                          4
 --E 120
 
---S 121
+--S 121 of 276
 t6:=a*b*e*i+a*c*d*l+b*c*d*m-1/8
 --R 
 --R
@@ -1465,7 +1465,7 @@ t6:=a*b*e*i+a*c*d*l+b*c*d*m-1/8
 --R                                      8
 --E 121
 
---S 122
+--S 122 of 276
 t7:=a^2*e*i+a^2*d*l+b^2*d*m-1/2
 --R 
 --R
@@ -1474,7 +1474,7 @@ t7:=a^2*e*i+a^2*d*l+b^2*d*m-1/2
 --R                                2
 --E 122
 
---S 123
+--S 123 of 276
 t8:=a*d*i*m-1/24
 --R 
 --R
@@ -1483,21 +1483,21 @@ t8:=a*d*i*m-1/24
 --R                  24
 --E 123
 
---S 124
+--S 124 of 276
 t9:=a-h
 --R 
 --R
 --R   (9)  - h + a
 --E 124
 
---S 125
+--S 125 of 276
 t10:=b-i-j
 --R 
 --R
 --R   (10)  - j - i + b
 --E 125
 
---S 126
+--S 126 of 276
 t11:=c-k-l-m
 --R 
 --R
@@ -1510,7 +1510,7 @@ Variables $a,b,c,d,e,f,g,h,i,j,k,l,m,n$
 <<*>>=
 )clear all
 
---S 127
+--S 127 of 276
 t1:=a*e+b*f+c*g+d*h-1/2
 --R 
 --R
@@ -1519,7 +1519,7 @@ t1:=a*e+b*f+c*g+d*h-1/2
 --R                                2
 --E 127
 
---S 128
+--S 128 of 276
 t2:=a^2*e+b^2*f+c^2*g+d^2*h-1/3
 --R 
 --R
@@ -1528,7 +1528,7 @@ t2:=a^2*e+b^2*f+c^2*g+d^2*h-1/3
 --R                                3
 --E 128
 
---S 129
+--S 129 of 276
 t3:=a*f*i+a*g*j+b*g*k+a*h*l+b*h*m+c*h*n-1/6
 --R 
 --R
@@ -1537,7 +1537,7 @@ t3:=a*f*i+a*g*j+b*g*k+a*h*l+b*h*m+c*h*n-1/6
 --R                                                        6
 --E 129
 
---S 130
+--S 130 of 276
 t4:=a^3*e+b^3*f+c^3*g+d^3*h-1/4
 --R 
 --R
@@ -1546,7 +1546,7 @@ t4:=a^3*e+b^3*f+c^3*g+d^3*h-1/4
 --R                                4
 --E 130
 
---S 131
+--S 131 of 276
 t5:=a*b*f*i+a*c*g*j+b*c*g*k+a*d*h*l+b*d*h*m+c*d*h*n-1/8
 --R 
 --R
@@ -1555,7 +1555,7 @@ t5:=a*b*f*i+a*c*g*j+b*c*g*k+a*d*h*l+b*d*h*m+c*d*h*n-1/8
 --R                                                                    8
 --E 131
 
---S 132
+--S 132 of 276
 t6:=a^2*f*i+a^2*g*j+b^2*g*k+a^2*h*l+b^2*h*m+c^2*h*n-1/12
 --R 
 --R
@@ -1564,7 +1564,7 @@ t6:=a^2*f*i+a^2*g*j+b^2*g*k+a^2*h*l+b^2*h*m+c^2*h*n-1/12
 --R                                                        12
 --E 132
 
---S 133
+--S 133 of 276
 t7:=a*g*i*k+a*h*i*m+a*h*j*n+b*h*k*n-1/24
 --R 
 --R
@@ -1573,7 +1573,7 @@ t7:=a*g*i*k+a*h*i*m+a*h*j*n+b*h*k*n-1/24
 --R                                               24
 --E 133
 
---S 134
+--S 134 of 276
 t8:=a^4*e+b^4*f+c^4*g+d^4*h-1/5
 --R 
 --R
@@ -1582,7 +1582,7 @@ t8:=a^4*e+b^4*f+c^4*g+d^4*h-1/5
 --R                                5
 --E 134
 
---S 135
+--S 135 of 276
 t9:=a*b^2*f*i+a*c^2*g*j+b*c^2*g*k+ad^2*h*l+b*d^2*h*m+c*d^2*h*n-1/10
 --R 
 --R
@@ -1591,7 +1591,7 @@ t9:=a*b^2*f*i+a*c^2*g*j+b*c^2*g*k+ad^2*h*l+b*d^2*h*m+c*d^2*h*n-1/10
 --R                                                                   10
 --E 135
 
---S 136
+--S 136 of 276
 t10:=a^2*b*f*i+a^2*c*g*j+b^2*c*g*k+a^3*h*l+b^2*d*h*m+c^2*d*h*n-1/15
 --R 
 --R
@@ -1600,7 +1600,7 @@ t10:=a^2*b*f*i+a^2*c*g*j+b^2*c*g*k+a^3*h*l+b^2*d*h*m+c^2*d*h*n-1/15
 --R                                                                   15
 --E 136
 
---S 137
+--S 137 of 276
 t11:=a*c*g*i*k+a*d*h*i*m+a*d*h*j*n+b*d*h*k*n-1/30
 --R 
 --R
@@ -1609,7 +1609,7 @@ t11:=a*c*g*i*k+a*d*h*i*m+a*d*h*j*n+b*d*h*k*n-1/30
 --R                                                        30
 --E 137
 
---S 138
+--S 138 of 276
 t12:=a^2*f*i^2+a^2*g*j^2+2*a*b*g*j*k+b^2*g*k^2+a^2*h*l^2+2*a*b*h*l*m
     +b^2*h*m^2+2*a*c*h*l*n+2*b*c*h*m*n+c^2*h*n^2-1/20
 --R 
@@ -1623,7 +1623,7 @@ t12:=a^2*f*i^2+a^2*g*j^2+2*a*b*g*j*k+b^2*g*k^2+a^2*h*l^2+2*a*b*h*l*m
 --R                                    20
 --E 138
 
---S 139
+--S 139 of 276
 t13:=a^2*f*i+a^3*g*j+b^3*g*k+a^3*h*l+b^3*h*m+c^3*h*n-1/20
 --R 
 --R
@@ -1632,7 +1632,7 @@ t13:=a^2*f*i+a^3*g*j+b^3*g*k+a^3*h*l+b^3*h*m+c^3*h*n-1/20
 --R                                                         20
 --E 139
 
---S 140
+--S 140 of 276
 t14:=a*b*g*i*k+a*b*h*i*m+a*c*h*j*n+b*c*h*k*n-1/40
 --R 
 --R
@@ -1641,7 +1641,7 @@ t14:=a*b*g*i*k+a*b*h*i*m+a*c*h*j*n+b*c*h*k*n-1/40
 --R                                                        40
 --E 140
 
---S 141
+--S 141 of 276
 t15:=a^2*g*i*k+a^2*h*i*m+a^2*h*j*n+b^2*h*k*n-1/60
 --R 
 --R
@@ -1650,7 +1650,7 @@ t15:=a^2*g*i*k+a^2*h*i*m+a^2*h*j*n+b^2*h*k*n-1/60
 --R                                                60
 --E 141
 
---S 142
+--S 142 of 276
 t16:=a*h*i*k*n-1/120
 --R 
 --R
@@ -1665,7 +1665,7 @@ Variables $a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t$
 <<*>>=
 )clear all
 
---S 143
+--S 143 of 276
 t1:=a*f+b*g+c*h+d*i+e*j-1/2
 --R 
 --R
@@ -1674,7 +1674,7 @@ t1:=a*f+b*g+c*h+d*i+e*j-1/2
 --R                                      2
 --E 143
 
---S 144
+--S 144 of 276
 t2:=a^2*f+b^2*g+c^2*h+d^2*i+e^2*j-1/3
 --R 
 --R
@@ -1683,7 +1683,7 @@ t2:=a^2*f+b^2*g+c^2*h+d^2*i+e^2*j-1/3
 --R                                      3
 --E 144
 
---S 145
+--S 145 of 276
 t3:=t*d*j+a*g*k+a*h*l+b*h*m+a*i*n+b*i*o+c*i*p+a*j*q+b*j*r+c*j*s-1/6
 --R 
 --R
@@ -1695,7 +1695,7 @@ t3:=t*d*j+a*g*k+a*h*l+b*h*m+a*i*n+b*i*o+c*i*p+a*j*q+b*j*r+c*j*s-1/6
 --R             6
 --E 145
 
---S 146
+--S 146 of 276
 t4:=a^3*f+b^3*g+c^3*h+d^3*i+e^3*j-1/4
 --R 
 --R
@@ -1704,7 +1704,7 @@ t4:=a^3*f+b^3*g+c^3*h+d^3*i+e^3*j-1/4
 --R                                      4
 --E 146
 
---S 147
+--S 147 of 276
 t5:=t*d*e*j+a*b*g*k+a*c*h*l+b*c*h*m+a*d*i*n+b*d*i*o+c*d*i*p+a*e*j*q_
     +b*e*j*r+c*e*j*s-1/8
 --R 
@@ -1717,7 +1717,7 @@ t5:=t*d*e*j+a*b*g*k+a*c*h*l+b*c*h*m+a*d*i*n+b*d*i*o+c*d*i*p+a*e*j*q_
 --R                                   8
 --E 147
 
---S 148
+--S 148 of 276
 t6:=t*d^2*j+a^2*g*k+a^2*h*l+b^2*h*m+a^2*i*n+b^2*i*o+c^2*i*p+a^2*j*g_
     +b^2*j*r+c^2*j*s-1/12
 --R 
@@ -1731,7 +1731,7 @@ t6:=t*d^2*j+a^2*g*k+a^2*h*l+b^2*h*m+a^2*i*n+b^2*i*o+c^2*i*p+a^2*j*g_
 --R             12
 --E 148
 
---S 149
+--S 149 of 276
 t7:=a*h*k*m+t*a*j*n+t*b*j*o+a*i*k*o+t*c*j*p+a*i*l*p+b*i*m*p+a*j*k*r_
     +a*j*l*s+b*j*m*s-1/24
 --R 
@@ -1744,7 +1744,7 @@ t7:=a*h*k*m+t*a*j*n+t*b*j*o+a*i*k*o+t*c*j*p+a*i*l*p+b*i*m*p+a*j*k*r_
 --R                         24
 --E 149
 
---S 150
+--S 150 of 276
 t8:=a^4*f+b^4*g+c^4*h+d^4*i+e^4*j-1/5
 --R 
 --R
@@ -1753,7 +1753,7 @@ t8:=a^4*f+b^4*g+c^4*h+d^4*i+e^4*j-1/5
 --R                                      5
 --E 150
 
---S 151
+--S 151 of 276
 t9:=t*d*e^2*j+a*b^2*g*k+a*c^2*h*l+b*c^2*h*m+a*d^2*i*n+b*d^2*i*o_
     +c*d^2*i*p+a*e^2*j*g+b*e^2*j*r+c*e^2*j*s-1/10
 --R 
@@ -1767,7 +1767,7 @@ t9:=t*d*e^2*j+a*b^2*g*k+a*c^2*h*l+b*c^2*h*m+a*d^2*i*n+b*d^2*i*o_
 --R                                   10
 --E 151
 
---S 152
+--S 152 of 276
 t10:=t*d^2*e*j+a^2*b*g*k+a^2*c*h*l+b^2*c*h*m+a^2*d*i*n+b^2*d*i*o_
     +c^2*d*i*p+a^2*e*j*q+b^2*e*j*r+c^2*e*j*s-1/15
 --R 
@@ -1781,7 +1781,7 @@ t10:=t*d^2*e*j+a^2*b*g*k+a^2*c*h*l+b^2*c*h*m+a^2*d*i*n+b^2*d*i*o_
 --R                                   15
 --E 152
 
---S 153
+--S 153 of 276
 t11:=a*c*h*k*m+t*a*e*j*n+t*b*e*j*o+a*d*i*k*o+t*c*e*j*p+a*d*i*l*p_
     +b*d*i*m*p+a*e*j*k*r+a*e*j*l*s+b*e*j*m*s-1/30
 --R 
@@ -1794,7 +1794,7 @@ t11:=a*c*h*k*m+t*a*e*j*n+t*b*e*j*o+a*d*i*k*o+t*c*e*j*p+a*d*i*l*p_
 --R                                                    30
 --E 153
 
---S 154
+--S 154 of 276
 t12:=t^2*d^2*j+a^2*g*k^2+a^2*h*l^2+2*a*b*h*l*m+b^2*h*m^2+a^2*i*n^2_
     +2*a*b*i*n*o+b^2*i*o^2+2*a*c*i*n*p+2*b*c*i*o*p+c^2*i*p^2_
     +2*t*a*d*j*q+a^2*j*q^2+2*t*b*d*j*r+2*a*b*j*q*r+b^2*j*r^2_
@@ -1816,7 +1816,7 @@ t12:=t^2*d^2*j+a^2*g*k^2+a^2*h*l^2+2*a*b*h*l*m+b^2*h*m^2+a^2*i*n^2_
 --R                       20
 --E 154
 
---S 155
+--S 155 of 276
 t13:=t*d^3*j+a^3*g*k+a^3*h*l+b^3*h*m+a^3*i*n+b^3*i*o+c^3*i*p_
     +a^3*j*q+b^3*j*r+c^3*j*s-1/20
 --R 
@@ -1830,7 +1830,7 @@ t13:=t*d^3*j+a^3*g*k+a^3*h*l+b^3*h*m+a^3*i*n+b^3*i*o+c^3*i*p_
 --R             20
 --E 155
 
---S 156
+--S 156 of 276
 t14:=a*b*h*k*m+t*a*d*j*n+t*b*d*j*o+a*b*i*k*o+t*c*d*j*p+a*c*i*l*p_
     +b*c*i*m*p+a*b*j*k*r+a*c*j*l*s+b*c*j*m*s-1/40
 --R 
@@ -1843,7 +1843,7 @@ t14:=a*b*h*k*m+t*a*d*j*n+t*b*d*j*o+a*b*i*k*o+t*c*d*j*p+a*c*i*l*p_
 --R                                                    40
 --E 156
 
---S 157
+--S 157 of 276
 t15:=a^2*h*k*m+t*a^2*j*n+t*b^2*j*o+a^2*i*k*o+t*c^2*j*p+a^2*i*l*p_
     +b^2*i*m*p+a^2*j*k*r+a^2*j*l*s+b^2*j*m*s-1/60
 --R 
@@ -1857,7 +1857,7 @@ t15:=a^2*h*k*m+t*a^2*j*n+t*b^2*j*o+a^2*i*k*o+t*c^2*j*p+a^2*i*l*p_
 --R                         60
 --E 157
 
---S 158
+--S 158 of 276
 t16:=t*a*j*k*o+t*a*j*l*p+t*b*j*m*p+a*i*k*m*p+a*j*k*m*s-1/20
 --R 
 --R
@@ -1872,7 +1872,7 @@ Variables $a,c,j,l,m,n,p,v,g,h$
 <<*>>=
 )clear all
 
---S 159
+--S 159 of 276
 t1:=c^2*p-a*c+c*l+a-p-h
 --R 
 --R
@@ -1880,7 +1880,7 @@ t1:=c^2*p-a*c+c*l+a-p-h
 --R   (1)  (c  - 1)p + c l - h - a c + a
 --E 159
 
---S 160
+--S 160 of 276
 t2:=a*c*h+c^2+c*n+m*h
 --R 
 --R
@@ -1888,7 +1888,7 @@ t2:=a*c*h+c^2+c*n+m*h
 --R   (2)  c n + h m + a c h + c
 --E 160
 
---S 161
+--S 161 of 276
 t3:=-a^2*c+a*c*l+a*c*g-c*l*h+a^2+2*c^2-a*m-a*h+l*h-2
 --R 
 --R
@@ -1896,7 +1896,7 @@ t3:=-a^2*c+a*c*l+a*c*g-c*l*h+a^2+2*c^2-a*m-a*h+l*h-2
 --R   (3)  - a m + ((- c + 1)h + a c)l - a h + a c g + 2c  - a c + a  - 2
 --E 161
 
---S 162
+--S 162 of 276
 t4:=-a*c^2+a*c*j-c^2*m+a*c*n+c^2*v-c*n*h-c*m+n*h
 --R 
 --R
@@ -1904,42 +1904,42 @@ t4:=-a*c^2+a*c*j-c^2*m+a*c*n+c^2*v-c*n*h-c*m+n*h
 --R   (4)  c v + ((- c + 1)h + a c)n + (- c  - c)m + a c j - a c
 --E 162
 
---S 163
+--S 163 of 276
 t5:=-c*l*g-a*l-j-1
 --R 
 --R
 --R   (5)  (- c g - a)l - j - 1
 --E 163
 
---S 164
+--S 164 of 276
 t6:=-c*n*g-c*l-c*m+j*m+c*g+c*h
 --R 
 --R
 --R   (6)  - c g n + (j - c)m - c l + c h + c g
 --E 164
 
---S 165
+--S 165 of 276
 t7:=-c*j*l-a*j+j*l-a*n+c*g+a-v+g
 --R 
 --R
 --R   (7)  - v - a n + (- c + 1)j l - a j + (c + 1)g + a
 --E 165
 
---S 166
+--S 166 of 276
 t8:=-c*j*n+c*j-c*n+j*n
 --R 
 --R
 --R   (8)  ((- c + 1)j - c)n + c j
 --E 166
 
---S 167
+--S 167 of 276
 t9:=c*m*p-l*n*p+a*l+l*m+a*p-l*p+c-n-2
 --R 
 --R
 --R   (9)  (- l n + c m - l + a)p - n + l m + a l + c - 2
 --E 167
 
---S 168
+--S 168 of 276
 t10:=-n^2*p+c*l+c*m+2*m*n+c*p-c*h+m
 --R 
 --R
@@ -1947,14 +1947,14 @@ t10:=-n^2*p+c*l+c*m+2*m*n+c*p-c*h+m
 --R   (10)  (- n  + c)p + 2m n + (c + 1)m + c l - c h
 --E 168
 
---S 169
+--S 169 of 276
 t11:=-l*m*h+a*c+2*c*m-l*n+m*n-c*g-a+p+h
 --R 
 --R
 --R   (11)  p + (m - l)n + (- h l + 2c)m + h - c g + a c - a
 --E 169
 
---S 170
+--S 170 of 276
 t12:=-c*l*m-c*m^2+a*m*n-m^2*n+c*m*v-m*n*h+c^2-c*j-n^2+n
 --R 
 --R
@@ -1962,7 +1962,7 @@ t12:=-c*l*m-c*m^2+a*m*n-m^2*n+c*m*v-m*n*h+c^2-c*j-n^2+n
 --R   (12)  c m v - n  + (- m  + (- h + a)m + 1)n - c m  - c l m - c j + c
 --E 170
 
---S 171
+--S 171 of 276
 t13:=a^2*l-a*l^2+c*n*p-l*m*g-c*l-a*n+2*a-l+m-v+g
 --R 
 --R
@@ -1970,7 +1970,7 @@ t13:=a^2*l-a*l^2+c*n*p-l*m*g-c*l-a*n+2*a-l+m-v+g
 --R   (13)  - v + c n p - a n + (- g l + 1)m - a l  + (- c + a  - 1)l + g + 2a
 --E 171
 
---S 172
+--S 172 of 276
 t14:=a*c*l-c*l^2+a*m*n-l*m*n-m*n*g+c*l*h-m^2+c*n-n^2+m*v+2*c
 --R 
 --R
@@ -1978,7 +1978,7 @@ t14:=a*c*l-c*l^2+a*m*n-l*m*n-m*n*g+c*l*h-m^2+c*n-n^2+m*v+2*c
 --R   (14)  m v - n  + ((- l - g + a)m + c)n - m  - c l  + (c h + a c)l + 2c
 --E 172
 
---S 173
+--S 173 of 276
 t15:=-j*l*m-l*n*v+c*l*g+a*l+c*n+n^2+j+1
 --R 
 --R
@@ -1986,7 +1986,7 @@ t15:=-j*l*m-l*n*v+c*l*g+a*l+c*n+n^2+j+1
 --R   (15)  - l n v + n  + c n - j l m + (c g + a)l + j + 1
 --E 173
 
---S 174
+--S 174 of 276
 t16:=c*j*l-c*l*n-j*m*n+a*n^2-m*n^2+c*n*v-n^2*v+n*v
 --R 
 --R
@@ -1994,21 +1994,21 @@ t16:=c*j*l-c*l*n-j*m*n+a*n^2-m*n^2+c*n*v-n^2*v+n*v
 --R   (16)  (- n  + (c + 1)n)v + (- m + a)n  + (- j m - c l)n + c j l
 --E 174
 
---S 175
+--S 175 of 276
 t17:=-j*l*p+c*m*p+n*p*h-a*l-a*m+a*g-p*g+a*h+c-j+n-1
 --R 
 --R
 --R   (17)  (h n + c m - j l - g)p + n - a m - a l - j + a h + a g + c - 1
 --E 175
 
---S 176
+--S 176 of 276
 t18:=-j*n*p+l*m*h-c*l+j*m+c*g+n*h
 --R 
 --R
 --R   (18)  - j n p + h n + (h l + j)m - c l + c g
 --E 176
 
---S 177
+--S 177 of 276
 t19:=l^2*h-l*h^2+a*c-c*l-j*l+c*m+j*m-n*g+c*h+n*h-a-l-g+h
 --R 
 --R
@@ -2017,7 +2017,7 @@ t19:=l^2*h-l*h^2+a*c-c*l-j*l+c*m+j*m-n*g+c*h+n*h-a-l-g+h
 --R   (h - g)n + (j + c)m + h l  + (- j - h  - c - 1)l + (c + 1)h - g + a c - a
 --E 177
 
---S 178
+--S 178 of 276
 t20:=a*j*m-j*m^2+c*m*v-c*m*g-c*m*h+l*n*h+n*v*h-n*h^2+c^2-c*n-2*j*n
 --R 
 --R
@@ -2025,14 +2025,14 @@ t20:=a*j*m-j*m^2+c*m*v-c*m*g-c*m*h+l*n*h+n*v*h-n*h^2+c^2-c*n-2*j*n
 --R   (20)  (h n + c m)v + (h l - 2j - h  - c)n - j m  + (a j - c h - c g)m + c
 --E 178
 
---S 179
+--S 179 of 276
 t21:=j*n*p-l*g*h-j*l-n*g-m+h
 --R 
 --R
 --R   (21)  j n p - g n - m + (- j - g h)l + h
 --E 179
 
---S 180
+--S 180 of 276
 t22:=j*l^2-j*l*v-a*n*g+n*g^2-j*l*h+2*j*n+l*g+m*g-v*g+j-1
 --R 
 --R
@@ -2040,14 +2040,14 @@ t22:=j*l^2-j*l*v-a*n*g+n*g^2-j*l*h+2*j*n+l*g+m*g-v*g+j-1
 --R   (22)  (- j l - g)v + (2j + g  - a g)n + g m + j l  + (- h j + g)l + j - 1
 --E 180
 
---S 181
+--S 181 of 276
 t23:=j*l*n-j*m*n-c*n*g+j*n*g-j*n*h+j*m
 --R 
 --R
 --R   (23)  (- j m + j l + (- h + g)j - c g)n + j m
 --E 181
 
---S 182
+--S 182 of 276
 t24:=-a^2*p+a*l*p+m^2*p-l*p*v+3*a+2*m-v
 --R 
 --R
@@ -2055,14 +2055,14 @@ t24:=-a^2*p+a*l*p+m^2*p-l*p*v+3*a+2*m-v
 --R   (24)  (- l p - 1)v + (m  + a l - a )p + 2m + 3a
 --E 182
 
---S 183
+--S 183 of 276
 t25:=-a*c*p+c*l*p-n*p*v+n*p*h-a*m+l*m+m*v-m*h+2*c+2*n
 --R 
 --R
 --R   (25)  (- n p + m)v + (h n + c l - a c)p + 2n + (l - h - a)m + 2c
 --E 183
 
---S 184
+--S 184 of 276
 t26:=-a*c*p+n*p*g+l^2-a*m-l*m+m^2+l*p-l*v+m*v-m*g-l*h-p*h+c+n
 --R 
 --R
@@ -2071,7 +2071,7 @@ t26:=-a*c*p+n*p*g+l^2-a*m-l*m+m^2+l*p-l*v+m*v-m*g-l*h-p*h+c+n
 --R   (m - l)v + (g n + l - h - a c)p + n + m  + (- l - g - a)m + l  - h l + c
 --E 184
 
---S 185
+--S 185 of 276
 t27:=-c^2*p+j*n*p-2*c*m-j*m+l*n-m*n-n*h
 --R 
 --R
@@ -2079,21 +2079,21 @@ t27:=-c^2*p+j*n*p-2*c*m-j*m+l*n-m*n-n*h
 --R   (27)  (j n - c )p + (- m + l - h)n + (- j - 2c)m
 --E 185
 
---S 186
+--S 186 of 276
 t28:=m*n*p+n*p*v-a*l-l*m-a*p-l*v-l*g-p*g
 --R 
 --R
 --R   (28)  (n p - l)v + (m n - g - a)p - l m + (- g - a)l
 --E 186
 
---S 187
+--S 187 of 276
 t29:=l*m*h-c*l-c*p-n*g+n*h-m
 --R 
 --R
 --R   (29)  - c p + (h - g)n + (h l - 1)m - c l
 --E 187
 
---S 188
+--S 188 of 276
 t30:=l^2*v-l*v^2+l*m*g-j*l-a*n-l*n+m*n-j*p+2*n*v+n*g-v
 --R 
 --R
@@ -2101,7 +2101,7 @@ t30:=l^2*v-l*v^2+l*m*g-j*l-a*n-l*n+m*n-j*p+2*n*v+n*g-v
 --R   (30)  - l v  + (2n + l  - 1)v - j p + (m - l + g - a)n + g l m - j l
 --E 188
 
---S 189
+--S 189 of 276
 t31:=j*l*m+l*n*v-c*n-n^2
 --R 
 --R
@@ -2115,7 +2115,7 @@ Variables $a,b,c,j,k,l,m,n,p,v$
 <<*>>=
 )clear all
  
---S 190
+--S 190 of 276
 t1:=-a*b*k+a*c*k+b*k*l-c*k*l-b^2*p+c^2*p+b*k
 --R 
 --R
@@ -2123,7 +2123,7 @@ t1:=-a*b*k+a*c*k+b*k*l-c*k*l-b^2*p+c^2*p+b*k
 --R   (1)  (c  - b )p + (- c + b)k l + (a c + (- a + 1)b)k
 --E 190
 
---S 191
+--S 191 of 276
 t2:=-c^2*k+a*c*l+b*l*m-c*k*n+a*c+c^2+b*m
 --R 
 --R
@@ -2131,7 +2131,7 @@ t2:=-c^2*k+a*c*l+b*l*m-c*k*n+a*c+c^2+b*m
 --R   (2)  - c k n + (b l + b)m + a c l - c k + c  + a c
 --E 191
 
---S 192
+--S 192 of 276
 t3:=a^2*b-a^2*c+2*b^2*k-2*c^2*k-a*b*l+a*c*l+b*l^2-c*l^2-a*b*m+a*c*m_
 -a*b-b^2+c^2+b*l-c*l
 --R 
@@ -2144,7 +2144,7 @@ t3:=a^2*b-a^2*c+2*b^2*k-2*c^2*k-a*b*l+a*c*l+b*l^2-c*l^2-a*b*m+a*c*m_
 --R     - a c - b  + (a  - a)b
 --E 192
 
---S 193
+--S 193 of 276
 t4:=-a*c^2+a*c*j-b*c*m-c^2*m+a*c*n+b*l*n-c*l*n+c^2*v+b*n-c*n
 --R 
 --R
@@ -2152,7 +2152,7 @@ t4:=-a*c^2+a*c*j-b*c*m-c^2*m+a*c*n+b*l*n-c*l*n+c^2*v+b*n-c*n
 --R   (4)  c v + ((- c + b)l + (a - 1)c + b)n + (- c  - b c)m + a c j - a c
 --E 193
 
---S 194
+--S 194 of 276
 t5:=b^2*k+b*j*k-a*b*l-c*l*m-b^2
 --R 
 --R
@@ -2160,14 +2160,14 @@ t5:=b^2*k+b*j*k-a*b*l-c*l*m-b^2
 --R   (5)  - c l m - a b l + (b j + b )k - b
 --E 194
 
---S 195
+--S 195 of 276
 t6:=b*j*m-c*m*n+b*c
 --R 
 --R
 --R   (6)  - c m n + b j m + b c
 --E 195
 
---S 196
+--S 196 of 276
 t7:=a*b^2-a*b*j+b*j*l-c*j*l+b^2*m+b*c*m-a*b*n-b^2*v
 --R 
 --R
@@ -2175,14 +2175,14 @@ t7:=a*b^2-a*b*j+b*j*l-c*j*l+b^2*m+b*c*m-a*b*n-b^2*v
 --R   (7)  - b v - a b n + (b c + b )m + (- c + b)j l - a b j + a b
 --E 196
 
---S 197
+--S 197 of 276
 t8:=b*c*j-b*c*n+b*j*n-c*j*n
 --R 
 --R
 --R   (8)  ((- c + b)j - b c)n + b c j
 --E 197
 
---S 198
+--S 198 of 276
 t9:=-2*b*k^2+c*k^2-a*k*l-k*l*m-k^2*n+a*b*p-b*l*p+c*m*p-l*n*p+b*k
 --R 
 --R
@@ -2190,7 +2190,7 @@ t9:=-2*b*k^2+c*k^2-a*k*l-k*l*m-k^2*n+a*b*p-b*l*p+c*m*p-l*n*p+b*k
 --R   (9)  (- l n + c m - b l + a b)p - k n - k l m - a k l + (c - 2b)k  + b k
 --E 198
 
---S 199
+--S 199 of 276
 t10:=-b*k*m-c*k*m-2*k*m*n+b*c*p-n^2*p+c*k+b*m+c*m
 --R 
 --R
@@ -2198,7 +2198,7 @@ t10:=-b*k*m-c*k*m-2*k*m*n+b*c*p-n^2*p+c*k+b*m+c*m
 --R   (10)  (- n  + b c)p - 2k m n + ((- c - b)k + c + b)m + c k
 --E 199
 
---S 200
+--S 200 of 276
 t11:=a*b*k-a*c*k-b*k*l-c*k*m-l^2*m+k*l*n-k*m*n+b^2*p-b*k+c*m-l*m-l*n
 --R 
 --R
@@ -2209,7 +2209,7 @@ t11:=a*b*k-a*c*k-b*k*l-c*k*m-l^2*m+k*l*n-k*m*n+b^2*p-b*k+c*m-l*m-l*n
 --R     (- a c + (a - 1)b)k
 --E 200
 
---S 201
+--S 201 of 276
 t12:=-c^2*k+c*j*k-c*l*m-c*m^2-b*k*n+a*m*n-l*m*n-m^2*n+k*n^2+c*m*v+b*n-m*n-n^2
 --R 
 --R
@@ -2221,7 +2221,7 @@ t12:=-c^2*k+c*j*k-c*l*m-c*m^2-b*k*n+a*m*n-l*m*n-m^2*n+k*n^2+c*m*v+b*n-m*n-n^2
 --R     (c j - c )k
 --E 201
 
---S 202
+--S 202 of 276
 t13:=-2*a*b*k+a^2*l+b*k*l+c*k*l-a*l^2-2*b*k*m-l*m^2+a*k*n+c*n*p_
     +b*k*v+a*b-b*l-l*n
 --R 
@@ -2233,7 +2233,7 @@ t13:=-2*a*b*k+a^2*l+b*k*l+c*k*l-a*l^2-2*b*k*m-l*m^2+a*k*n+c*n*p_
 --R     - 2a b k + a b
 --E 202
 
---S 203
+--S 203 of 276
 t14:=-2*b*c*k+a*c*l-b*m^2-c*k*n+a*m*n-l*m*n-m^2*n+k*n^2+b*m*v_
     +b*c+c*l+c*n-n^2
 --R 
@@ -2245,7 +2245,7 @@ t14:=-2*b*c*k+a*c*l-b*m^2-c*k*n+a*m*n-l*m*n-m^2*n+k*n^2+b*m*v_
 --R     - 2b c k + b c
 --E 203
 
---S 204
+--S 204 of 276
 t15:=-b^2*k-b*j*k+a*b*l+c*l*m-j*l*m-c*k*n-k*n^2-l*n*v+b^2+c*n
 --R 
 --R
@@ -2254,7 +2254,7 @@ t15:=-b^2*k-b*j*k+a*b*l+c*l*m-j*l*m-c*k*n-k*n^2-l*n*v+b^2+c*n
 --R   - l n v - k n  + (- c k + c)n + (- j + c)l m + a b l + (- b j - b )k + b
 --E 204
 
---S 205
+--S 205 of 276
 t16:=c*j*l-c*l*n-j*m*n+a*n^2-m*n^2+b*n*v+c*n*v-n^2*v
 --R 
 --R
@@ -2262,7 +2262,7 @@ t16:=c*j*l-c*l*n-j*m*n+a*n^2-m*n^2+b*n*v+c*n*v-n^2*v
 --R   (16)  (- n  + (c + b)n)v + (- m + a)n  + (- j m - c l)n + c j l
 --E 205
 
---S 206
+--S 206 of 276
 t17:=-b*k^2+c*k^2-j*k^2+k^2*n-j*l*p-b*m*p+c*m*p+l*n*p-a*k+n*p
 --R 
 --R
@@ -2270,7 +2270,7 @@ t17:=-b*k^2+c*k^2-j*k^2+k^2*n-j*l*p-b*m*p+c*m*p+l*n*p-a*k+n*p
 --R   (17)  ((l + 1)n + (c - b)m - j l)p + k n + (- j + c - b)k  - a k
 --E 206
 
---S 207
+--S 207 of 276
 t18:=c*l*k-c*k*m-j*k*m+l^2*m-k*l*n-j*n*p+c*m+l*m-k*n+l*n+n
 --R 
 --R
@@ -2278,7 +2278,7 @@ t18:=c*l*k-c*k*m-j*k*m+l^2*m-k*l*n-j*n*p+c*m+l*m-k*n+l*n+n
 --R   (18)  - j n p + ((- k + 1)l - k + 1)n + (l  + l + (- j - c)k + c)m + c k l
 --E 207
 
---S 208
+--S 208 of 276
 t19:=a*b*k-a*c*k+j*k*l+b*k*m-c*k*m-j*k*m-k*l*n+k*m*n_
     -b*k-c*k-j*l-l^2-b*m+c*m-k*n+l*n-l+n
 --R 
@@ -2290,7 +2290,7 @@ t19:=a*b*k-a*c*k+j*k*l+b*k*m-c*k*m-j*k*m-k*l*n+k*m*n_
 --R     (j k - j - 1)l + ((- a - 1)c + (a - 1)b)k
 --E 208
 
---S 209
+--S 209 of 276
 t20:=-c^2*k+a*j*m-c*l*m-c*m^2-j*m^2+c*k*n+2*j*k*n+c*m*v+l*n*v_
     -c*m-j*n-l*n+n*v-n
 --R 
@@ -2303,7 +2303,7 @@ t20:=-c^2*k+a*j*m-c*l*m-c*m^2-j*m^2+c*k*n+2*j*k*n+c*m*v+l*n*v_
 --R     (- c l + a j - c)m - c k
 --E 209
 
---S 210
+--S 210 of 276
 t21:=-b*k*l+j*k*l+b*k*m-l^2*m+k*m*n+j*n*p-b*k-j*l-b*m-l*m
 --R 
 --R
@@ -2311,7 +2311,7 @@ t21:=-b*k*l+j*k*l+b*k*m-l^2*m+k*m*n+j*n*p-b*k-j*l-b*m-l*m
 --R   (21)  j n p + k m n + (- l  - l + b k - b)m + ((j - b)k - j)l - b k
 --E 210
 
---S 211
+--S 211 of 276
 t22:=b^2*k-b*j*k+b*l*m+b*m^2-2*j*k*n-a*m*n+m^2*n-j*l*v-b*m*v-j*l+j*n
 --R 
 --R
@@ -2320,14 +2320,14 @@ t22:=b^2*k-b*j*k+b*l*m+b*m^2-2*j*k*n-a*m*n+m^2*n-j*l*v-b*m*v-j*l+j*n
 --R   (- b m - j l)v + (m  - a m - 2j k + j)n + b m  + b l m - j l + (- b j + b )k
 --E 211
 
---S 212
+--S 212 of 276
 t23:=b*j*m-c*m*n-j*n
 --R 
 --R
 --R   (23)  (- c m - j)n + b j m
 --E 212
 
---S 213
+--S 213 of 276
 t24:=3*a*k^2+2*k^2*m-a^2*p+a*l*p+m^2*p-k^2*v-l*p*v-2*a*k-b*p+n*p
 --R 
 --R
@@ -2335,7 +2335,7 @@ t24:=3*a*k^2+2*k^2*m-a^2*p+a*l*p+m^2*p-k^2*v-l*p*v-2*a*k-b*p+n*p
 --R   (24)  (- l p - k )v + (n + m  + a l - b - a )p + 2k m + 3a k  - 2a k
 --E 213
 
---S 214
+--S 214 of 276
 t25:=2*c*k^2+a*k*m+2*k^2*n-a*c*p+c*l*p+l*n*p-k*m*v-n*p*v-c*k-a*m_
     +k*m+l*m+m^2-3*k*n+n*p+n
 --R 
@@ -2348,7 +2348,7 @@ t25:=2*c*k^2+a*k*m+2*k^2*n-a*c*p+c*l*p+l*n*p-k*m*v-n*p*v-c*k-a*m_
 --R     (l + (a + 1)k - a)m + 2c k  - c k
 --E 214
 
---S 215
+--S 215 of 276
 t26:=c*k^2+a*k*m+k*l*m+k^2*n-a*c*p+m*n*p+k*l*v-k*m*v_
     +2*b*k-c*k+k*l-a*m+m^2-2*k*n-b*p-l*v-b-l+n
 --R 
@@ -2361,7 +2361,7 @@ t26:=c*k^2+a*k*m+k*l*m+k^2*n-a*c*p+m*n*p+k*l*v-k*m*v_
 --R     (k l + a k - a)m + (k - 1)l + c k  + (- c + 2b)k - b
 --E 215
 
---S 216
+--S 216 of 276
 t27:=2*c*k*m+j*k*m+k*m*n-c^2*p+j*n*p-2*c*m+k*n-n
 --R 
 --R
@@ -2369,7 +2369,7 @@ t27:=2*c*k*m+j*k*m+k*m*n-c^2*p+j*n*p-2*c*m+k*n-n
 --R   (27)  (j n - c )p + (k m + k - 1)n + ((j + 2c)k - 2c)m
 --E 216
 
---S 217
+--S 217 of 276
 t28:=a*k*l+2*k*l*m-a*b*p-b*m*p+m*n*p+k*l*v+n*p*v+b*k-l*m+k*n-l*v-b
 --R 
 --R
@@ -2383,7 +2383,7 @@ Variables $x,y,z,t,u,v,w,a$
 <<*>>=
 )clear all
 
---S 218
+--S 218 of 276
 t1:=-x^2+y^2
 --R 
 --R
@@ -2391,14 +2391,14 @@ t1:=-x^2+y^2
 --R   (1)  y  - x
 --E 218
 
---S 219
+--S 219 of 276
 t2:=x*u*v+y*u*a-x-w
 --R 
 --R
 --R   (2)  a u y + (u v - 1)x - w
 --E 219
 
---S 220
+--S 220 of 276
 t3:=x*u^2-y*u^2+y*z*a-x*u*a+y*u*a-x*v*a+x*a^2-y*a^2
 --R 
 --R
@@ -2406,7 +2406,7 @@ t3:=x*u^2-y*u^2+y*z*a-x*u*a+y*u*a-x*v*a+x*a^2-y*a^2
 --R   (3)  a y z + (- u  + a u - a )y + (- a v + u  - a u + a )x
 --E 220
 
---S 221
+--S 221 of 276
 t4:=-x*y*v-y^2*v+x*u*w-y*u*w+y*t*a+y*w*a-v^2+a^2
 --R 
 --R
@@ -2414,21 +2414,21 @@ t4:=-x*y*v-y^2*v+x*u*w-y*u*w+y*t*a+y*w*a-v^2+a^2
 --R   (4)  - v y  + (- v x + (- u + a)w + a t)y + u w x - v  + a
 --E 221
 
---S 222
+--S 222 of 276
 t5:=-y*z*u-x*u*a+y+t
 --R 
 --R
 --R   (5)  - u y z + y - a u x + t
 --E 222
 
---S 223
+--S 223 of 276
 t6:=x*y*z-x*y*v+x*t*v-y*z*w+z*u-u*v-z*a-v*a
 --R 
 --R
 --R   (6)  ((x - w)y + u - a)z - v x y + t v x + (- u - a)v
 --E 223
 
---S 224
+--S 224 of 276
 t7:=x^2*z+x*y*z+x*t*u-y*t*u-x*t*a-x*w*a+z^2-a^2
 --R 
 --R
@@ -2436,21 +2436,21 @@ t7:=x^2*z+x*y*z+x*t*u-y*t*u-x*t*a-x*w*a+z^2-a^2
 --R   (7)  z  + (x y + x )z - t u y + (- a w + t u - a t)x - a
 --E 224
 
---S 225
+--S 225 of 276
 t8:=x*y*t-x*y*w+x*t*w-y*t*w+x*z+z*t-y*v-v*w
 --R 
 --R
 --R   (8)  (x + t)z + ((- w + t)x - t w - v)y + t w x - v w
 --E 225
 
---S 226
+--S 226 of 276
 t9:=-x*u+y*v-u*w+x*a
 --R 
 --R
 --R   (9)  v y + (- u + a)x - u w
 --E 226
 
---S 227
+--S 227 of 276
 t10:=x*y-w^2
 --R 
 --R
@@ -2458,7 +2458,7 @@ t10:=x*y-w^2
 --R   (10)  x y - w
 --E 227
 
---S 228
+--S 228 of 276
 t11:=-u^2*v+x^2+z
 --R 
 --R
@@ -2466,7 +2466,7 @@ t11:=-u^2*v+x^2+z
 --R   (11)  z + x  - u v
 --E 228
 
---S 229
+--S 229 of 276
 t12:=-y*u*v-y*v^2-u*v*w-v^2*w+y*v*a+u*w*a+x+t
 --R 
 --R
@@ -2474,7 +2474,7 @@ t12:=-y*u*v-y*v^2-u*v*w-v^2*w+y*v*a+u*w*a+x+t
 --R   (12)  (- v  + (- u + a)v)y + x + (- v  - u v + a u)w + t
 --E 229
 
---S 230
+--S 230 of 276
 t13:=-z*u*v-u^2*a+u*a^2+y*w+a
 --R 
 --R
@@ -2482,7 +2482,7 @@ t13:=-z*u*v-u^2*a+u*a^2+y*w+a
 --R   (13)  - u v z + w y - a u  + a u + a
 --E 230
 
---S 231
+--S 231 of 276
 t14:=-x*v^2-z*v*w-u*v*w+y*u*a+x*v*a+v*w*a
 --R 
 --R
@@ -2490,14 +2490,14 @@ t14:=-x*v^2-z*v*w-u*v*w+y*u*a+x*v*a+v*w*a
 --R   (14)  - v w z + a u y + (- v  + a v)x + (- u + a)v w
 --E 231
 
---S 232
+--S 232 of 276
 t15:=y*z*u-t*u*v+x*u*a-u*w*a
 --R 
 --R
 --R   (15)  u y z + a u x - a u w - t u v
 --E 232
 
---S 233
+--S 233 of 276
 t16:=y*t*u-y*u*w-t*v*w-v*w^2+x*w*a+y*w*a-v^2+a^2
 --R 
 --R
@@ -2505,14 +2505,14 @@ t16:=y*t*u-y*u*w-t*v*w-v*w^2+x*w*a+y*w*a-v^2+a^2
 --R   (16)  ((- u + a)w + t u)y + a w x - v w  - t v w - v  + a
 --E 233
 
---S 234
+--S 234 of 276
 t17:=-x*z-t*u+y*v+u*w
 --R 
 --R
 --R   (17)  - x z + v y + u w - t u
 --E 234
 
---S 235
+--S 235 of 276
 t18:=u^2*v-t*w-z
 --R 
 --R
@@ -2520,7 +2520,7 @@ t18:=u^2*v-t*w-z
 --R   (18)  - z - t w + u v
 --E 235
 
---S 236
+--S 236 of 276
 t19:=-y*z*v-y*u*v-t*v^2+y*v*a+t*v*a+u*w*a
 --R 
 --R
@@ -2528,7 +2528,7 @@ t19:=-y*z*v-y*u*v-t*v^2+y*v*a+t*v*a+u*w*a
 --R   (19)  - v y z + (- u + a)v y + a u w - t v  + a t v
 --E 236
 
---S 237
+--S 237 of 276
 t20:=-z*u^2+t*w+v
 --R 
 --R
@@ -2536,7 +2536,7 @@ t20:=-z*u^2+t*w+v
 --R   (20)  - u z + t w + v
 --E 237
 
---S 238
+--S 238 of 276
 t21:=x*z*u+x*z*v+z^2*w-x*z*a-t*u*a-z*w*a
 --R 
 --R
@@ -2544,14 +2544,14 @@ t21:=x*z*u+x*z*v+z^2*w-x*z*a-t*u*a-z*w*a
 --R   (21)  w z  + ((v + u - a)x - a w)z - a t u
 --E 238
 
---S 239
+--S 239 of 276
 t22:=x*t*v-y*z*w+z*t*w-t*v*w+z*u-u*v-z*a+v*a
 --R 
 --R
 --R   (22)  (- w y + t w + u - a)z + t v x - t v w + (- u + a)v
 --E 239
 
---S 240
+--S 240 of 276
 t23:=v^2-a^2
 --R 
 --R
@@ -2559,21 +2559,21 @@ t23:=v^2-a^2
 --R   (23)  v  - a
 --E 240
 
---S 241
+--S 241 of 276
 t24:=y*u+u*w-y*a-w*a
 --R 
 --R
 --R   (24)  (u - a)y + (u - a)w
 --E 241
 
---S 242
+--S 242 of 276
 t25:=z*w-y*a
 --R 
 --R
 --R   (25)  w z - a y
 --E 242
 
---S 243
+--S 243 of 276
 t26:=-y^2+t*w
 --R 
 --R
@@ -2581,14 +2581,14 @@ t26:=-y^2+t*w
 --R   (26)  - y  + t w
 --E 243
 
---S 244
+--S 244 of 276
 t27:=-x*z+v*w-x*a+w*a
 --R 
 --R
 --R   (27)  - x z - a x + (v + a)w
 --E 244
 
---S 245
+--S 245 of 276
 t28:=u^2*v-x*y-z
 --R 
 --R
@@ -2596,7 +2596,7 @@ t28:=u^2*v-x*y-z
 --R   (28)  - z - x y + u v
 --E 245
 
---S 246
+--S 246 of 276
 t29:=z*u*v+u^2*a-u*a^2-x*t-a
 --R 
 --R
@@ -2604,14 +2604,14 @@ t29:=z*u*v+u^2*a-u*a^2-x*t-a
 --R   (29)  u v z - t x + a u  - a u - a
 --E 246
 
---S 247
+--S 247 of 276
 t30:=t*u*v+u*w*a-y-t
 --R 
 --R
 --R   (30)  - y + a u w + t u v - t
 --E 247
 
---S 248
+--S 248 of 276
 t31:=-x*z+y*u+t*u-y*a
 --R 
 --R
@@ -2624,7 +2624,7 @@ Variables $x,y,z,t,u$
 <<*>>=
 )clear all
 
---S 249
+--S 249 of 276
 t1:=-x^5-y^5-z^5+5*x*y*z*t*u-u^5
 --R 
 --R
@@ -2632,7 +2632,7 @@ t1:=-x^5-y^5-z^5+5*x*y*z*t*u-u^5
 --R   (1)  - z  + 5t u x y z - y  - x  - u
 --E 249
 
---S 250
+--S 250 of 276
 t2:=x*y^3*z+y*z^3*t+x^3*y*u+z*t^3*u+z*t*u^3
 --R 
 --R
@@ -2640,7 +2640,7 @@ t2:=x*y^3*z+y*z^3*t+x^3*y*u+z*t^3*u+z*t*u^3
 --R   (2)  t y z  + (x y  + t u  + t u)z + u x y
 --E 250
 
---S 251
+--S 251 of 276
 t3:=x^2*y*z^2+y^2*z*t^2+x^2*t^2*u+x*y^2*u^2+z^2*t*u^2
 --R 
 --R
@@ -2648,7 +2648,7 @@ t3:=x^2*y*z^2+y^2*z*t^2+x^2*t^2*u+x*y^2*u^2+z^2*t*u^2
 --R   (3)  (x y + t u )z  + t y z + u x y  + t u x
 --E 251
 
---S 252
+--S 252 of 276
 t4:=x*y*z^5-y^4*z^2*t-2*x^2*y^2*z*t*u+x*z^3*t^2*u-x^4*t*u^2_
     +y*z*t^2*u^3+x*y*u^5
 --R 
@@ -2657,7 +2657,7 @@ t4:=x*y*z^5-y^4*z^2*t-2*x^2*y^2*z*t*u+x*z^3*t^2*u-x^4*t*u^2_
 --R   (4)  x y z  + t u x z  - t y z  + (- 2t u x y  + t u y)z + u x y - t u x
 --E 252
 
---S 253
+--S 253 of 276
 t5:=x*y^2*z^4-y^5*z*t-x^2*y^3*t*u+2*x*y*z^2*t^2*u+x*t^4*u^2_
     -x^2*y*z*u^3-z*t*u^5
 --R 
@@ -2666,7 +2666,7 @@ t5:=x*y^2*z^4-y^5*z*t-x^2*y^3*t*u+2*x*y*z^2*t^2*u+x*t^4*u^2_
 --R   (5)  x y z  + 2t u x y z  + (- t y  - u x y - t u )z - t u x y  + t u x
 --E 253
 
---S 254
+--S 254 of 276
 t6:=x^3*y^2*t-y*z^2*t^4+x*y^2*z^3*u-y^5*t*u-t^6*u+3*x*y*z*t^2*u^2_
     -x^2*y*u^4-t*u^6
 --R 
@@ -2675,7 +2675,7 @@ t6:=x^3*y^2*t-y*z^2*t^4+x*y^2*z^3*u-y^5*t*u-t^6*u+3*x*y*z*t^2*u^2_
 --R   (6)  u x y z  - t y z  + 3t u x y z - t u y  + t x y  - u x y - t u  - t u
 --E 254
 
---S 255
+--S 255 of 276
 t7:=x^4*y^2*z-x*y*z^2*t^3-x*y^5*u-y^3*z^2*t*u-x*t^5*u_
     +2*x^2*y*z*t*u^2+z*t^2*u^4
 --R 
@@ -2684,7 +2684,7 @@ t7:=x^4*y^2*z-x*y*z^2*t^3-x*y^5*u-y^3*z^2*t*u-x*t^5*u_
 --R   (7)  (- t u y  - t x y)z  + (x y  + 2t u x y + t u )z - u x y  - t u x
 --E 255
 
---S 256
+--S 256 of 276
 t8:=y^6*z+y*z^6+x^2*y^4*u-3*x*y^2*z^2*t*u+z^4*t^2*u-x^3*z*t*u^2_
 -x*y*t^3*u^3+y*z*u^5
 --R 
@@ -2699,14 +2699,14 @@ Variables $a,b,c,d,e,f,g,h,k,l,m$
 <<*>>=
 )clear all
 
---S 257
+--S 257 of 276
 t1:=a+b+c+d+e+f+g+h-1
 --R 
 --R
 --R   (1)  h + g + f + e + d + c + b + a - 1
 --E 257
 
---S 258
+--S 258 of 276
 t2:=-a^2*k-2*a*b*k-b^2*k-a*c*k-b*c*k-a*d*k-b*d*k-a*e*k_
     -b*e*k-c*e*k-d*e*k-a*f*k-b*f*k-c*f*k-d*f*k+a+b
 --R 
@@ -2723,7 +2723,7 @@ t2:=-a^2*k-2*a*b*k-b^2*k-a*c*k-b*c*k-a*d*k-b*d*k-a*e*k_
 --R     b + a
 --E 258
 
---S 259
+--S 259 of 276
 t3:=-a^2*l-a*b*l-a*c*l-a*d*l-a*e*l-b*e*l-c*e*l-d*e*l_
     +a^2+2*a*b+b^2+a*e+b*e+a*f+b*f
 --R 
@@ -2736,7 +2736,7 @@ t3:=-a^2*l-a*b*l-a*c*l-a*d*l-a*e*l-b*e*l-c*e*l-d*e*l_
 --R     2a b + a
 --E 259
 
---S 260
+--S 260 of 276
 t4:=a+c+e+g-m
 --R 
 --R
@@ -2749,21 +2749,21 @@ Variables $x,y,z,t,u,v,w,a,b$
 <<*>>=
 )clear all
 
---S 261
+--S 261 of 276
 t1:=-y*z+x*t
 --R 
 --R
 --R   (1)  - y z + t x
 --E 261
 
---S 262
+--S 262 of 276
 t2:=-y*u+x*v+y-v
 --R 
 --R
 --R   (2)  (- u + 1)y + v x - v
 --E 262
 
---S 263
+--S 263 of 276
 t3:=z^2+t^2-w^2
 --R 
 --R
@@ -2771,7 +2771,7 @@ t3:=z^2+t^2-w^2
 --R   (3)  z  - w  + t
 --E 263
 
---S 264
+--S 264 of 276
 t4:=u^2+v^2-a^2-2*u+1
 --R 
 --R
@@ -2779,7 +2779,7 @@ t4:=u^2+v^2-a^2-2*u+1
 --R   (4)  v  + u  - 2u - a  + 1
 --E 264
 
---S 265
+--S 265 of 276
 t5:=z^2+t^2-2*z*u+u^2-2*t*v+v^2-b^2
 --R 
 --R
@@ -2793,7 +2793,7 @@ Variables $x,y,z,t,u,v,w,a$
 <<*>>=
 )clear all
 
---S 266
+--S 266 of 276
 t1:=x*y+x*z+x*t-u^2
 --R 
 --R
@@ -2801,7 +2801,7 @@ t1:=x*y+x*z+x*t-u^2
 --R   (1)  x z + x y + t x - u
 --E 266
 
---S 267
+--S 267 of 276
 t2:=x*y+y*z+y*t-v^2
 --R 
 --R
@@ -2809,7 +2809,7 @@ t2:=x*y+y*z+y*t-v^2
 --R   (2)  y z + (x + t)y - v
 --E 267
 
---S 268
+--S 268 of 276
 t3:=x*z+y*z+z*t-w^2
 --R 
 --R
@@ -2817,7 +2817,7 @@ t3:=x*z+y*z+z*t-w^2
 --R   (3)  (y + x + t)z - w
 --E 268
 
---S 269
+--S 269 of 276
 t4:=x*t+y*t+z*t-a^2
 --R 
 --R
@@ -2831,28 +2831,28 @@ Variables $x,y,z,t,u,v,w,a$
 <<*>>=
 )clear all
 
---S 270
+--S 270 of 276
 t1:=t+v-a
 --R 
 --R
 --R   (1)  v + t - a
 --E 270
 
---S 271
+--S 271 of 276
 t2:=x+y+z+t-u-w-a
 --R 
 --R
 --R   (2)  z + y + x - w - u + t - a
 --E 271
 
---S 272
+--S 272 of 276
 t3:=x*z+y*z+x*t+z*t-u*w-u*a-w*a
 --R 
 --R
 --R   (3)  (y + x + t)z + t x + (- u - a)w - a u
 --E 272
 
---S 273
+--S 273 of 276
 t4:=x*z*t-u*w*a
 --R 
 --R
@@ -2864,7 +2864,7 @@ t4:=x*z*t-u*w*a
 Variables $x,y,z$
 <<*>>=
 
---S 274
+--S 274 of 276
 t1:=y^4-20/7*x^2
 --R 
 --R
@@ -2873,7 +2873,7 @@ t1:=y^4-20/7*x^2
 --R              7
 --E 274
 
---S 275
+--S 275 of 276
 t2:=x^2*z^4 + 7/10*x*z^4 + 7/48*z^4 - 50/27*x^2 - 35/27*x - 49/216
 --R 
 --R
@@ -2882,7 +2882,7 @@ t2:=x^2*z^4 + 7/10*x*z^4 + 7/48*z^4 - 50/27*x^2 - 35/27*x - 49/216
 --R              10     48      27      27     216
 --E 275
 
---S 276
+--S 276 of 276
 t3:=3/5*x^6*y^2*z + x^5*y^3 + 3/7*x^5*y^2*z + 7/5*x^4*y^3_
    - 7/20*x^4*y*z^2 - 3/20*x^4*z^3 + 609/1000*x^3*y^3_
    + 63/200*x^3*y^2*z - 77/125*x^3*y*z^2 - 21/50*x^3*z^3_
diff --git a/src/input/bugs.input.pamphlet b/src/input/bugs.input.pamphlet
index be34030..161e380 100644
--- a/src/input/bugs.input.pamphlet
+++ b/src/input/bugs.input.pamphlet
@@ -501,7 +501,7 @@ f1 n ==
 --R                                                                   Type: Void
 --E 39
 
---S 40  of 44 
+--S 40 of 44 
 f2 n ==
   m:=n
   if n=0 then 1 else if n=1 then 1 else f2(n-1)+f2(n-2)
@@ -509,7 +509,7 @@ f2 n ==
 --R                                                                   Type: Void
 --E 40
 
---S 41  of 44 
+--S 41 of 44 
 f3 n ==
   n=0 => 1
   n=1 => 1
diff --git a/src/input/calcprob.input.pamphlet b/src/input/calcprob.input.pamphlet
index f41808d..3835a03 100644
--- a/src/input/calcprob.input.pamphlet
+++ b/src/input/calcprob.input.pamphlet
@@ -16,14 +16,14 @@ Cover a range of calculus problems
 )set message auto off
 )clear all
  
---S 1 
+--S 1 of 12
 solve(3*x-(x-7)=4*x-5,x)
 --R
 --R   (1)  [x= 6]
 --R                              Type: List Equation Fraction Polynomial Integer
 --E 1
 
---S 2
+--S 2 of 12
 solve(4*x-3*y=9,y)::List Equation Polynomial Fraction Integer
 --R
 --R            4
@@ -32,7 +32,7 @@ solve(4*x-3*y=9,y)::List Equation Polynomial Fraction Integer
 --R                              Type: List Equation Polynomial Fraction Integer
 --E 2
 
---S 3
+--S 3 of 12
 solve(A*x+B*y=C,y)
 --R
 --R            - A x + C
@@ -41,7 +41,7 @@ solve(A*x+B*y=C,y)
 --R                              Type: List Equation Fraction Polynomial Integer
 --E 3
 
---S 4
+--S 4 of 12
 m:=3*x-4*(x-(2/3)*y)=(4/5)*x-(7*y+3)
 --R
 --R        8               4
@@ -50,7 +50,7 @@ m:=3*x-4*(x-(2/3)*y)=(4/5)*x-(7*y+3)
 --R                                   Type: Equation Polynomial Fraction Integer
 --E 4
 
---S 5
+--S 5 of 12
 n:=solve(m*15,y)
 --R
 --R            27x - 45
@@ -59,28 +59,28 @@ n:=solve(m*15,y)
 --R                              Type: List Equation Fraction Polynomial Integer
 --E 5
 
---S 6
+--S 6 of 12
 p:=n.1*145-27*x
 --R
 --R   (6)  145y - 27x= - 45
 --R                                   Type: Equation Fraction Polynomial Integer
 --E 6
 
---S 7
+--S 7 of 12
 (x1,y1):=(-3,-8)
 --R
 --R   (7)  - 8
 --R                                                                Type: Integer
 --E 7
 
---S 8
+--S 8 of 12
 (x2,y2):=(-6,2)
 --R
 --R   (8)  2
 --R                                                        Type: PositiveInteger
 --E 8
 
---S 9
+--S 9 of 12
 m:=(y2-y1)/(x2-x1)
 --R
 --R          10
@@ -89,21 +89,21 @@ m:=(y2-y1)/(x2-x1)
 --R                                                       Type: Fraction Integer
 --E 9
 
---S 10
+--S 10 of 12
 solve(y1=m*x1+b,b)
 --R
 --R   (10)  [b= - 18]
 --R                              Type: List Equation Fraction Polynomial Integer
 --E 10
 
---S 11
+--S 11 of 12
 b:=-18
 --R
 --R   (11)  - 18
 --R                                                                Type: Integer
 --E 11
 
---S 12
+--S 12 of 12
 y=m*x+b
 --R
 --R              10
diff --git a/src/input/ch.input.pamphlet b/src/input/ch.input.pamphlet
index 3578f14..e9a9d41 100644
--- a/src/input/ch.input.pamphlet
+++ b/src/input/ch.input.pamphlet
@@ -21,7 +21,7 @@
 
 --Cyclohexan
 
---S 1  of 7
+--S 1 of 7
 mfzn : SQMATRIX(6,DMP([x,y,z],Fraction INT)) :=_
   [[0,1,1,1,1,1],[1,0,1,8/3,x,8/3],[1,1,0,1,8/3,y],_
    [1,8/3,1,0,1,8/3],[1,x,8/3,1,0,1],[1,8/3,y,8/3,1,0]]
diff --git a/src/input/classtalk.input.pamphlet b/src/input/classtalk.input.pamphlet
index 2f3eca3..e216a34 100644
--- a/src/input/classtalk.input.pamphlet
+++ b/src/input/classtalk.input.pamphlet
@@ -20,14 +20,14 @@ These are examples from the talk ``Axiom in an Educational Setting''.
 @
 \section{Numbers}
 <<*>>=
---S 1
+--S 1 of 72
 1
 --R
 --R   (1)  1
 --R                                                        Type: PositiveInteger
 --E 1
 
---S 2
+--S 2 of 72
 1/2
 --R
 --R        1
@@ -36,35 +36,35 @@ These are examples from the talk ``Axiom in an Educational Setting''.
 --R                                                       Type: Fraction Integer
 --E 2
 
---S 3
+--S 3 of 72
 3+4*%i
 --R
 --R   (3)  3 + 4%i
 --R                                                        Type: Complex Integer
 --E 3
 
---S 4
+--S 4 of 72
 3.4
 --R
 --R   (4)  3.4
 --R                                                                  Type: Float
 --E 4
 
---S 5
+--S 5 of 72
 X::ROMAN
 --R
 --R   (5)  X
 --R                                                           Type: RomanNumeral
 --E 5
 
---S 6
+--S 6 of 72
 binary(5)
 --R
 --R   (6)  101
 --R                                                        Type: BinaryExpansion
 --E 6
 
---S 7
+--S 7 of 72
 factor(60)
 --R
 --R         2
@@ -72,28 +72,28 @@ factor(60)
 --R                                                       Type: Factored Integer
 --E 7
 
---S 8
+--S 8 of 72
 q:=(y-1)*x*(z+5)
 --R
 --R   (8)  (x y - x)z + 5x y - 5x
 --R                                                     Type: Polynomial Integer
 --E 8
 
---S 9
+--S 9 of 72
 factor q
 --R
 --R   (9)  x(y - 1)(z + 5)
 --R                                            Type: Factored Polynomial Integer
 --E 9
 
---S 10
+--S 10 of 72
 eval(q,[x=5,y=6,z=7])
 --R
 --R   (10)  300
 --R                                                     Type: Polynomial Integer
 --E 10
 
---S 11
+--S 11 of 72
 eval(q,[x=5,y=6])
 --R
 --R   (11)  25z + 125
@@ -103,7 +103,7 @@ eval(q,[x=5,y=6])
 @
 \section{Trigonometry}
 <<*>>=
---S 12
+--S 12 of 72
 b:=[log a, exp a, asin a, acos a, atan a, acot a, sinh a]
 --R
 --R                   a
@@ -111,21 +111,21 @@ b:=[log a, exp a, asin a, acos a, atan a, acot a, sinh a]
 --R                                                Type: List Expression Integer
 --E 12
 
---S 13
+--S 13 of 72
 [exp b.1, log b.2, sin b.3, cos b.4, tan b.5, cot b.6, asinh b.7]
 --R
 --R   (13)  [a,a,a,a,a,a,a]
 --R                                                Type: List Expression Integer
 --E 13
 
---S 14
+--S 14 of 72
 a:=.7
 --R
 --R   (14)  0.7
 --R                                                                  Type: Float
 --E 14
 
---S 15
+--S 15 of 72
 b:=[log a, exp a, asin a, acos a, atan a, acot a, sinh a]
 --R
 --R   (15)
@@ -135,14 +135,14 @@ b:=[log a, exp a, asin a, acos a, atan a, acot a, sinh a]
 --R                                                             Type: List Float
 --E 15
 
---S 16
+--S 16 of 72
 [exp b.1, log b.2, sin b.3, cos b.4, tan b.5, cot b.6, asinh b.7]
 --R
 --R   (16)  [0.7,0.7,0.7,0.7,0.7,0.7,0.7]
 --R                                                             Type: List Float
 --E 16
 
---S 17
+--S 17 of 72
 simplify(sin(x)**2+cos(x)**2)
 --R
 --R   (17)  1
@@ -153,7 +153,7 @@ simplify(sin(x)**2+cos(x)**2)
 \section{Polynomial Manipulations}
 <<*>>=
 )clear all
---S 18
+--S 18 of 72
 eq1:=A*x^2 + B*x*y + C*y^2 + D*x + E*y + F
 --R
 --R           2                   2
@@ -161,21 +161,21 @@ eq1:=A*x^2 + B*x*y + C*y^2 + D*x + E*y + F
 --R                                                     Type: Polynomial Integer
 --E 18
 
---S 19
+--S 19 of 72
 rotatex:=x'*cos(t)-y'*sin(t)
 --R
 --R   (2)  - y' sin(t) + x' cos(t)
 --R                                                     Type: Expression Integer
 --E 19
 
---S 20
+--S 20 of 72
 rotatey:=x'*sin(t)+y'*cos(t)
 --R
 --R   (3)  x' sin(t) + y' cos(t)
 --R                                                     Type: Expression Integer
 --E 20
 
---S 21
+--S 21 of 72
 eval(eq1,[x=rotatex, y=rotatey])
 --R
 --R   (4)
@@ -194,14 +194,14 @@ eval(eq1,[x=rotatex, y=rotatey])
 \section{Polynomials over Simple Algebraic Extension Fields}
 <<*>>=
 )clear all
---S 22
+--S 22 of 72
 a:=rootOf(a^2+a+1)
 --R
 --R   (1)  a
 --R                                                        Type: AlgebraicNumber
 --E 22
 
---S 23
+--S 23 of 72
 factor(x^2+3)
 --R
 --R         2
@@ -209,14 +209,14 @@ factor(x^2+3)
 --R                                            Type: Factored Polynomial Integer
 --E 23
 
---S 24
+--S 24 of 72
 factor(x^2+3,[a])
 --R
 --R   (3)  (x - 2a - 1)(x + 2a + 1)
 --R                                    Type: Factored Polynomial AlgebraicNumber
 --E 24
 
---S 25
+--S 25 of 72
 definingPolynomial(a)
 --R
 --R         2
@@ -224,7 +224,7 @@ definingPolynomial(a)
 --R                                                        Type: AlgebraicNumber
 --E 25
 
---S 26
+--S 26 of 72
 zerosOf(b^2+b+1,b)
 --R
 --R          +---+        +---+
@@ -237,21 +237,21 @@ zerosOf(b^2+b+1,b)
 @
 \section{Derivatives}
 <<*>>=
---S 27
+--S 27 of 72
 differentiate(sin(x),x)
 --R
 --R   (6)  cos(x)
 --R                                                     Type: Expression Integer
 --E 27
 
---S 28
+--S 28 of 72
 differentiate(sin(x),x,2)
 --R
 --R   (7)  - sin(x)
 --R                                                     Type: Expression Integer
 --E 28
 
---S 29
+--S 29 of 72
 differentiate(cos(z)/(x^2+y^3),[x,y,z],[1,2,3])
 --R
 --R                    4      3
@@ -262,14 +262,14 @@ differentiate(cos(z)/(x^2+y^3),[x,y,z],[1,2,3])
 --R                                                     Type: Expression Integer
 --E 29
 
---S 30
+--S 30 of 72
 y:=operator y
 --R
 --R   (9)  y
 --R                                                          Type: BasicOperator
 --E 30
 
---S 31
+--S 31 of 72
 deqx:=D(y(x),x,2)+D(y(x),x)+y(x)
 --R 
 --R
@@ -279,7 +279,7 @@ deqx:=D(y(x),x,2)+D(y(x),x)+y(x)
 --R                                                     Type: Expression Integer
 --E 31
 
---S 32
+--S 32 of 72
 solve(deqx,y,x)
 --R
 --R                                              x     x
@@ -294,7 +294,7 @@ solve(deqx,y,x)
 \section{Limits}
 <<*>>=
 )clear all
---S 33
+--S 33 of 72
 limit((x^2-3*x+2)/(x^2-1),x=1)
 --R
 --R          1
@@ -303,14 +303,14 @@ limit((x^2-3*x+2)/(x^2-1),x=1)
 --R               Type: Union(OrderedCompletion Fraction Polynomial Integer,...)
 --E 33
 
---S 34
+--S 34 of 72
 limit(x*log(x),x=0)
 --R
 --R   (2)  [leftHandLimit= "failed",rightHandLimit= 0]
 --RType: Union(Record(leftHandLimit: Union(OrderedCompletion Expression Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression Integer,"failed")),...)
 --E 34
 
---S 35
+--S 35 of 72
 limit(sinh(a*x)/tan(b*x),x=0)
 --R
 --R        a
@@ -319,7 +319,7 @@ limit(sinh(a*x)/tan(b*x),x=0)
 --R                        Type: Union(OrderedCompletion Expression Integer,...)
 --E 35
 
---S 36
+--S 36 of 72
 limit(sqrt(3*x^2+1)/(5*x),x=%plusInfinity)
 --R
 --R         +-+
@@ -329,7 +329,7 @@ limit(sqrt(3*x^2+1)/(5*x),x=%plusInfinity)
 --R                        Type: Union(OrderedCompletion Expression Integer,...)
 --E 36
 
---S 37
+--S 37 of 72
 complexLimit((2+z)/(1-z),z=%infinity)
 --R
 --R   (5)  - 1
@@ -340,7 +340,7 @@ complexLimit((2+z)/(1-z),z=%infinity)
 \section{Indefinite Integration}
 <<*>>=
 )clear all
---S 38
+--S 38 of 72
 integrate(1+sqrt(x)/x,x)
 --R
 --R          +-+
@@ -348,7 +348,7 @@ integrate(1+sqrt(x)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 38
 
---S 39
+--S 39 of 72
 integrate(sin(x)/x,x)
 --R
 --R   (2)  Si(x)
@@ -359,7 +359,7 @@ integrate(sin(x)/x,x)
 This used to give the answer:
 $$\frac{\sqrt{x}\sqrt{\pi} erf(x\sqrt{a})}{2a}$$
 <<*>>=
---S 40
+--S 40 of 72
 integrate(exp(-a*x^2),x)
 --R
 --R           x       2
@@ -369,7 +369,7 @@ integrate(exp(-a*x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 40
 
---S 41
+--S 41 of 72
 integrate(sin(x)/x^2,x)
 --R
 --R           x
@@ -384,7 +384,7 @@ integrate(sin(x)/x^2,x)
 \section{Definite Integration}
 <<*>>=
 )clear all
---S 42
+--S 42 of 72
 integrate(exp(-x)/sqrt(x),x=0..%plusInfinity)
 --R
 --R         _ 1
@@ -393,7 +393,7 @@ integrate(exp(-x)/sqrt(x),x=0..%plusInfinity)
 --R                    Type: Union(f1: OrderedCompletion Expression Integer,...)
 --E 42
 
---S 43
+--S 43 of 72
 integrate(1/x^2,x=-1..1)
 --R 
 --R 
@@ -411,7 +411,7 @@ integrate(1/x^2,x=-1..1)
 This used to return
 $$\frac{4\log{(4)}-8\log{(2)}+3\pi}{12}$$
 <<*>>=
---S 44
+--S 44 of 72
 integrate(sin(x)^3/(sin(x)^3+cos(x)^3),x=0..%pi/2,"noPole")
 --R
 --R        2log(16) - 4log(4) + 3%pi
@@ -420,7 +420,7 @@ integrate(sin(x)^3/(sin(x)^3+cos(x)^3),x=0..%pi/2,"noPole")
 --R                    Type: Union(f1: OrderedCompletion Expression Integer,...)
 --E 44
 
---S 45
+--S 45 of 72
 integrate(exp(-x^2)*log(x)^2,x=0..%plusInfinity)
 --R
 --R         _ 1             1     _ 1         1 2
@@ -436,7 +436,7 @@ integrate(exp(-x^2)*log(x)^2,x=0..%plusInfinity)
 <<*>>=
 )clear all
 
---S 46
+--S 46 of 72
 laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t),t,s)
 --R
 --R             3
@@ -447,7 +447,7 @@ laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t),t,s)
 --R                                                     Type: Expression Integer
 --E 46
 
---S 47
+--S 47 of 72
 laplace(2/t * (1-cos(a*t)),t,s)
 --R
 --R             2    2
@@ -455,14 +455,14 @@ laplace(2/t * (1-cos(a*t)),t,s)
 --R                                                     Type: Expression Integer
 --E 47
 
---S 48
+--S 48 of 72
 laplace((exp(a*t)-exp(b*t))/t,t,s)
 --R
 --R   (3)  - log(s - a) + log(s - b)
 --R                                                     Type: Expression Integer
 --E 48
 
---S 49
+--S 49 of 72
 laplace(exp(a*t+b)*Ei(c*t),t,s)
 --R
 --R          b    s + c - a
@@ -479,14 +479,14 @@ laplace(exp(a*t+b)*Ei(c*t),t,s)
 over $K$, given a quadratic form $Q$ on $K^n$ (e.q. quaternions).
 <<*>>=
 )clear all
---S 50
+--S 50 of 72
 K:=Fraction Polynomial Integer
 --R
 --R   (1)  Fraction Polynomial Integer
 --R                                                                 Type: Domain
 --E 50
 
---S 51
+--S 51 of 72
 qf:QFORM(2,K):=quadraticForm matrix([[-1,0],[0,-1]])$(SQMATRIX(2,K))
 --R
 --R        +- 1   0 +
@@ -495,7 +495,7 @@ qf:QFORM(2,K):=quadraticForm matrix([[-1,0],[0,-1]])$(SQMATRIX(2,K))
 --R                           Type: QuadraticForm(2,Fraction Polynomial Integer)
 --E 51
 
---S 52
+--S 52 of 72
 i:=e(1)$CLIF(2,K,qf)
 --R
 --R   (3)  e
@@ -503,7 +503,7 @@ i:=e(1)$CLIF(2,K,qf)
 --R                  Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
 --E 52
 
---S 53
+--S 53 of 72
 j:=e(2)$CLIF(2,K,qf)
 --R
 --R   (4)  e
@@ -511,7 +511,7 @@ j:=e(2)$CLIF(2,K,qf)
 --R                  Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
 --E 53
 
---S 54
+--S 54 of 72
 k:=i*j
 --R
 --R   (5)  e e
@@ -519,7 +519,7 @@ k:=i*j
 --R                  Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
 --E 54
 
---S 55
+--S 55 of 72
 x:=a+b*i+c*j+d*k
 --R
 --R   (6)  a + b e  + c e  + d e e
@@ -527,7 +527,7 @@ x:=a+b*i+c*j+d*k
 --R                  Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
 --E 55
 
---S 56
+--S 56 of 72
 y:=m+f*i+g*j+h*k
 --R
 --R   (7)  m + f e  + g e  + h e e
@@ -535,7 +535,7 @@ y:=m+f*i+g*j+h*k
 --R                  Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
 --E 56
 
---S 57
+--S 57 of 72
 x+y
 --R
 --R   (8)  m + a + (f + b)e  + (g + c)e  + (h + d)e e
@@ -543,7 +543,7 @@ x+y
 --R                  Type: CliffordAlgebra(2,Fraction Polynomial Integer,MATRIX)
 --E 57
 
---S 58
+--S 58 of 72
 x*y
 --R
 --R   (9)
@@ -559,7 +559,7 @@ x*y
 \section{Taylor Series}
 <<*>>=
 )clear all
---S 59
+--S 59 of 72
 taylor(sin(x),x=0)
 --R
 --R            1  3    1   5     1   7      1    9      11
@@ -571,7 +571,7 @@ taylor(sin(x),x=0)
 @
 \section{Laurent Series}
 <<*>>=
---S 60
+--S 60 of 72
 laurent(x/log(x),x=1)
 --R
 --R   (2)
@@ -592,7 +592,7 @@ laurent(x/log(x),x=1)
 @
 \section{Puiseux Series}
 <<*>>=
---S 61
+--S 61 of 72
 puiseux(sqrt(sec(x)),x=3*%pi/2)
 --R 
 --R
@@ -607,7 +607,7 @@ puiseux(sqrt(sec(x)),x=3*%pi/2)
 @
 \section{General Series}
 <<*>>=
---S 62
+--S 62 of 72
 series(x^x,x=0)
 --R
 --R   (4)
@@ -627,7 +627,7 @@ series(x^x,x=0)
 \section{Matrices}
 <<*>>=
 )clear all
---S 63
+--S 63 of 72
 m:=matrix [[1,2],[3,4]]
 --R
 --R        +1  2+
@@ -636,7 +636,7 @@ m:=matrix [[1,2],[3,4]]
 --R                                                         Type: Matrix Integer
 --E 63
 
---S 64
+--S 64 of 72
 4*m*(-5)
 --R
 --R        +- 20  - 40+
@@ -645,7 +645,7 @@ m:=matrix [[1,2],[3,4]]
 --R                                                         Type: Matrix Integer
 --E 64
 
---S 65
+--S 65 of 72
 n:=matrix [[1,0,-2],[-3,5,1]]
 --R
 --R        + 1   0  - 2+
@@ -654,7 +654,7 @@ n:=matrix [[1,0,-2],[-3,5,1]]
 --R                                                         Type: Matrix Integer
 --E 65
 
---S 66
+--S 66 of 72
 m*n
 --R
 --R        +- 5  10   0 +
@@ -663,7 +663,7 @@ m*n
 --R                                                         Type: Matrix Integer
 --E 66
 
---S 67
+--S 67 of 72
 hilb:=matrix([[1/(i+j) for i in 1..3] for j in 1..3])
 --R
 --R        +1  1  1+
@@ -680,7 +680,7 @@ hilb:=matrix([[1/(i+j) for i in 1..3] for j in 1..3])
 --R                                                Type: Matrix Fraction Integer
 --E 67
 
---S 68
+--S 68 of 72
 inverse(hilb)
 --R
 --R        + 72    - 240   180 +
@@ -695,28 +695,28 @@ inverse(hilb)
 \section{Systems of Equations}
 <<*>>=
 )clear all
---S 69
+--S 69 of 72
 solve([x+y+z=8,3*x-2*y+z=0,x+2*y+2*z=17],[x,y,z])
 --R
 --R   (1)  [[x= - 1,y= 2,z= 7]]
 --R                         Type: List List Equation Fraction Polynomial Integer
 --E 69
 
---S 70
+--S 70 of 72
 solve([x+2*y+3*z=2,2*x+3*y+4*z=2,3*x+4*y+5*z=2],[x,y,z])
 --R
 --I   (2)  [[x= %W - 2,y= - 2%W + 2,z= %W]]
 --R                         Type: List List Equation Fraction Polynomial Integer
 --E 70
 
---S 71
+--S 71 of 72
 solve([[1,1,1],[3,-2,1],[1,2,2]],[8,0,17])
 --R
 --R   (3)  [particular= [- 1,2,7],basis= [[0,0,0]]]
 --RType: Record(particular: Union(Vector Fraction Integer,"failed"),basis: List Vector Fraction Integer)
 --E 71
 
---S 72
+--S 72 of 72
 solve([[1,2,3],[2,3,4],[3,4,5]],[2,2,2])
 --R
 --R   (4)  [particular= [- 2,2,0],basis= [[1,- 2,1]]]
diff --git a/src/input/clifford.input.pamphlet b/src/input/clifford.input.pamphlet
index 6052d52..226214f 100644
--- a/src/input/clifford.input.pamphlet
+++ b/src/input/clifford.input.pamphlet
@@ -132,7 +132,7 @@ x*%
 --% The quaternions as a Clifford Algebra
 )clear p qf
 
---S 11  of 39
+--S 11 of 39
 qf:QFORM(2, K) :=quadraticForm matrix([[-1, 0], [0, -1]])$(SQMATRIX(2,K))
 --R 
 --R
diff --git a/src/input/contfrac.input.pamphlet b/src/input/contfrac.input.pamphlet
index 502d9bd..05c4442 100644
--- a/src/input/contfrac.input.pamphlet
+++ b/src/input/contfrac.input.pamphlet
@@ -39,7 +39,7 @@ r2 := 314159/100000
 --R                                                       Type: Fraction Integer
 --E 2
 
---S 3  of 40
+--S 3 of 40
 c1 := r1 :: ContinuedFraction Integer
 --R 
 --R
@@ -60,7 +60,7 @@ c2 := r2 :: ContinuedFraction Integer
 --E 4
 
 -- We can view these in the list notation
---S 5  of 40
+--S 5 of 40
 partialQuotients c1
 --R 
 --R
diff --git a/src/input/danzwill2.input.pamphlet b/src/input/danzwill2.input.pamphlet
index d17eddb..97935b7 100644
--- a/src/input/danzwill2.input.pamphlet
+++ b/src/input/danzwill2.input.pamphlet
@@ -17,7 +17,7 @@ Problems from the MIT Integration Bee
 )clear all
 )set break resume
 
---S 1 of 17
+--S 1 of 50
 i1:= integrate(e^(1991*x),x)
 --R 
 --R
@@ -28,7 +28,7 @@ i1:= integrate(e^(1991*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 1
 
---S 2 of 17
+--S 2 of 50
 i2:= integrate((sin(x)-cos(x))^2,x)
 --R 
 --R
@@ -37,7 +37,7 @@ i2:= integrate((sin(x)-cos(x))^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 2
 
---S 3 of 17
+--S 3 of 50
 i3:= integrate(log(x),x)
 --R 
 --R
@@ -45,7 +45,7 @@ i3:= integrate(log(x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 3
 
---S 4 of 17
+--S 4 of 50
 i4:= integrate(1/(%pi*x),x)
 --R 
 --R
@@ -55,7 +55,7 @@ i4:= integrate(1/(%pi*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 4
 
---S 5 of 17
+--S 5 of 50
 i5:= integrate(%e^(sin(x)^2)*%e^(cos(x)^2),x)
 --R 
 --R
@@ -63,7 +63,7 @@ i5:= integrate(%e^(sin(x)^2)*%e^(cos(x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 5
 
---S 6 of 17
+--S 6 of 50
 i6:= integrate(1/(x*log(x)),x)
 --R 
 --R
@@ -71,7 +71,7 @@ i6:= integrate(1/(x*log(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 6
 
---S 7 of 17
+--S 7 of 50
 i7:= integrate(x/(x^4+1),x)
 --R 
 --R
@@ -82,7 +82,7 @@ i7:= integrate(x/(x^4+1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 7
 
---S 8 of 17
+--S 8 of 50
 i8:= integrate((x+1)/(x^2+2*x+2)^(1/3),x)
 --R 
 --R
@@ -94,7 +94,7 @@ i8:= integrate((x+1)/(x^2+2*x+2)^(1/3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 8
 
---S 9 of 17
+--S 9 of 50
 i9:= integrate(x*%e^x*sin(x),x)
 --R 
 --R
@@ -105,7 +105,7 @@ i9:= integrate(x*%e^x*sin(x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 9
 
---S 10 of 17
+--S 10 of 50
 i10:= integrate(%e^(%e^x+x),x)
 --R 
 --R
@@ -118,7 +118,7 @@ i10:= integrate(%e^(%e^x+x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 10
 
---S 11 of 17
+--S 11 of 50
 i11:= integrate(1/(sec(x)+tan(x)*sin(x)),x)
 --R 
 --R
@@ -129,7 +129,7 @@ i11:= integrate(1/(sec(x)+tan(x)*sin(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 11
 
---S 12 of 17
+--S 12 of 50
 i12:= integrate((%e^(5*x)+%e^(7*x))/(%e^x+%e^(-x)),x)
 --R 
 --R
@@ -140,7 +140,7 @@ i12:= integrate((%e^(5*x)+%e^(7*x))/(%e^x+%e^(-x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 12
 
---S 13 of 17
+--S 13 of 50
 i13:= integrate(sqrt(-1+2/(1+3*x)),x)
 --R 
 --R
@@ -153,7 +153,7 @@ i13:= integrate(sqrt(-1+2/(1+3*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 13
 
---S 14 of 17
+--S 14 of 50
 i14:= integrate(sinh(x)-cosh(x),x)
 --R 
 --R
@@ -163,7 +163,7 @@ i14:= integrate(sinh(x)-cosh(x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 14
 
---S 15 of 17
+--S 15 of 50
 i15:= integrate((sin(x)*%e^sec(x))/cos(x)^2,x)
 --R 
 --R
@@ -174,7 +174,7 @@ i15:= integrate((sin(x)*%e^sec(x))/cos(x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 15
 
---S 16 of 17
+--S 16 of 50
 i16:= integrate((x^2+1)/(x^4-x^2+1),x)
 --R 
 --R
@@ -183,7 +183,7 @@ i16:= integrate((x^2+1)/(x^4-x^2+1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 16
 
---S 17 of 17
+--S 17 of 50
 i17:= integrate(1/(%pi*x^2+atan(x)+x^2*atan(x)+%pi),x)
 --R 
 --R
@@ -196,7 +196,7 @@ i17:= integrate(1/(%pi*x^2+atan(x)+x^2*atan(x)+%pi),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 17
 
---S 18 of 18
+--S 18 of 50
 i18:= integrate(sec(x)^3,x)
 --R 
 --R
@@ -210,7 +210,7 @@ i18:= integrate(sec(x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 18
  
---S 19 of 19 
+--S 19 of 50
 i19:= integrate(1/(x^2-10*x+26),x)
 --R 
 --R
@@ -218,7 +218,7 @@ i19:= integrate(1/(x^2-10*x+26),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 19 
 
---S 20 of 20 
+--S 20 of 50
 i20:= integrate(1/(x^2-11*x-26),x)
 --R 
 --R
@@ -228,7 +228,7 @@ i20:= integrate(1/(x^2-11*x-26),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 20 
 
---S 21 of 21 
+--S 21 of 50
 i21:= integrate(1/(12+13*cos(x)),x)
 --R 
 --R
@@ -240,7 +240,7 @@ i21:= integrate(1/(12+13*cos(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 21 
 
---S 22 of 22 
+--S 22 of 50
 i22:= integrate((x^3+1)/(x+1),x)
 --R 
 --R
@@ -251,7 +251,7 @@ i22:= integrate((x^3+1)/(x+1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 22 
 
---S 23 of 23 
+--S 23 of 50
 i23:= integrate((1-4*x^4)^(-1/2)/(4*x)^(-1),x)
 --R 
 --R
@@ -264,7 +264,7 @@ i23:= integrate((1-4*x^4)^(-1/2)/(4*x)^(-1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 23 
 
---S 24 of 24 
+--S 24 of 50
 i24:= integrate(%e^(1991),x)
 --R 
 --R
@@ -273,7 +273,7 @@ i24:= integrate(%e^(1991),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 24 
 
---S 25 of 25 
+--S 25 of 50
 i25:= integrate((log(x)+1)*x^x,x)
 --R 
 --R
@@ -282,7 +282,7 @@ i25:= integrate((log(x)+1)*x^x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 25 
 
---S 26 of 26 
+--S 26 of 50
 i26:= integrate(cos(2*x)*sin(6*x),x)
 --R 
 --R
@@ -293,7 +293,7 @@ i26:= integrate(cos(2*x)*sin(6*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 26 
 
---S 27 of 27 
+--S 27 of 50
 i27:= integrate(1/(sqrt(x)*(1+sqrt(x))),x)
 --R 
 --R
@@ -302,7 +302,7 @@ i27:= integrate(1/(sqrt(x)*(1+sqrt(x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 27 
 
---S 28 of 28 
+--S 28 of 50
 i28:= integrate(e^(1/x)*x^(-3),x)
 --R 
 --R
@@ -316,7 +316,7 @@ i28:= integrate(e^(1/x)*x^(-3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 28 
 
---S 29 of 29 
+--S 29 of 50
 i29:= integrate(sqrt(csc(x)-sin(x)),x)
 --R 
 --R
@@ -328,7 +328,7 @@ i29:= integrate(sqrt(csc(x)-sin(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 29 
 
---S 30 of 30 
+--S 30 of 50
 i30:= integrate((x^2+1)/(x^3-x),x)
 --R 
 --R
@@ -337,7 +337,7 @@ i30:= integrate((x^2+1)/(x^3-x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 30 
 
---S 31 of 31 
+--S 31 of 50
 i31:= integrate(42^x,x)
 --R 
 --R
@@ -348,7 +348,7 @@ i31:= integrate(42^x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 31 
 
---S 32 of 32 
+--S 32 of 50
 i32:= integrate(x^5*%e^x,x)
 --R 
 --R
@@ -357,7 +357,7 @@ i32:= integrate(x^5*%e^x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 32 
 
---S 33 of 33 
+--S 33 of 50
 i33:= integrate(x*%e^(x^2),x)
 --R 
 --R
@@ -369,7 +369,7 @@ i33:= integrate(x*%e^(x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 33 
 
---S 34 of 34 
+--S 34 of 50
 i34:= integrate(1/(x^2+1)^2,x)
 --R 
 --R
@@ -381,7 +381,7 @@ i34:= integrate(1/(x^2+1)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 34 
 
---S 35 of 35 
+--S 35 of 50
 i35:= integrate(1/(%e^x+%e^(-x)),x)
 --R 
 --R
@@ -390,7 +390,7 @@ i35:= integrate(1/(%e^x+%e^(-x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 35 
 
---S 36 of 36 
+--S 36 of 50
 i36:= integrate(tan(x)*log(abs(sec(x))),x)
 --R 
 --R
@@ -404,7 +404,7 @@ i36:= integrate(tan(x)*log(abs(sec(x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 36 
 
---S 37 of 37 
+--S 37 of 50
 i37:= integrate(cos(sin(x))*cos(x),x)
 --R 
 --R
@@ -412,7 +412,7 @@ i37:= integrate(cos(sin(x))*cos(x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 37 
 
---S 38 of 38 
+--S 38 of 50
 i38:= integrate(1/(x^2-9),x)
 --R 
 --R
@@ -422,7 +422,7 @@ i38:= integrate(1/(x^2-9),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 38 
 
---S 39 of 39 
+--S 39 of 50
 i39:= integrate(%pi/sqrt(16-%e^2),x)
 --R 
 --R
@@ -434,7 +434,7 @@ i39:= integrate(%pi/sqrt(16-%e^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 39 
 
---S 40 of 40 
+--S 40 of 50
 i40:= integrate(sqrt(tan(x)),x)
 --R 
 --R
@@ -485,7 +485,7 @@ i40:= integrate(sqrt(tan(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 40 
 
---S 41 of 41 
+--S 41 of 50
 i41:= integrate(sin(x)^(-1),x)
 --R 
 --R
@@ -495,7 +495,7 @@ i41:= integrate(sin(x)^(-1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 41 
 
---S 42 of 42 
+--S 42 of 50
 i42:= integrate((x^2-2*x+2)/(x^2+1),x)
 --R 
 --R
@@ -504,7 +504,7 @@ i42:= integrate((x^2-2*x+2)/(x^2+1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 42 
 
---S 43 of 43 
+--S 43 of 50
 i43:= integrate((sin(x)^2*cos(x)^2)/(1+cos(2*x)),x)
 --R 
 --R
@@ -514,7 +514,7 @@ i43:= integrate((sin(x)^2*cos(x)^2)/(1+cos(2*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 43 
 
---S 44 of 44 
+--S 44 of 50
 i44:= integrate(sqrt(x+x^2*sqrt(x)),x)
 --R 
 --R
@@ -526,7 +526,7 @@ i44:= integrate(sqrt(x+x^2*sqrt(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 44 
 
---S 45 of 45 
+--S 45 of 50
 i45:= integrate(cos(4*x)*cos(2*x),x)
 --R 
 --R
@@ -537,7 +537,7 @@ i45:= integrate(cos(4*x)*cos(2*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 45 
 
---S 46 of 46 
+--S 46 of 50
 i46:= integrate(sqrt(x^3-1)/x,x)
 --R 
 --R
@@ -549,7 +549,7 @@ i46:= integrate(sqrt(x^3-1)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 46 
 
---S 47 of 47 
+--S 47 of 50
 i47:= integrate((%e^x*(x-2))/x^3,x)
 --R 
 --R
@@ -561,7 +561,7 @@ i47:= integrate((%e^x*(x-2))/x^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 47 
 
---S 48 of 48 
+--S 48 of 50
 i48:= integrate(cot(x)/log(sin(x)),x)
 --R 
 --R
@@ -569,7 +569,7 @@ i48:= integrate(cot(x)/log(sin(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 48 
 
---S 49 of 49 
+--S 49 of 50
 i49:= integrate(x*sec(x)^2,x)
 --R 
 --R
@@ -581,7 +581,7 @@ i49:= integrate(x*sec(x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 49 
 
---S 50 of 50 
+--S 50 of 50
 i50:= integrate(x*sec(x)*(x*tan(x)+2),x)
 --R 
 --R
diff --git a/src/input/directproduct.input.pamphlet b/src/input/directproduct.input.pamphlet
index cc99107..5fedb6c 100644
--- a/src/input/directproduct.input.pamphlet
+++ b/src/input/directproduct.input.pamphlet
@@ -23,7 +23,7 @@ product is a ring. (Bug report 117). This is fixed by patch
 )set message test on
 )clear all
 
---S 1
+--S 1 of 12
 NNI has Monoid
 --R 
 --R
@@ -31,7 +31,7 @@ NNI has Monoid
 --R                                                                Type: Boolean
 --E 1
 
---S 2
+--S 2 of 12
 NNI2:=DirectProduct(2,NNI)
 --R 
 --R
@@ -39,7 +39,7 @@ NNI2:=DirectProduct(2,NNI)
 --R                                                                 Type: Domain
 --E 2
 
---S 3
+--S 3 of 12
 NNI2 has Monoid
 --R 
 --R
@@ -47,7 +47,7 @@ NNI2 has Monoid
 --R                                                                Type: Boolean
 --E 3
 
---S 4
+--S 4 of 12
 a:NNI2:=directProduct([3,5])
 --R 
 --R
@@ -55,7 +55,7 @@ a:NNI2:=directProduct([3,5])
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 4
 
---S 5
+--S 5 of 12
 3*a
 --R 
 --R
@@ -63,7 +63,7 @@ a:NNI2:=directProduct([3,5])
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 5
 
---S 6
+--S 6 of 12
 b:NNI2:=1
 --R 
 --R
@@ -71,7 +71,7 @@ b:NNI2:=1
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 6
 
---S 7
+--S 7 of 12
 1*a
 --R 
 --R
@@ -79,7 +79,7 @@ b:NNI2:=1
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 7
 
---S 8
+--S 8 of 12
 b*a
 --R 
 --R
@@ -87,7 +87,7 @@ b*a
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 8
 
---S 9
+--S 9 of 12
 c:NNI2:=directProduct([1,1])
 --R 
 --R
@@ -95,7 +95,7 @@ c:NNI2:=directProduct([1,1])
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 9
 
---S 10
+--S 10 of 12
 c*a
 --R 
 --R
@@ -103,7 +103,7 @@ c*a
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 10
 
---S 11
+--S 11 of 12
 d:NNI2:=directProduct([1,2])
 --R 
 --R
@@ -111,7 +111,7 @@ d:NNI2:=directProduct([1,2])
 --R                                    Type: DirectProduct(2,NonNegativeInteger)
 --E 11
 
---S 12
+--S 12 of 12
 d*a
 --R 
 --R
diff --git a/src/input/efi.input.pamphlet b/src/input/efi.input.pamphlet
index 25952b4..0e61d9c 100644
--- a/src/input/efi.input.pamphlet
+++ b/src/input/efi.input.pamphlet
@@ -147,7 +147,7 @@ ss:=[1,1]
 --E 14
 
 -- fJ doesn't know about the special definition at the origin
---S 15 of 15 of 15
+--S 15 of 15
 fJ(ss)
 --R 
 --R
diff --git a/src/input/eigen.input.pamphlet b/src/input/eigen.input.pamphlet
index ee529f6..447c15f 100644
--- a/src/input/eigen.input.pamphlet
+++ b/src/input/eigen.input.pamphlet
@@ -222,7 +222,7 @@ eigenvectors m
 --RType: List Record(eigval: Union(Fraction Polynomial Integer,SuchThat(Symbol,Polynomial Integer)),eigmult: NonNegativeInteger,eigvec: List Matrix Fraction Polynomial Integer)
 --E 14
 
---S 15  of 36
+--S 15 of 36
 q:=matrix [[x**2-y**2,(x-y)*(2*x+3*y)],[x+y,2*x+3*y]]
 --R 
 --R
diff --git a/src/input/elfuts.input.pamphlet b/src/input/elfuts.input.pamphlet
index 05879e4..6ac403f 100644
--- a/src/input/elfuts.input.pamphlet
+++ b/src/input/elfuts.input.pamphlet
@@ -282,7 +282,7 @@ dnn**2+ksquared*snn**2
 --RType: UnivariateTaylorSeries(Fraction UnivariatePolynomial(k,Fraction Integer),y,0)
 --E 19
 
---S 20  of 40
+--S 20 of 40
 kkk:=integrate(1/((1-yy**2)*(1-ksquared*yy**2))**(1/2))
 --R 
 --R
diff --git a/src/input/equation2.input.pamphlet b/src/input/equation2.input.pamphlet
index d099d61..6962f79 100644
--- a/src/input/equation2.input.pamphlet
+++ b/src/input/equation2.input.pamphlet
@@ -379,7 +379,7 @@ solve(1/x**3 + 1/x**2 + 1/x = 0,x,"sym")
 
 )clear all
 
---S 24  of 27
+--S 24 of 27
 solve([[1,1,1],[3,-2,1],[1,2,2]],[8,0,17])
 --R 
 --R
diff --git a/src/input/exprode.input.pamphlet b/src/input/exprode.input.pamphlet
index 426a379..dd07129 100644
--- a/src/input/exprode.input.pamphlet
+++ b/src/input/exprode.input.pamphlet
@@ -25,7 +25,7 @@
 We will solve  $y^{'''} = \sin(y^{''}) * \exp(y) + \cos(x)$
 subject to $y(0) = 1$, $y^{'}(0) = 0$, $y^{''}(0) = 0$
 <<*>>=
---S 1  of 13
+--S 1 of 13
 y := operator 'y
 --R 
 --R
@@ -33,7 +33,7 @@ y := operator 'y
 --R                                                          Type: BasicOperator
 --E 1
 
---S 2  of 13
+--S 2 of 13
 eq := differentiate(y x, x, 3) - sin differentiate(y x, x, 2) * exp y x
            = cos x
 --R 
@@ -44,7 +44,7 @@ eq := differentiate(y x, x, 3) - sin differentiate(y x, x, 2) * exp y x
 --R                                            Type: Equation Expression Integer
 --E 2
 
---S 3  of 13
+--S 3 of 13
 seriesSolve(eq, y, x = 0, [1, 0, 0])
 --R 
 --R   Compiling function %B with type List UnivariateTaylorSeries(
@@ -75,7 +75,7 @@ airy := differentiate(y x, x, 2) - x * y x
 --R                                                     Type: Expression Integer
 --E 4
 
---S 5  of 13
+--S 5 of 13
 seriesSolve(airy, y, x = 0, [a0, a1])
 --R 
 --R   Compiling function %D with type List UnivariateTaylorSeries(
diff --git a/src/input/ffx72.input.pamphlet b/src/input/ffx72.input.pamphlet
index 8bc70be..0e40969 100644
--- a/src/input/ffx72.input.pamphlet
+++ b/src/input/ffx72.input.pamphlet
@@ -26,7 +26,7 @@ This file demonstrates some calculations with the finite field of
 field with 7 elements.
 <<*>>=
 
---S 1  of 13
+--S 1 of 13
 gf72 := FF(7, 2)
 --R 
 --R
diff --git a/src/input/fr.input.pamphlet b/src/input/fr.input.pamphlet
index 2e739cc..b96261c 100644
--- a/src/input/fr.input.pamphlet
+++ b/src/input/fr.input.pamphlet
@@ -259,7 +259,7 @@ Manipulation of factored polynomials
 <<*>>=
 
 )clear all
---S 23  of 55
+--S 23 of 55
 (u,v,w): FR POLY INT
 --R 
 --R                                                                   Type: Void
diff --git a/src/input/gonshor.input.pamphlet b/src/input/gonshor.input.pamphlet
index f67e552..748192c 100644
--- a/src/input/gonshor.input.pamphlet
+++ b/src/input/gonshor.input.pamphlet
@@ -311,7 +311,7 @@ r,s : R
 <<*>>=
 
 )clear prop AP
---S 28  of 98
+--S 28 of 98
 AP := ALGPKG(R,A)
 --R 
 --R
diff --git a/src/input/heap.input.pamphlet b/src/input/heap.input.pamphlet
index 65ac4dd..2ab444e 100644
--- a/src/input/heap.input.pamphlet
+++ b/src/input/heap.input.pamphlet
@@ -19,7 +19,7 @@
 )set message auto off
 )clear all
 
---S 1  of 8
+--S 1 of 8
 h := heap [-4,9,11,2,7,-7]
 --R 
 --R
diff --git a/src/input/herm.input.pamphlet b/src/input/herm.input.pamphlet
index 02952e7..da4e7c8 100644
--- a/src/input/herm.input.pamphlet
+++ b/src/input/herm.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1  of 29
+--S 1 of 29
 )lib $TEST_AXIOMXL/herm
 --R 
 --R   )library cannot find the file herm.
diff --git a/src/input/intbypart.input.pamphlet b/src/input/intbypart.input.pamphlet
index 0b26c61..e1972b8 100644
--- a/src/input/intbypart.input.pamphlet
+++ b/src/input/intbypart.input.pamphlet
@@ -56,7 +56,7 @@ $$=\frac{1}{2}x^2 ln(x) - {\frac{1}{2}}\int{x dx}$$
 $$=\frac{1}{2} ln(x) - {\frac{1}{4}}x^2 + C$$
 $$=\frac{1}{4}x^2(2 ln(x) - 1)+C$$
 <<*>>=
---S 1
+--S 1 of 16
 integrate(x*log(x),x)
 --R
 --R          2          2
@@ -83,7 +83,7 @@ $$= xe^x - \int{e^x dx}$$
 $$= xe^x - e^x + C$$
 $$= (x-1)e^x + C$$
 <<*>>=
---S 2
+--S 2 of 16
 integrate(x*exp(x),x)
 --R
 --R                 x
@@ -134,7 +134,7 @@ $$=\frac{1}{2}(e^x sin(x) + e^x cos(x))$$
 so
 $$\int{e^x cos(x) dx} = \frac{1}{2}(e^x sin(x) + e^x cos(x)) + C$$
 <<*>>=
---S 3
+--S 3 of 16
 integrate(exp(x)*sin(x),x)
 --R
 --R          x                 x
@@ -156,7 +156,7 @@ $$=\frac{1}{2}x^2 e^{x^2} - \int{x e^{x^2}} dx$$
 $$=\frac{1}{2}x^2 e^{x^2} - {\frac{1}{2}} e^{x^2} + C$$
 $$=\frac{1}{2}(x^2 -1)e^{x^2} + C$$
 <<*>>=
---S 4
+--S 4 of 16
 integrate(x^3*exp(x^2),x)
 --R
 --R                   2
@@ -184,7 +184,7 @@ $$=x ln(x^2+2)-2x+
 \frac{4}{\sqrt{2}}\tan^{-1}\left(\frac{x}{\sqrt{2}}\right) + C$$
 $$x(ln(x^2+2)-2)+2\sqrt{2} \tan^{-1}\left(\frac{x}{\sqrt{2}}\right) + C$$
 <<*>>=
---S 5
+--S 5 of 16
 integrate(log(x^2+2),x)
 --R
 --R                                   +-+
@@ -208,7 +208,7 @@ $$\int{x\ sin(x)\ dx}$$
 $$= -x\ cos(x) - \int{-cos(x)\ dx}$$
 $$= -x\ cos(x)+sin(x)+C$$
 <<*>>=
---S 6
+--S 6 of 16
 integrate(x*sin(x),x)
 --R
 --R   (6)  sin(x) - x cos(x)
@@ -229,7 +229,7 @@ $$\int{x\ cos(x)\ dx}$$
 $$= x\ sin(x) - \int{sin(x)\ dx}$$
 $$= x\ sin(x)+cos(x)+C$$
 <<*>>=
---S 7
+--S 7 of 16
 integrate(x*cos(x),x)
 --R 
 --R
@@ -252,7 +252,7 @@ $$= -x^2\ cos(x) - \int{-2x\ cos(x)\ dx}$$
 $$= -x^2\ cos(x)+2\int{x\ cos(x)\ dx}$$
 $$=-x^2\ cos(x)+2(x\ sin(x)+cos(x))+C$$
 <<*>>=
---S 8
+--S 8 of 16
 integrate(x^2*cos(x),x)
 --R 
 --R
@@ -278,7 +278,7 @@ $$2\int{sin(x)cos(x)dx}=sin^2(x)$$
 so
 $$\int{sin(x)cos(x)dx}=\frac{1}{2}sin^2(x)+C$$
 <<*>>=
---S 9
+--S 9 of 16
 integrate(sin(x)*cos(x),x)
 --R 
 --R
@@ -304,7 +304,7 @@ $$=x\ ln(x)=\int{1\ dx}$$
 $$=x\ ln(x) - x + C$$
 $$=x(ln(x)-1)+C$$
 <<*>>=
---S 10
+--S 10 of 16
 integrate(log(x),x)
 --R
 --R   (10)  x log(x) - x
@@ -326,7 +326,7 @@ $$\frac{x^3}{3} ln(x) - \int{\frac{x^3}{3}\frac{dx}{x}}$$
 $$\frac{x^3}{3} ln(x)-\frac{1}{3}\int{x^2\ dx}$$
 $$\frac{x^3}{3}ln(x)-\frac{1}{9}x^3 + C$$
 <<*>>=
---S 11
+--S 11 of 16
 integrate(x^2*log(x),x)
 --R
 --R           3          3
@@ -350,7 +350,7 @@ $$\int{x^2\ e^x\ dx}$$
 $$x^2\ e^x - 2x\ e^x - \int{e^x\ 2dx}$$
 $$x^2\ e^x - 2x\ e^x+2\ e^x+C$$
 <<*>>=
---S 12
+--S 12 of 16
 integrate(x^2*exp(x),x)
 --R 
 --R
@@ -376,7 +376,7 @@ $$=x\ sin^{-1}(x) + \frac{1}{2}(2(1-x^2)^{1/2})+C$$
 $$=x\ sin^{-1}(x)+(1-x^2)^{1/2}+C$$
 $$=x\ sin^{-1}(x)+\sqrt{1-x^2}+C$$
 <<*>>=
---S 13
+--S 13 of 16
 integrate(asin(x),x)
 --R 
 --R
@@ -405,7 +405,7 @@ $$=x\ \tan^{-1}-\int{\frac{x}{1+x^2}\ dx}$$
 $$=x\ tan^{-1}(x)-\frac{1}{2}\int{\frac{2x}{1+x^2}\ dx}$$
 $$=x\ tan^{-1}(x)-\frac{1}{2}ln(1+x^2)+C$$
 <<*>>=
---S 14
+--S 14 of 16
 integrate(atan(x),x)
 --R 
 --R
@@ -438,7 +438,7 @@ so
 $$\int{sec^3(x)\ dx}=
 \frac{1}{2}(sec(x)tan(x)+ln(\vert sec(x)+\tan(x)\vert ))+C$$
 <<*>>=
---S 15
+--S 15 of 16
 integrate(sec(x)^3,x)
 --R 
 --R
@@ -487,7 +487,7 @@ $$=\frac{1}{2}x^3\ e^{2x}-\frac{3}{4}x^2\ e^{2x}+
 $$=\frac{1}{2}x^3\ e^{2x}-\frac{3}{4}x^2\ e^{2x}+
 \frac{3}{4}xe^{2x}-\frac{3}{8}e^{2x}+C$$
 <<*>>=
---S 16
+--S 16 of 16
 integrate(x^3*exp(2*x),x)
 --R 
 --R
diff --git a/src/input/intef2.input.pamphlet b/src/input/intef2.input.pamphlet
index c33abac..7b1dbe2 100644
--- a/src/input/intef2.input.pamphlet
+++ b/src/input/intef2.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1  of 10
+--S 1 of 10
 (a*x+b) / (b**2 * x * log(x)**2 + 2*a*b*x**2*log(x) + a**2*x**3 + x)
 --R 
 --R
diff --git a/src/input/lodo.input.pamphlet b/src/input/lodo.input.pamphlet
index 61f5de8..5a25bcd 100644
--- a/src/input/lodo.input.pamphlet
+++ b/src/input/lodo.input.pamphlet
@@ -206,7 +206,7 @@ p: RFZ := x**2 + 1/x**2
 @
 Operator multiplication is not commutative
 <<*>>=
---S 17  of 55
+--S 17 of 55
 (a*b - b*a) p 
 --R 
 --R
@@ -226,7 +226,7 @@ sequences, and also the computation of left and right lcm's.
 
 The result is the quotient/remainder pair
 <<*>>=
---S 18  of 55
+--S 18 of 55
 leftDivide(a,b)      
 --R 
 --R
@@ -718,7 +718,7 @@ b:   Modo := m*Dx  + 1
 --RType: LinearOrdinaryDifferentialOperator2(SquareMatrix(3,UnivariatePolynomial(x,Integer)),DirectProductMatrixModule(3,UnivariatePolynomial(x,Integer),SquareMatrix(3,UnivariatePolynomial(x,Integer)),UnivariatePolynomial(x,Integer)))
 --E 51
 
---S 52  of 55
+--S 52 of 55
 a*b
 --R 
 --R
diff --git a/src/input/lupfact.input.pamphlet b/src/input/lupfact.input.pamphlet
index b7ee9d2..a1bca2c 100644
--- a/src/input/lupfact.input.pamphlet
+++ b/src/input/lupfact.input.pamphlet
@@ -32,7 +32,7 @@ algorithm.
 
 State the field here
 <<*>>=
---S 1  of 18
+--S 1 of 18
 field := Fraction Integer
 --R 
 --R
@@ -69,7 +69,7 @@ nonZeroCol: Matrix field -> INT
 --R                                                                   Type: Void
 --E 4
 
---S 5  of 18
+--S 5 of 18
 nonZeroCol(m) ==
   foundit := false
   col := 1
@@ -87,7 +87,7 @@ nonZeroCol(m) ==
 This embeds the given square matrix in a larger square matrix
 where the extra space is filled with 1s on the diagonal, 0 elsewhere.
 <<*>>=
---S 6  of 18
+--S 6 of 18
 embedMatrix: (Matrix field,NNI,NNI) -> Matrix field
 --R 
 --R                                                                   Type: Void
@@ -112,7 +112,7 @@ lupFactorEngine: (Matrix field, INT, INT)  -> List Matrix field
 --R                                                                   Type: Void
 --E 8
 
---S 9  of 18
+--S 9 of 18
 lupFactorEngine(a, m, p) ==
   m = 1 =>
     l : Matrix field := diagonalMatrix [1]
@@ -152,7 +152,7 @@ lupFactorEngine(a, m, p) ==
 @
 Next computes floor of log base 2 of an integer
 <<*>>=
---S 10  of 18
+--S 10 of 18
 intLog2: NNI -> NNI
 --R 
 --R                                                                   Type: Void
diff --git a/src/input/mappkg1.input.pamphlet b/src/input/mappkg1.input.pamphlet
index 6fa53bb..581590b 100644
--- a/src/input/mappkg1.input.pamphlet
+++ b/src/input/mappkg1.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1  of 26
+--S 1 of 26
 power(q: FRAC INT, n: INT): FRAC INT == q**n
 --R 
 --R   Function declaration power : (Fraction Integer,Integer) -> Fraction 
diff --git a/src/input/matrix.input.pamphlet b/src/input/matrix.input.pamphlet
index 067109d..2d35d55 100644
--- a/src/input/matrix.input.pamphlet
+++ b/src/input/matrix.input.pamphlet
@@ -251,7 +251,7 @@ minordet    mat3
 @ 
 Same computation, work over the rationals
 <<*>>=
---S 15  of 42
+--S 15 of 42
 mat4 : MATRIX FRAC INT := matrix [[j**i for i in 0..4] for j in 1..5]
 --R 
 --R
diff --git a/src/input/matrix22.input.pamphlet b/src/input/matrix22.input.pamphlet
index 2fa445d..fe93939 100644
--- a/src/input/matrix22.input.pamphlet
+++ b/src/input/matrix22.input.pamphlet
@@ -64,7 +64,7 @@ because there is no function that computes the determinant of a
 matrix whose entries belong to a noncommutative ring
 <<*>>=
 )set mes test off
---S 4  of 8
+--S 4 of 8
 determinant n
 --R 
 --R   There are 3 exposed and 1 unexposed library operations named 
diff --git a/src/input/mpoly.input.pamphlet b/src/input/mpoly.input.pamphlet
index 9323ed3..950b67a 100644
--- a/src/input/mpoly.input.pamphlet
+++ b/src/input/mpoly.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1  of 10
+--S 1 of 10
 m : MPOLY([x,y],INT) := (x**2 - x*y**3 +3*y)**2
 --R 
 --R
diff --git a/src/input/mset2.input.pamphlet b/src/input/mset2.input.pamphlet
index 354a3f8..074ce54 100644
--- a/src/input/mset2.input.pamphlet
+++ b/src/input/mset2.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1  of 12
+--S 1 of 12
 s := multiset [1,2,3,4,5,4,3,2,3,4,5,6,7,4,10]
 --R 
 --R
diff --git a/src/input/ndftip.input.pamphlet b/src/input/ndftip.input.pamphlet
index bbed72e..84578e4 100644
--- a/src/input/ndftip.input.pamphlet
+++ b/src/input/ndftip.input.pamphlet
@@ -814,7 +814,7 @@ badSeqs : List PackedHermitianSequence DoubleFloat
 --
 --                                                            Type: List Symbol
 
---S 44  of 45
+--S 44 of 45
 nagDFT badSeqs
 --R 
 --R   There are no library operations named nagDFT 
diff --git a/src/input/noonburg.input.pamphlet b/src/input/noonburg.input.pamphlet
index 90cf929..dbd6020 100644
--- a/src/input/noonburg.input.pamphlet
+++ b/src/input/noonburg.input.pamphlet
@@ -38,7 +38,7 @@ dmp0 := DMP([x,y,z,c],RN)
 --R                                                                 Type: Domain
 --E 2
 
---S 3  of 6
+--S 3 of 6
 px : dmp0 := 1-c*x +x*(y**2 + z**2)
 --R 
 --R
diff --git a/src/input/nsfip.input.pamphlet b/src/input/nsfip.input.pamphlet
index 2a24dc0..98aa59e 100644
--- a/src/input/nsfip.input.pamphlet
+++ b/src/input/nsfip.input.pamphlet
@@ -86,7 +86,7 @@ nagExpInt(-1) :: Float
 @
 nagSinInt : DF -> DF ;
 <<*>>=
---S 4  of 141 used to work?
+--S 4 of 141 used to work?
 nagSinInt(0) :: Float
 --R 
 --R   There are no library operations named nagSinInt 
diff --git a/src/input/oct.input.pamphlet b/src/input/oct.input.pamphlet
index 28b7aab..3cd0c4b 100644
--- a/src/input/oct.input.pamphlet
+++ b/src/input/oct.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1  of 15
+--S 1 of 15
 oci1 := octon(1,2,3,4,5,6,7,8)
 --R 
 --R
@@ -131,7 +131,7 @@ p : Octonion Polynomial Integer := octon(p1, pi, pj, pk, pE, pI, pJ, pK)
 --R                                            Type: Octonion Polynomial Integer
 --E 14
 
---S 15
+--S 15 of 15
 norm(o*p)-norm(p)*norm(p)
 --R 
 --R
diff --git a/src/input/op1.input.pamphlet b/src/input/op1.input.pamphlet
index 529bb28..2fdee44 100644
--- a/src/input/op1.input.pamphlet
+++ b/src/input/op1.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1  of 21
+--S 1 of 21
 R := SQMATRIX(2, INT)
 --R 
 --R
diff --git a/src/input/page.input.pamphlet b/src/input/page.input.pamphlet
index 8b21aaf..f1e01b4 100644
--- a/src/input/page.input.pamphlet
+++ b/src/input/page.input.pamphlet
@@ -50,21 +50,21 @@ interface, please review the following Axiom session.
 Consider the three strings:
 \end{verbatim}
 <<*>>=
---S 1
+--S 1 of 18
 a1:="(a/x)+(a/y)"
 --R
 --R   (1)  "(a/x)+(a/y)"
 --R                                                                 Type: String
 --E 1
 
---S 2
+--S 2 of 18
 a2:="(a/x) + (a/y)"
 --R
 --R   (2)  "(a/x) + (a/y)"
 --R                                                                 Type: String
 --E 2
 
---S 3
+--S 3 of 18
 a3:="(a*x+a*y)/(x*y)"
 --R
 --R   (3)  "(a*x+a*y)/(x*y)"
@@ -75,21 +75,21 @@ a3:="(a*x+a*y)/(x*y)"
 Of course as members of the Domain String these are all different.
 <<*>>=
 
---S 4
+--S 4 of 18
 (a1=a2)::Boolean
 --R
 --R   (4)  false
 --R                                                                Type: Boolean
 --E 4
 
---S 5
+--S 5 of 18
 (a1=a3)::Boolean
 --R
 --R   (5)  false
 --R                                                                Type: Boolean
 --E 5
 
---S 6
+--S 6 of 18
 (a2=a3)::Boolean
 --R
 --R   (6)  false
@@ -99,21 +99,21 @@ Of course as members of the Domain String these are all different.
 @
 While as members of the Domain Expression Integer these are equal.
 <<*>>=
---S 7
+--S 7 of 18
 interpretString(a1."=".a2)::Boolean
 --R
 --R   (7)  true
 --R                                                                Type: Boolean
 --E 7
 
---S 8
+--S 8 of 18
 interpretString(a1."=".a3)::Boolean
 --R
 --R   (8)  true
 --R                                                                Type: Boolean
 --E 8
 
---S 9
+--S 9 of 18
 interpretString(a2."=".a3)::Boolean
 --R
 --R   (9)  true
@@ -124,21 +124,21 @@ interpretString(a2."=".a3)::Boolean
 But when we evaluate them as symbolic expressions in the domain
 InputForm:
 <<*>>=
---S 10
+--S 10 of 18
 x:INFORM:=x
 --R
 --R   (10)  x
 --R                                                              Type: InputForm
 --E 10
 
---S 11
+--S 11 of 18
 y:INFORM:=y
 --R
 --R   (11)  y
 --R                                                              Type: InputForm
 --E 11
 
---S 12
+--S 12 of 18
 a:INFORM:=a
 --R
 --R   (12)  a
@@ -148,21 +148,21 @@ a:INFORM:=a
 @
 The first two are equal but the third is something different!
 <<*>>=
---S 13
+--S 13 of 18
 interpretString(a1."=".a2)::Boolean
 --R
 --R   (13)  true
 --R                                                                Type: Boolean
 --E 13
 
---S 14
+--S 14 of 18
 interpretString(a1."=".a3)::Boolean
 --R
 --R   (14)  false
 --R                                                                Type: Boolean
 --E 14
 
---S 15
+--S 15 of 18
 interpretString(a2."=".a3)::Boolean
 --R
 --R   (15)  false
@@ -180,7 +180,7 @@ need for an OutputForm for InputForm that is equivalent the
 actual input to the Axiom interpreter. The function that I was
 looking for is called 'expr' in the domain InputForm.
 <<*>>=
---S 16
+--S 16 of 18
 map(expr,map(interpretString,a1=a2)::Equation(INFORM))
 --R
 --R         a   a  a   a
@@ -189,7 +189,7 @@ map(expr,map(interpretString,a1=a2)::Equation(INFORM))
 --R                                                    Type: Equation OutputForm
 --E 16
 
---S 17
+--S 17 of 18
 map(expr,map(interpretString,a2=a3)::Equation(INFORM))
 --R
 --R         a   a  a x + a y
@@ -198,7 +198,7 @@ map(expr,map(interpretString,a2=a3)::Equation(INFORM))
 --R                                                    Type: Equation OutputForm
 --E 17
 
---S 18
+--S 18 of 18
 map(expr,map(interpretString,a1=a3)::Equation(INFORM))
 --R
 --R         a   a  a x + a y
diff --git a/src/input/patch51.input.pamphlet b/src/input/patch51.input.pamphlet
index 66ca072..27afdd4 100644
--- a/src/input/patch51.input.pamphlet
+++ b/src/input/patch51.input.pamphlet
@@ -19,7 +19,7 @@ These are bug fixes available in patch51
 The besselK function was missing a minus sign as of patch50.
 This is fixed as of patch51. 
 <<*>>=
---S 1 bug #355 fix
+--S 1 of 1 bug #355 fix
 D(besselK(a,x),x)
 --R 
 --R
diff --git a/src/input/quat.input.pamphlet b/src/input/quat.input.pamphlet
index 60d5ad5..445ae09 100644
--- a/src/input/quat.input.pamphlet
+++ b/src/input/quat.input.pamphlet
@@ -38,7 +38,7 @@ The four arguments are the real part, the i imaginary part, the
 j imaginary part and the k imaginary part, respectively. These are
 extracted with the following functions.
 <<*>>=
---S 2  of 25
+--S 2 of 25
 real q
 --R 
 --R
@@ -157,7 +157,7 @@ r * q
 There are no predefined constants for the imaginary i, j and k but
 you can easily define them.
 <<*>>=
---S 13  of 25
+--S 13 of 25
 i := quatern(0,1,0,0)
 --R 
 --R
@@ -181,7 +181,7 @@ k := quatern(0,0,0,1)
 --R                                                     Type: Quaternion Integer
 --E 15
 
---S 16  of 25
+--S 16 of 25
 i*i
 --R 
 --R
diff --git a/src/input/r21bugsbig.input.pamphlet b/src/input/r21bugsbig.input.pamphlet
index 61eccd1..e035c15 100644
--- a/src/input/r21bugsbig.input.pamphlet
+++ b/src/input/r21bugsbig.input.pamphlet
@@ -23,7 +23,7 @@
 )set message type off
 )set message time off
 
---S 1  of 22
+--S 1 of 22
 n : PositiveInteger := 5
 --R 
 --R
@@ -41,11 +41,17 @@ UZn : List(PositiveInteger) := [i for i in 1 .. n-1 | gcd(i,n) = 1]
 K = Q(t), corps des fractions rationnelles a Phi(n) indeterminees sur Q
 <<*>>=
 --S 3 of 22
-vars : List(Symbol) := [concat("t", i::String)::Symbol for i in 0 ..#UZn-1] ;
+vars : List(Symbol) := [concat("t", i::String)::Symbol for i in 0 ..#UZn-1] 
+--R 
+--R
+--R   (3)  [t0,t1,t2,t3]
 --E 3
 
---S 4  of 22
-Zt := DistributedMultivariatePolynomial(vars, Integer) ;   K :=Fraction(Zt) ;
+--S 4 of 22
+Zt := DistributedMultivariatePolynomial(vars, Integer) ;   K :=Fraction(Zt) 
+--R 
+--R
+--R   (4)  Fraction DistributedMultivariatePolynomial([t0,t1,t2,t3],Integer)
 --E 4 
 
 --S 5 of 22
@@ -66,7 +72,10 @@ t(#t) := 0 ; t
 --E 6
 
 --S 7 of 22
-Zn := IntegerMod(n) ;
+Zn := IntegerMod(n) 
+--R 
+--R
+--R   (7)  IntegerMod 5
 --E 7 
 
 --S 8 of 22
@@ -90,11 +99,20 @@ Phi : UP('xi, K) := map(coerce, cyclotomic(n))
 E est l'extension cyclotomique de K par les racines n-iemes de l'unite
 <<*>>=
 --S 10 of 22
-E := SimpleAlgebraicExtension(K, UP('xi, K), Phi) ;
+E := SimpleAlgebraicExtension(K, UP('xi, K), Phi) 
+--R 
+--R
+--R   (10)
+--R  SimpleAlgebraicExtension(Fraction DistributedMultivariatePolynomial([t0,t1,t2
+--R  ,t3],Integer),UnivariatePolynomial(xi,Fraction DistributedMultivariatePolynom
+--R  ial([t0,t1,t2,t3],Integer)),xi**4+xi**3+xi*xi+xi+1)
 --E 10 
 
 --S 11 of 22
-xi : E := generator()$E ;
+xi : E := generator()$E 
+--R 
+--R
+--R   (11)  xi
 --E 11 
 
 --S 12 of 22
@@ -113,27 +131,720 @@ delta(j) = delta(j, 1) avec les nouvelles notations
 <<*>>=
 --S 13 of 22
 delta : List(E) :=
-  [reduce(*, [b**((j*rapport(1,k)) quo n) for b in bList for k in UZn]) for j in UZn] ;
+  [reduce(*, [b**((j*rapport(1,k)) quo n) for b in bList for k in UZn]) for j in UZn] 
 --R 
 --R   Compiling function rapport with type (Integer,Integer) -> Integer 
 --R
+--R   (13)
+--R   [1,
+--R
+--R                          3                2   2                        2
+--R       (- t0 t1 + t1 t2)xi  + (- t0 t2 + t2 )xi  + (- t0 t1 - t0 t2 + t1 )xi
+--R     + 
+--R         2
+--R       t0  - t0 t1 - t0 t2 + t1 t2
+--R     ,
+--R
+--R               3       3       2  2      2           2  2         3        2
+--R           - t0 t1 + t0 t2 + t0 t1  + 3t0 t1 t2 - 2t0 t2  - 2t0 t1  - t0 t1 t2
+--R         + 
+--R                 3     4     2  2
+--R           2t0 t2  + t1  - t1 t2
+--R      *
+--R           3
+--R         xi
+--R     + 
+--R               3       3        2  2      2              3            2        3
+--R           - t0 t1 - t0 t2 + 2t0 t1  + 3t0 t1 t2 - 2t0 t1  - 3t0 t1 t2  + t0 t2
+--R         + 
+--R              3        2  2        3
+--R           2t1 t2 - 2t1 t2  + t1 t2
+--R      *
+--R           2
+--R         xi
+--R     + 
+--R                3        2  2      2          2  2        3        2
+--R           - 2t0 t1 + 2t0 t1  + 2t0 t1 t2 - t0 t2  - t0 t1  - t0 t1 t2
+--R         + 
+--R                   2     3       2  2        3     4
+--R           t0 t1 t2  + t1 t2 - t1 t2  - t1 t2  + t2
+--R      *
+--R         xi
+--R     + 
+--R         4      3       3       2  2      2          2  2        3        2
+--R       t0  - 2t0 t1 - t0 t2 + t0 t1  + 4t0 t1 t2 - t0 t2  - t0 t1  - t0 t1 t2
+--R     + 
+--R                 2        3     3          3
+--R       - t0 t1 t2  + t0 t2  + t1 t2 - t1 t2
+--R     ,
+--R
+--R                5       5        4  2      4           4  2      3  3
+--R           - 2t0 t1 + t0 t2 + 2t0 t1  + 8t0 t1 t2 - 2t0 t2  - 3t0 t1
+--R         + 
+--R                 3  2        3     2      3  3      2  4     2  3
+--R           - 11t0 t1 t2 - 3t0 t1 t2  + 4t0 t2  + 4t0 t1  + t0 t1 t2
+--R         + 
+--R               2  2  2      2     3     2  4         4           3  2
+--R           12t0 t1 t2  - 6t0 t1 t2  - t0 t2  - 3t0 t1 t2 - 3t0 t1 t2
+--R         + 
+--R                   2  3            4         5     6      5       4  2     2  4
+--R           - 4t0 t1 t2  + 9t0 t1 t2  - 2t0 t2  - t1  + 3t1 t2 - t1 t2  + t1 t2
+--R         + 
+--R                   5     6
+--R           - 3t1 t2  + t2
+--R      *
+--R           3
+--R         xi
+--R     + 
+--R               5        5        4  2      4           4  2      3  3
+--R           - t0 t1 - 2t0 t2 + 2t0 t1  + 8t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R         + 
+--R                3  2         3     2     3  3     2  4      2  2  2      2     3
+--R           - 2t0 t1 t2 - 10t0 t1 t2  + t0 t2  + t0 t1  + 3t0 t1 t2  + 4t0 t1 t2
+--R         + 
+--R                 5         4           3  2         2  3            4        5
+--R           2t0 t1  - 2t0 t1 t2 + 2t0 t1 t2  - 8t0 t1 t2  + 5t0 t1 t2  - t0 t2
+--R         + 
+--R               6     5       4  2      3  3      2  4         5
+--R           - t1  + t1 t2 + t1 t2  - 3t1 t2  + 5t1 t2  - 3t1 t2
+--R      *
+--R           2
+--R         xi
+--R     + 
+--R                5       5        4  2      4           3  3      3  2
+--R           - 3t0 t1 - t0 t2 + 5t0 t1  + 5t0 t1 t2 - 3t0 t1  - 8t0 t1 t2
+--R         + 
+--R              3     2     3  3     2  4      2  3        2  2  2       2     3
+--R           4t0 t1 t2  + t0 t2  + t0 t1  + 2t0 t1 t2 + 3t0 t1 t2  - 10t0 t1 t2
+--R         + 
+--R              2  4        5         4           2  3            4         5
+--R           3t0 t2  + t0 t1  - 2t0 t1 t2 - 2t0 t1 t2  + 8t0 t1 t2  - 2t0 t2
+--R         + 
+--R               6      5       4  2      3  3      2  4        5
+--R           - t1  + 2t1 t2 + t1 t2  - 4t1 t2  + 2t1 t2  - t1 t2
+--R      *
+--R         xi
+--R     + 
+--R         6      5        5       4  2      4          4  2      3  2
+--R       t0  - 3t0 t1 - 2t0 t2 + t0 t1  + 9t0 t1 t2 - t0 t2  - 4t0 t1 t2
+--R     + 
+--R            3     2      3  3     2  4      2  3         2  2  2      2     3
+--R       - 6t0 t1 t2  + 4t0 t2  - t0 t1  - 3t0 t1 t2 + 12t0 t1 t2  - 3t0 t1 t2
+--R     + 
+--R            2  4         5         4          3  2          2  3            4
+--R       - 2t0 t2  + 3t0 t1  - 3t0 t1 t2 + t0 t1 t2  - 11t0 t1 t2  + 8t0 t1 t2
+--R     + 
+--R            5     6      4  2      3  3      2  4         5
+--R       t0 t2  - t1  + 4t1 t2  - 3t1 t2  + 2t1 t2  - 2t1 t2
+--R     ]
 --E 13
 
 @
 verification en introduisant la liste B des Bj
 <<*>>=
 --S 14 of 22
-B : List(E) := [reduce(*, [b**rapport(j,i) for b in bList for i in UZn]) for j in UZn] ;
+B : List(E) := [reduce(*, [b**rapport(j,i) for b in bList for i in UZn]) for j in UZn] 
+--R 
+--R
+--R   (14)
+--R   [
+--R                9       9        8  2      8           8  2      7  3
+--R           - 2t0 t1 + t0 t2 + 4t0 t1  + 9t0 t1 t2 - 3t0 t2  - 7t0 t1
+--R         + 
+--R                 7  2        7     2      7  3       6  4       6  3
+--R           - 24t0 t1 t2 - 9t0 t1 t2  + 7t0 t2  + 11t0 t1  + 32t0 t1 t2
+--R         + 
+--R               6  2  2     6     3      6  4       5  5       5  4
+--R           35t0 t1 t2  + t0 t1 t2  - 8t0 t2  - 11t0 t1  - 36t0 t1 t2
+--R         + 
+--R                 5  3  2      5     4      5  5      4  6       4  5
+--R           - 65t0 t1 t2  + 6t0 t1 t2  + 6t0 t2  + 8t0 t1  + 41t0 t1 t2
+--R         + 
+--R               4  4  2       4  3  3       4  2  4      4     5      4  6
+--R           45t0 t1 t2  + 20t0 t1 t2  - 20t0 t1 t2  + 3t0 t1 t2  - 4t0 t2
+--R         + 
+--R                3  7       3  6         3  5  2       3  4  3       3  3  4
+--R           - 6t0 t1  - 26t0 t1 t2 - 13t0 t1 t2  - 45t0 t1 t2  + 40t0 t1 t2
+--R         + 
+--R                 3  2  5      3     6      3  7      2  8     2  7
+--R           - 11t0 t1 t2  + 4t0 t1 t2  + 2t0 t2  + 3t0 t1  + t0 t1 t2
+--R         + 
+--R               2  6  2       2  5  3       2  4  4       2  3  5       2  2  6
+--R           31t0 t1 t2  - 13t0 t1 t2  + 20t0 t1 t2  - 47t0 t1 t2  + 41t0 t1 t2
+--R         + 
+--R                 2     7      2  8        9         8            7  2
+--R           - 19t0 t1 t2  + 2t0 t2  + t0 t1  - 3t0 t1 t2 - 10t0 t1 t2
+--R         + 
+--R                 6  3         5  4          4  5          3  6          2  7
+--R           6t0 t1 t2  + 7t0 t1 t2  - 14t0 t1 t2  + 22t0 t1 t2  - 25t0 t1 t2
+--R         + 
+--R                     8         9     10      9        8  2      7  3      6  4
+--R           16t0 t1 t2  - 3t0 t2  - t1   + 4t1 t2 - 5t1 t2  + 5t1 t2  - 4t1 t2
+--R         + 
+--R              4  6      3  7      2  8         9     10
+--R           4t1 t2  - 5t1 t2  + 5t1 t2  - 4t1 t2  + t2
+--R      *
+--R           3
+--R         xi
+--R     + 
+--R               9        9        8  2       8           8  2      7  3
+--R           - t0 t1 - 2t0 t2 + 3t0 t1  + 11t0 t1 t2 + 5t0 t2  - 7t0 t1
+--R         + 
+--R                 7  2         7     2      7  3      6  4       6  3
+--R           - 16t0 t1 t2 - 26t0 t1 t2  - 4t0 t2  + 8t0 t1  + 23t0 t1 t2
+--R         + 
+--R               6  2  2       6     3      6  4      5  5       5  4
+--R           40t0 t1 t2  + 24t0 t1 t2  + 4t0 t2  - 6t0 t1  - 28t0 t1 t2
+--R         + 
+--R                 5  3  2       5  2  3      5     4      5  5      4  6
+--R           - 41t0 t1 t2  - 32t0 t1 t2  - 8t0 t1 t2  - 5t0 t2  + 4t0 t1
+--R         + 
+--R               4  5         4  4  2       4  3  3      4  2  4       4     5
+--R           23t0 t1 t2 + 10t0 t1 t2  + 45t0 t1 t2  - 5t0 t1 t2  + 14t0 t1 t2
+--R         + 
+--R              4  6      3  7     3  6         3  5  2      3  4  3       3  3  4
+--R           3t0 t2  - 2t0 t1  + t0 t1 t2 - 15t0 t1 t2  - 5t0 t1 t2  - 30t0 t1 t2
+--R         + 
+--R               3  2  5      3     6      2  8      2  7         2  6  2
+--R           13t0 t1 t2  - 9t0 t1 t2  - 2t0 t1  - 6t0 t1 t2 + 14t0 t1 t2
+--R         + 
+--R                2  5  3       2  4  4       2  3  5       2  2  6      2     7
+--R           - 4t0 t1 t2  + 25t0 t1 t2  - 27t0 t1 t2  + 19t0 t1 t2  - 6t0 t1 t2
+--R         + 
+--R             2  8         9         8            6  3          5  4
+--R           t0 t2  + 3t0 t1  - 2t0 t1 t2 - 11t0 t1 t2  + 24t0 t1 t2
+--R         + 
+--R                    4  5          3  6          2  7            8        9
+--R           - 37t0 t1 t2  + 38t0 t1 t2  - 25t0 t1 t2  + 9t0 t1 t2  - t0 t2
+--R         + 
+--R               10      9       8  2      7  3      6  4       5  5       4  6
+--R           - t1   + 2t1 t2 - t1 t2  - 2t1 t2  + 7t1 t2  - 11t1 t2  + 12t1 t2
+--R         + 
+--R                 3  7      2  8         9
+--R           - 11t1 t2  + 8t1 t2  - 3t1 t2
+--R      *
+--R           2
+--R         xi
+--R     + 
+--R                9       9        8  2      8          8  2       7  3
+--R           - 3t0 t1 - t0 t2 + 8t0 t1  + 9t0 t1 t2 + t0 t2  - 11t0 t1
+--R         + 
+--R                 7  2        7     2       6  4       6  3         6  2  2
+--R           - 25t0 t1 t2 - 6t0 t1 t2  + 12t0 t1  + 38t0 t1 t2 + 19t0 t1 t2
+--R         + 
+--R                6     3      6  4       5  5       5  4         5  3  2
+--R           - 9t0 t1 t2  + 3t0 t2  - 11t0 t1  - 37t0 t1 t2 - 27t0 t1 t2
+--R         + 
+--R               5  2  3       5     4      5  5      4  6       4  5
+--R           13t0 t1 t2  + 14t0 t1 t2  - 5t0 t2  + 7t0 t1  + 24t0 t1 t2
+--R         + 
+--R               4  4  2       4  3  3      4  2  4      4     5      4  6
+--R           25t0 t1 t2  - 30t0 t1 t2  - 5t0 t1 t2  - 8t0 t1 t2  + 4t0 t2
+--R         + 
+--R                3  7       3  6        3  5  2      3  4  3       3  3  4
+--R           - 2t0 t1  - 11t0 t1 t2 - 4t0 t1 t2  - 5t0 t1 t2  + 45t0 t1 t2
+--R         + 
+--R                 3  2  5       3     6      3  7     2  8       2  6  2
+--R           - 32t0 t1 t2  + 24t0 t1 t2  - 4t0 t2  - t0 t1  + 14t0 t1 t2
+--R         + 
+--R                 2  5  3       2  4  4       2  3  5       2  2  6       2     7
+--R           - 15t0 t1 t2  + 10t0 t1 t2  - 41t0 t1 t2  + 40t0 t1 t2  - 26t0 t1 t2
+--R         + 
+--R              2  8         9         8           7  2        6  3          5  4
+--R           5t0 t2  + 2t0 t1  - 2t0 t1 t2 - 6t0 t1 t2  + t0 t1 t2  + 23t0 t1 t2
+--R         + 
+--R                    4  5          3  6          2  7             8         9
+--R           - 28t0 t1 t2  + 23t0 t1 t2  - 16t0 t1 t2  + 11t0 t1 t2  - 2t0 t2
+--R         + 
+--R               10      9        8  2      7  3      6  4      5  5      4  6
+--R           - t1   + 3t1 t2 - 2t1 t2  - 2t1 t2  + 4t1 t2  - 6t1 t2  + 8t1 t2
+--R         + 
+--R                3  7      2  8        9
+--R           - 7t1 t2  + 3t1 t2  - t1 t2
+--R      *
+--R         xi
+--R     + 
+--R         10      9        9        8  2       8           8  2      7  3
+--R       t0   - 4t0 t1 - 3t0 t2 + 5t0 t1  + 16t0 t1 t2 + 2t0 t2  - 5t0 t1
+--R     + 
+--R             7  2         7     2      7  3      6  4       6  3         6  2  2
+--R       - 25t0 t1 t2 - 19t0 t1 t2  + 2t0 t2  + 4t0 t1  + 22t0 t1 t2 + 41t0 t1 t2
+--R     + 
+--R          6     3      6  4       5  4         5  3  2       5  2  3
+--R       4t0 t1 t2  - 4t0 t2  - 14t0 t1 t2 - 47t0 t1 t2  - 11t0 t1 t2
+--R     + 
+--R          5     4      5  5      4  6      4  5         4  4  2       4  3  3
+--R       3t0 t1 t2  + 6t0 t2  - 4t0 t1  + 7t0 t1 t2 + 20t0 t1 t2  + 40t0 t1 t2
+--R     + 
+--R             4  2  4      4     5      4  6      3  7      3  6         3  5  2
+--R       - 20t0 t1 t2  + 6t0 t1 t2  - 8t0 t2  + 5t0 t1  + 6t0 t1 t2 - 13t0 t1 t2
+--R     + 
+--R             3  4  3       3  3  4     3     6      3  7      2  8       2  7
+--R       - 45t0 t1 t2  + 20t0 t1 t2  + t0 t1 t2  + 7t0 t2  - 5t0 t1  - 10t0 t1 t2
+--R     + 
+--R           2  6  2       2  5  3       2  4  4       2  3  5       2  2  6
+--R       31t0 t1 t2  - 13t0 t1 t2  + 45t0 t1 t2  - 65t0 t1 t2  + 35t0 t1 t2
+--R     + 
+--R            2     7      2  8         9         8          7  2          6  3
+--R       - 9t0 t1 t2  - 3t0 t2  + 4t0 t1  - 3t0 t1 t2 + t0 t1 t2  - 26t0 t1 t2
+--R     + 
+--R              5  4          4  5          3  6          2  7            8
+--R       41t0 t1 t2  - 36t0 t1 t2  + 32t0 t1 t2  - 24t0 t1 t2  + 9t0 t1 t2
+--R     + 
+--R            9     10     9        8  2      7  3      6  4       5  5       4  6
+--R       t0 t2  - t1   + t1 t2 + 3t1 t2  - 6t1 t2  + 8t1 t2  - 11t1 t2  + 11t1 t2
+--R     + 
+--R            3  7      2  8         9
+--R       - 7t1 t2  + 4t1 t2  - 2t1 t2
+--R     ,
+--R
+--R             9        9        8  2       8           8  2      7  3
+--R           t0 t1 + 2t0 t2 - 3t0 t1  - 11t0 t1 t2 - 5t0 t2  + 7t0 t1
+--R         + 
+--R               7  2         7     2      7  3      6  4       6  3
+--R           16t0 t1 t2 + 26t0 t1 t2  + 4t0 t2  - 8t0 t1  - 23t0 t1 t2
+--R         + 
+--R                 6  2  2       6     3      6  4      5  5       5  4
+--R           - 40t0 t1 t2  - 24t0 t1 t2  - 4t0 t2  + 6t0 t1  + 28t0 t1 t2
+--R         + 
+--R               5  3  2       5  2  3      5     4      5  5      4  6
+--R           41t0 t1 t2  + 32t0 t1 t2  + 8t0 t1 t2  + 5t0 t2  - 4t0 t1
+--R         + 
+--R                 4  5         4  4  2       4  3  3      4  2  4       4     5
+--R           - 23t0 t1 t2 - 10t0 t1 t2  - 45t0 t1 t2  + 5t0 t1 t2  - 14t0 t1 t2
+--R         + 
+--R                4  6      3  7     3  6         3  5  2      3  4  3
+--R           - 3t0 t2  + 2t0 t1  - t0 t1 t2 + 15t0 t1 t2  + 5t0 t1 t2
+--R         + 
+--R               3  3  4       3  2  5      3     6      2  8      2  7
+--R           30t0 t1 t2  - 13t0 t1 t2  + 9t0 t1 t2  + 2t0 t1  + 6t0 t1 t2
+--R         + 
+--R                 2  6  2      2  5  3       2  4  4       2  3  5       2  2  6
+--R           - 14t0 t1 t2  + 4t0 t1 t2  - 25t0 t1 t2  + 27t0 t1 t2  - 19t0 t1 t2
+--R         + 
+--R              2     7     2  8         9         8            6  3          5  4
+--R           6t0 t1 t2  - t0 t2  - 3t0 t1  + 2t0 t1 t2 + 11t0 t1 t2  - 24t0 t1 t2
+--R         + 
+--R                  4  5          3  6          2  7            8        9     10
+--R           37t0 t1 t2  - 38t0 t1 t2  + 25t0 t1 t2  - 9t0 t1 t2  + t0 t2  + t1
+--R         + 
+--R                9       8  2      7  3      6  4       5  5       4  6
+--R           - 2t1 t2 + t1 t2  + 2t1 t2  - 7t1 t2  + 11t1 t2  - 12t1 t2
+--R         + 
+--R               3  7      2  8         9
+--R           11t1 t2  - 8t1 t2  + 3t1 t2
+--R      *
+--R           3
+--R         xi
+--R     + 
+--R                9       9        8  2      8           8  2      7  3
+--R           - 2t0 t1 + t0 t2 + 5t0 t1  - 2t0 t1 t2 - 4t0 t2  - 4t0 t1
+--R         + 
+--R                7  2         7     2      7  3      6  4       6  3
+--R           - 9t0 t1 t2 + 20t0 t1 t2  + 4t0 t2  + 4t0 t1  + 15t0 t1 t2
+--R         + 
+--R                 6  2  2       6     3     6  4      5  5      5  4
+--R           - 21t0 t1 t2  - 33t0 t1 t2  - t0 t2  - 5t0 t1  - 9t0 t1 t2
+--R         + 
+--R               5  3  2       5  2  3       5     4      4  6     4  5
+--R           14t0 t1 t2  + 45t0 t1 t2  + 22t0 t1 t2  + 3t0 t1  + t0 t1 t2
+--R         + 
+--R               4  4  2       4  3  3       4     5     4  6       3  6
+--R           15t0 t1 t2  - 75t0 t1 t2  - 22t0 t1 t2  + t0 t2  - 12t0 t1 t2
+--R         + 
+--R               3  5  2       3  3  4       3  2  5       3     6      3  7
+--R           11t0 t1 t2  + 75t0 t1 t2  - 45t0 t1 t2  + 33t0 t1 t2  - 4t0 t2
+--R         + 
+--R             2  8      2  7         2  5  3       2  4  4       2  3  5
+--R           t0 t1  + 6t0 t1 t2 - 11t0 t1 t2  - 15t0 t1 t2  - 14t0 t1 t2
+--R         + 
+--R               2  2  6       2     7      2  8        9         7  2
+--R           21t0 t1 t2  - 20t0 t1 t2  + 4t0 t2  - t0 t1  - 6t0 t1 t2
+--R         + 
+--R                  6  3        5  4         4  5          3  6         2  7
+--R           12t0 t1 t2  - t0 t1 t2  + 9t0 t1 t2  - 15t0 t1 t2  + 9t0 t1 t2
+--R         + 
+--R                    8        9     9       8  2      6  4      5  5      4  6
+--R           2t0 t1 t2  - t0 t2  + t1 t2 - t1 t2  - 3t1 t2  + 5t1 t2  - 4t1 t2
+--R         + 
+--R              3  7      2  8         9
+--R           4t1 t2  - 5t1 t2  + 2t1 t2
+--R      *
+--R           2
+--R         xi
+--R     + 
+--R               9        9       8  2      8           8  2      7  2
+--R           - t0 t1 + 3t0 t2 + t0 t1  - 2t0 t1 t2 - 8t0 t2  - 8t0 t1 t2
+--R         + 
+--R               7     2       7  3      6  4      6  3        6  2  2
+--R           17t0 t1 t2  + 11t0 t2  + 3t0 t1  + 9t0 t1 t2 - 5t0 t1 t2
+--R         + 
+--R                 6     3       6  4      5  5      5  4         5  3  2
+--R           - 23t0 t1 t2  - 12t0 t2  - 5t0 t1  - 8t0 t1 t2 - 24t0 t1 t2
+--R         + 
+--R               5  2  3       5     4       5  5      4  6       4  5
+--R           32t0 t1 t2  + 14t0 t1 t2  + 11t0 t2  + 4t0 t1  + 18t0 t1 t2
+--R         + 
+--R               4  4  2       4  3  3       4  2  4       4     5      4  6
+--R           35t0 t1 t2  - 25t0 t1 t2  - 15t0 t1 t2  - 11t0 t1 t2  - 7t0 t2
+--R         + 
+--R                3  7       3  6        3  5  2       3  4  3       3  3  4
+--R           - 4t0 t1  - 27t0 t1 t2 + 2t0 t1 t2  - 40t0 t1 t2  + 70t0 t1 t2
+--R         + 
+--R                 3  2  5       3     6      3  7      2  8      2  7
+--R           - 24t0 t1 t2  + 13t0 t1 t2  + 2t0 t2  + 5t0 t1  + 7t0 t1 t2
+--R         + 
+--R               2  6  2      2  5  3      2  4  4       2  3  5       2  2  6
+--R           17t0 t1 t2  - 9t0 t1 t2  - 5t0 t1 t2  - 20t0 t1 t2  + 22t0 t1 t2
+--R         + 
+--R                 2     7     2  8         9        8            7  2
+--R           - 13t0 t1 t2  + t0 t2  - 2t0 t1  - t0 t1 t2 - 10t0 t1 t2
+--R         + 
+--R                  6  3          5  4          4  5          3  6            8
+--R           17t0 t1 t2  - 17t0 t1 t2  + 23t0 t1 t2  - 16t0 t1 t2  + 7t0 t1 t2
+--R         + 
+--R                   9      9        8  2      7  3       6  4       5  5
+--R           - 2t0 t2  + 2t1 t2 - 4t1 t2  + 7t1 t2  - 11t1 t2  + 11t1 t2
+--R         + 
+--R                4  6      3  7      2  8        9     10
+--R           - 8t1 t2  + 6t1 t2  - 3t1 t2  - t1 t2  + t2
+--R      *
+--R         xi
+--R     + 
+--R         10      9       9        8  2      8           8  2      7  3
+--R       t0   - 3t0 t1 - t0 t2 + 2t0 t1  + 5t0 t1 t2 - 3t0 t2  + 2t0 t1
+--R     + 
+--R            7  2        7     2      7  3      6  4     6  3       6  2  2
+--R       - 9t0 t1 t2 + 7t0 t1 t2  + 6t0 t2  - 4t0 t1  - t0 t1 t2 + t0 t1 t2
+--R     + 
+--R             6     3      6  4      5  5       5  4        5  3  2       5  2  3
+--R       - 20t0 t1 t2  - 8t0 t2  + 6t0 t1  + 14t0 t1 t2 - 6t0 t1 t2  + 21t0 t1 t2
+--R     + 
+--R           5     4       5  5      4  6       4  5         4  4  2      4  3  3
+--R       11t0 t1 t2  + 11t0 t2  - 8t0 t1  - 16t0 t1 t2 + 10t0 t1 t2  - 5t0 t1 t2
+--R     + 
+--R             4  2  4      4     5       4  6      3  7      3  6        3  5  2
+--R       - 15t0 t1 t2  - 8t0 t1 t2  - 11t0 t2  + 7t0 t1  + 5t0 t1 t2 + 2t0 t1 t2
+--R     + 
+--R             3  4  3       3  3  4       3  2  5       3     6      3  7
+--R       - 40t0 t1 t2  + 50t0 t1 t2  - 13t0 t1 t2  + 10t0 t1 t2  + 7t0 t2
+--R     + 
+--R            2  8      2  7         2  6  2      2  5  3       2  4  4
+--R       - 3t0 t1  - 4t0 t1 t2 + 17t0 t1 t2  - 9t0 t1 t2  + 20t0 t1 t2
+--R     + 
+--R             2  3  5       2  2  6      2     7      2  8        9        8
+--R       - 38t0 t1 t2  + 16t0 t1 t2  - 3t0 t1 t2  - 4t0 t2  + t0 t1  - t0 t1 t2
+--R     + 
+--R            7  2          6  3          5  4        4  5         3  6
+--R       t0 t1 t2  - 15t0 t1 t2  + 17t0 t1 t2  + t0 t1 t2  - 6t0 t1 t2
+--R     + 
+--R            2  7         9     9        8  2      7  3     6  4     4  6
+--R       t0 t1 t2  + 2t0 t2  - t1 t2 + 4t1 t2  - 4t1 t2  + t1 t2  - t1 t2
+--R     + 
+--R          3  7      2  8        9
+--R       4t1 t2  - 4t1 t2  + t1 t2
+--R     ,
+--R
+--R               9        9        8  2      8  2      7  3     7  2
+--R           - t0 t1 - 2t0 t2 + 4t0 t1  + 4t0 t2  - 4t0 t1  - t0 t1 t2
+--R         + 
+--R              7     2      7  3     6  4      6  3         6  2  2       6     3
+--R           3t0 t1 t2  - 7t0 t2  + t0 t1  + 6t0 t1 t2 - 16t0 t1 t2  - 10t0 t1 t2
+--R         + 
+--R               6  4     5  4         5  3  2       5  2  3      5     4
+--R           11t0 t2  - t0 t1 t2 + 38t0 t1 t2  + 13t0 t1 t2  + 8t0 t1 t2
+--R         + 
+--R                 5  5     4  6       4  5         4  4  2       4  3  3
+--R           - 11t0 t2  - t0 t1  - 17t0 t1 t2 - 20t0 t1 t2  - 50t0 t1 t2
+--R         + 
+--R               4  2  4       4     5      4  6      3  7       3  6
+--R           15t0 t1 t2  - 11t0 t1 t2  + 8t0 t2  + 4t0 t1  + 15t0 t1 t2
+--R         + 
+--R              3  5  2       3  4  3      3  3  4       3  2  5       3     6
+--R           9t0 t1 t2  + 40t0 t1 t2  + 5t0 t1 t2  - 21t0 t1 t2  + 20t0 t1 t2
+--R         + 
+--R                3  7      2  8     2  7         2  6  2      2  5  3
+--R           - 6t0 t2  - 4t0 t1  - t0 t1 t2 - 17t0 t1 t2  - 2t0 t1 t2
+--R         + 
+--R                 2  4  4      2  3  5     2  2  6      2     7      2  8
+--R           - 10t0 t1 t2  + 6t0 t1 t2  - t0 t1 t2  - 7t0 t1 t2  + 3t0 t2
+--R         + 
+--R                9        8           7  2         6  3          5  4
+--R           t0 t1  + t0 t1 t2 + 4t0 t1 t2  - 5t0 t1 t2  + 16t0 t1 t2
+--R         + 
+--R                    4  5        3  6         2  7            8        9     9
+--R           - 14t0 t1 t2  + t0 t1 t2  + 9t0 t1 t2  - 5t0 t1 t2  + t0 t2  - t1 t2
+--R         + 
+--R              8  2      7  3      6  4      5  5      4  6      3  7      2  8
+--R           3t1 t2  - 7t1 t2  + 8t1 t2  - 6t1 t2  + 4t1 t2  - 2t1 t2  - 2t1 t2
+--R         + 
+--R                 9     10
+--R           3t1 t2  - t2
+--R      *
+--R           3
+--R         xi
+--R     + 
+--R              9       9        8  2      8           8  2      7  3       7  2
+--R           2t0 t1 - t0 t2 - 4t0 t1  - 9t0 t1 t2 + 3t0 t2  + 7t0 t1  + 24t0 t1 t2
+--R         + 
+--R              7     2      7  3       6  4       6  3         6  2  2
+--R           9t0 t1 t2  - 7t0 t2  - 11t0 t1  - 32t0 t1 t2 - 35t0 t1 t2
+--R         + 
+--R               6     3      6  4       5  5       5  4         5  3  2
+--R           - t0 t1 t2  + 8t0 t2  + 11t0 t1  + 36t0 t1 t2 + 65t0 t1 t2
+--R         + 
+--R                5     4      5  5      4  6       4  5         4  4  2
+--R           - 6t0 t1 t2  - 6t0 t2  - 8t0 t1  - 41t0 t1 t2 - 45t0 t1 t2
+--R         + 
+--R                 4  3  3       4  2  4      4     5      4  6      3  7
+--R           - 20t0 t1 t2  + 20t0 t1 t2  - 3t0 t1 t2  + 4t0 t2  + 6t0 t1
+--R         + 
+--R               3  6         3  5  2       3  4  3       3  3  4       3  2  5
+--R           26t0 t1 t2 + 13t0 t1 t2  + 45t0 t1 t2  - 40t0 t1 t2  + 11t0 t1 t2
+--R         + 
+--R                3     6      3  7      2  8     2  7         2  6  2
+--R           - 4t0 t1 t2  - 2t0 t2  - 3t0 t1  - t0 t1 t2 - 31t0 t1 t2
+--R         + 
+--R               2  5  3       2  4  4       2  3  5       2  2  6       2     7
+--R           13t0 t1 t2  - 20t0 t1 t2  + 47t0 t1 t2  - 41t0 t1 t2  + 19t0 t1 t2
+--R         + 
+--R                2  8        9         8            7  2         6  3
+--R           - 2t0 t2  - t0 t1  + 3t0 t1 t2 + 10t0 t1 t2  - 6t0 t1 t2
+--R         + 
+--R                   5  4          4  5          3  6          2  7             8
+--R           - 7t0 t1 t2  + 14t0 t1 t2  - 22t0 t1 t2  + 25t0 t1 t2  - 16t0 t1 t2
+--R         + 
+--R                 9     10      9        8  2      7  3      6  4      4  6
+--R           3t0 t2  + t1   - 4t1 t2 + 5t1 t2  - 5t1 t2  + 4t1 t2  - 4t1 t2
+--R         + 
+--R              3  7      2  8         9     10
+--R           5t1 t2  - 5t1 t2  + 4t1 t2  - t2
+--R      *
+--R           2
+--R         xi
+--R     + 
+--R             9        9       8  2      8           8  2      7  2
+--R           t0 t1 - 3t0 t2 - t0 t1  + 2t0 t1 t2 + 8t0 t2  + 8t0 t1 t2
+--R         + 
+--R                 7     2       7  3      6  4      6  3        6  2  2
+--R           - 17t0 t1 t2  - 11t0 t2  - 3t0 t1  - 9t0 t1 t2 + 5t0 t1 t2
+--R         + 
+--R               6     3       6  4      5  5      5  4         5  3  2
+--R           23t0 t1 t2  + 12t0 t2  + 5t0 t1  + 8t0 t1 t2 + 24t0 t1 t2
+--R         + 
+--R                 5  2  3       5     4       5  5      4  6       4  5
+--R           - 32t0 t1 t2  - 14t0 t1 t2  - 11t0 t2  - 4t0 t1  - 18t0 t1 t2
+--R         + 
+--R                 4  4  2       4  3  3       4  2  4       4     5      4  6
+--R           - 35t0 t1 t2  + 25t0 t1 t2  + 15t0 t1 t2  + 11t0 t1 t2  + 7t0 t2
+--R         + 
+--R              3  7       3  6        3  5  2       3  4  3       3  3  4
+--R           4t0 t1  + 27t0 t1 t2 - 2t0 t1 t2  + 40t0 t1 t2  - 70t0 t1 t2
+--R         + 
+--R               3  2  5       3     6      3  7      2  8      2  7
+--R           24t0 t1 t2  - 13t0 t1 t2  - 2t0 t2  - 5t0 t1  - 7t0 t1 t2
+--R         + 
+--R                 2  6  2      2  5  3      2  4  4       2  3  5       2  2  6
+--R           - 17t0 t1 t2  + 9t0 t1 t2  + 5t0 t1 t2  + 20t0 t1 t2  - 22t0 t1 t2
+--R         + 
+--R               2     7     2  8         9        8            7  2          6  3
+--R           13t0 t1 t2  - t0 t2  + 2t0 t1  + t0 t1 t2 + 10t0 t1 t2  - 17t0 t1 t2
+--R         + 
+--R                  5  4          4  5          3  6            8         9
+--R           17t0 t1 t2  - 23t0 t1 t2  + 16t0 t1 t2  - 7t0 t1 t2  + 2t0 t2
+--R         + 
+--R                9        8  2      7  3       6  4       5  5      4  6
+--R           - 2t1 t2 + 4t1 t2  - 7t1 t2  + 11t1 t2  - 11t1 t2  + 8t1 t2
+--R         + 
+--R                3  7      2  8        9     10
+--R           - 6t1 t2  + 3t1 t2  + t1 t2  - t2
+--R      *
+--R         xi
+--R     + 
+--R         10      9        9       8  2      8           8  2      7  3
+--R       t0   - 2t0 t1 - 4t0 t2 + t0 t1  + 7t0 t1 t2 + 5t0 t2  + 2t0 t1
+--R     + 
+--R           7  2         7     2      7  3      6  4       6  3        6  2  2
+--R       - t0 t1 t2 - 10t0 t1 t2  - 5t0 t2  - 7t0 t1  - 10t0 t1 t2 + 6t0 t1 t2
+--R     + 
+--R          6     3      6  4       5  5       5  4         5  3  2       5  2  3
+--R       3t0 t1 t2  + 4t0 t2  + 11t0 t1  + 22t0 t1 t2 + 18t0 t1 t2  - 11t0 t1 t2
+--R     + 
+--R            5     4       4  6       4  5         4  4  2       4  3  3
+--R       - 3t0 t1 t2  - 12t0 t1  - 34t0 t1 t2 - 25t0 t1 t2  + 20t0 t1 t2
+--R     + 
+--R          4     5      4  6       3  7       3  6         3  3  4       3  2  5
+--R       3t0 t1 t2  - 4t0 t2  + 11t0 t1  + 32t0 t1 t2 - 20t0 t1 t2  + 11t0 t1 t2
+--R     + 
+--R            3     6      3  7      2  8       2  7         2  4  4       2  3  5
+--R       - 3t0 t1 t2  + 5t0 t2  - 8t0 t1  - 11t0 t1 t2 + 25t0 t1 t2  - 18t0 t1 t2
+--R     + 
+--R            2  2  6       2     7      2  8         9          7  2
+--R       - 6t0 t1 t2  + 10t0 t1 t2  - 5t0 t2  + 3t0 t1  + 11t0 t1 t2
+--R     + 
+--R                6  3          5  4          4  5          3  6        2  7
+--R       - 32t0 t1 t2  + 34t0 t1 t2  - 22t0 t1 t2  + 10t0 t1 t2  + t0 t1 t2
+--R     + 
+--R                  8         9      9        8  2       7  3       6  4
+--R       - 7t0 t1 t2  + 4t0 t2  - 3t1 t2 + 8t1 t2  - 11t1 t2  + 12t1 t2
+--R     + 
+--R             5  5      4  6      3  7     2  8         9     10
+--R       - 11t1 t2  + 7t1 t2  - 2t1 t2  - t1 t2  + 2t1 t2  - t2
+--R     ,
+--R
+--R              9       9        8  2      8           8  2      7  3      7  2
+--R           2t0 t1 - t0 t2 - 5t0 t1  + 2t0 t1 t2 + 4t0 t2  + 4t0 t1  + 9t0 t1 t2
+--R         + 
+--R                 7     2      7  3      6  4       6  3         6  2  2
+--R           - 20t0 t1 t2  - 4t0 t2  - 4t0 t1  - 15t0 t1 t2 + 21t0 t1 t2
+--R         + 
+--R               6     3     6  4      5  5      5  4         5  3  2
+--R           33t0 t1 t2  + t0 t2  + 5t0 t1  + 9t0 t1 t2 - 14t0 t1 t2
+--R         + 
+--R                 5  2  3       5     4      4  6     4  5         4  4  2
+--R           - 45t0 t1 t2  - 22t0 t1 t2  - 3t0 t1  - t0 t1 t2 - 15t0 t1 t2
+--R         + 
+--R               4  3  3       4     5     4  6       3  6         3  5  2
+--R           75t0 t1 t2  + 22t0 t1 t2  - t0 t2  + 12t0 t1 t2 - 11t0 t1 t2
+--R         + 
+--R                 3  3  4       3  2  5       3     6      3  7     2  8
+--R           - 75t0 t1 t2  + 45t0 t1 t2  - 33t0 t1 t2  + 4t0 t2  - t0 t1
+--R         + 
+--R                2  7         2  5  3       2  4  4       2  3  5       2  2  6
+--R           - 6t0 t1 t2 + 11t0 t1 t2  + 15t0 t1 t2  + 14t0 t1 t2  - 21t0 t1 t2
+--R         + 
+--R               2     7      2  8        9         7  2          6  3        5  4
+--R           20t0 t1 t2  - 4t0 t2  + t0 t1  + 6t0 t1 t2  - 12t0 t1 t2  + t0 t1 t2
+--R         + 
+--R                   4  5          3  6         2  7            8        9     9
+--R           - 9t0 t1 t2  + 15t0 t1 t2  - 9t0 t1 t2  - 2t0 t1 t2  + t0 t2  - t1 t2
+--R         + 
+--R             8  2      6  4      5  5      4  6      3  7      2  8         9
+--R           t1 t2  + 3t1 t2  - 5t1 t2  + 4t1 t2  - 4t1 t2  + 5t1 t2  - 2t1 t2
+--R      *
+--R           3
+--R         xi
+--R     + 
+--R             9        9        8  2      8  2      7  3     7  2        7     2
+--R           t0 t1 + 2t0 t2 - 4t0 t1  - 4t0 t2  + 4t0 t1  + t0 t1 t2 - 3t0 t1 t2
+--R         + 
+--R              7  3     6  4      6  3         6  2  2       6     3       6  4
+--R           7t0 t2  - t0 t1  - 6t0 t1 t2 + 16t0 t1 t2  + 10t0 t1 t2  - 11t0 t2
+--R         + 
+--R             5  4         5  3  2       5  2  3      5     4       5  5     4  6
+--R           t0 t1 t2 - 38t0 t1 t2  - 13t0 t1 t2  - 8t0 t1 t2  + 11t0 t2  + t0 t1
+--R         + 
+--R               4  5         4  4  2       4  3  3       4  2  4       4     5
+--R           17t0 t1 t2 + 20t0 t1 t2  + 50t0 t1 t2  - 15t0 t1 t2  + 11t0 t1 t2
+--R         + 
+--R                4  6      3  7       3  6        3  5  2       3  4  3
+--R           - 8t0 t2  - 4t0 t1  - 15t0 t1 t2 - 9t0 t1 t2  - 40t0 t1 t2
+--R         + 
+--R                3  3  4       3  2  5       3     6      3  7      2  8
+--R           - 5t0 t1 t2  + 21t0 t1 t2  - 20t0 t1 t2  + 6t0 t2  + 4t0 t1
+--R         + 
+--R             2  7         2  6  2      2  5  3       2  4  4      2  3  5
+--R           t0 t1 t2 + 17t0 t1 t2  + 2t0 t1 t2  + 10t0 t1 t2  - 6t0 t1 t2
+--R         + 
+--R             2  2  6      2     7      2  8        9        8           7  2
+--R           t0 t1 t2  + 7t0 t1 t2  - 3t0 t2  - t0 t1  - t0 t1 t2 - 4t0 t1 t2
+--R         + 
+--R                 6  3          5  4          4  5        3  6         2  7
+--R           5t0 t1 t2  - 16t0 t1 t2  + 14t0 t1 t2  - t0 t1 t2  - 9t0 t1 t2
+--R         + 
+--R                    8        9     9        8  2      7  3      6  4      5  5
+--R           5t0 t1 t2  - t0 t2  + t1 t2 - 3t1 t2  + 7t1 t2  - 8t1 t2  + 6t1 t2
+--R         + 
+--R                4  6      3  7      2  8         9     10
+--R           - 4t1 t2  + 2t1 t2  + 2t1 t2  - 3t1 t2  + t2
+--R      *
+--R           2
+--R         xi
+--R     + 
+--R              9       9        8  2      8          8  2       7  3       7  2
+--R           3t0 t1 + t0 t2 - 8t0 t1  - 9t0 t1 t2 - t0 t2  + 11t0 t1  + 25t0 t1 t2
+--R         + 
+--R              7     2       6  4       6  3         6  2  2      6     3
+--R           6t0 t1 t2  - 12t0 t1  - 38t0 t1 t2 - 19t0 t1 t2  + 9t0 t1 t2
+--R         + 
+--R                6  4       5  5       5  4         5  3  2       5  2  3
+--R           - 3t0 t2  + 11t0 t1  + 37t0 t1 t2 + 27t0 t1 t2  - 13t0 t1 t2
+--R         + 
+--R                 5     4      5  5      4  6       4  5         4  4  2
+--R           - 14t0 t1 t2  + 5t0 t2  - 7t0 t1  - 24t0 t1 t2 - 25t0 t1 t2
+--R         + 
+--R               4  3  3      4  2  4      4     5      4  6      3  7
+--R           30t0 t1 t2  + 5t0 t1 t2  + 8t0 t1 t2  - 4t0 t2  + 2t0 t1
+--R         + 
+--R               3  6        3  5  2      3  4  3       3  3  4       3  2  5
+--R           11t0 t1 t2 + 4t0 t1 t2  + 5t0 t1 t2  - 45t0 t1 t2  + 32t0 t1 t2
+--R         + 
+--R                 3     6      3  7     2  8       2  6  2       2  5  3
+--R           - 24t0 t1 t2  + 4t0 t2  + t0 t1  - 14t0 t1 t2  + 15t0 t1 t2
+--R         + 
+--R                 2  4  4       2  3  5       2  2  6       2     7      2  8
+--R           - 10t0 t1 t2  + 41t0 t1 t2  - 40t0 t1 t2  + 26t0 t1 t2  - 5t0 t2
+--R         + 
+--R                   9         8           7  2        6  3          5  4
+--R           - 2t0 t1  + 2t0 t1 t2 + 6t0 t1 t2  - t0 t1 t2  - 23t0 t1 t2
+--R         + 
+--R                  4  5          3  6          2  7             8         9
+--R           28t0 t1 t2  - 23t0 t1 t2  + 16t0 t1 t2  - 11t0 t1 t2  + 2t0 t2
+--R         + 
+--R             10      9        8  2      7  3      6  4      5  5      4  6
+--R           t1   - 3t1 t2 + 2t1 t2  + 2t1 t2  - 4t1 t2  + 6t1 t2  - 8t1 t2
+--R         + 
+--R              3  7      2  8        9
+--R           7t1 t2  - 3t1 t2  + t1 t2
+--R      *
+--R         xi
+--R     + 
+--R         10     9        9        8  2      8          8  2      7  3
+--R       t0   - t0 t1 - 2t0 t2 - 3t0 t1  + 7t0 t1 t2 + t0 t2  + 6t0 t1
+--R     + 
+--R             7     2      7  3      6  4       6  3         6  2  2
+--R       - 13t0 t1 t2  + 2t0 t2  - 8t0 t1  - 16t0 t1 t2 + 22t0 t1 t2
+--R     + 
+--R           6     3      6  4       5  5       5  4         5  3  2       5  2  3
+--R       13t0 t1 t2  - 7t0 t2  + 11t0 t1  + 23t0 t1 t2 - 20t0 t1 t2  - 24t0 t1 t2
+--R     + 
+--R             5     4       5  5       4  6       4  5        4  4  2
+--R       - 11t0 t1 t2  + 11t0 t2  - 11t0 t1  - 17t0 t1 t2 - 5t0 t1 t2
+--R     + 
+--R           4  3  3       4  2  4       4     5       4  6      3  7       3  6
+--R       70t0 t1 t2  - 15t0 t1 t2  + 14t0 t1 t2  - 12t0 t2  + 7t0 t1  + 17t0 t1 t2
+--R     + 
+--R            3  5  2       3  4  3       3  3  4       3  2  5       3     6
+--R       - 9t0 t1 t2  - 40t0 t1 t2  - 25t0 t1 t2  + 32t0 t1 t2  - 23t0 t1 t2
+--R     + 
+--R           3  7      2  8       2  7         2  6  2      2  5  3       2  4  4
+--R       11t0 t2  - 4t0 t1  - 10t0 t1 t2 + 17t0 t1 t2  + 2t0 t1 t2  + 35t0 t1 t2
+--R     + 
+--R             2  3  5      2  2  6       2     7      2  8         9        8
+--R       - 24t0 t1 t2  - 5t0 t1 t2  + 17t0 t1 t2  - 8t0 t2  + 2t0 t1  - t0 t1 t2
+--R     + 
+--R             7  2          6  3          5  4         4  5         3  6
+--R       7t0 t1 t2  - 27t0 t1 t2  + 18t0 t1 t2  - 8t0 t1 t2  + 9t0 t1 t2
+--R     + 
+--R               2  7            8         9      9        8  2      7  3
+--R       - 8t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t1 t2 + 5t1 t2  - 4t1 t2
+--R     + 
+--R          6  4      5  5      4  6     2  8        9
+--R       4t1 t2  - 5t1 t2  + 3t1 t2  + t1 t2  - t1 t2
+--R     ]
 --E 14
 
---S 15  of 22
+--S 15 of 22
 [B(1)**j - b * d**n for b in B for d in delta for j in UZn]
 --R
 --R   (15)  [0,0,0,0]
 --E 15 
 
 --S 16 of 22
-L := SimpleAlgebraicExtension(E, UP('C1, E), C1**n - B(1)) ;  C1 : L := generator()$L ;
+L := SimpleAlgebraicExtension(E, UP('C1, E), C1**n - B(1)) ;  C1 : L := generator()$L 
+--R 
+--R
+--R   (16)  C1
 --E 16 
 
 @
@@ -229,23 +940,3023 @@ retraction(z : L) : Zt ==
 --R      added to workspace.
 --E 17
 
---S 18  of 22
-C : List(L) := [C1**j / d for j in UZn for d in delta] ;
+--S 18 of 22
+C : List(L) := [C1**j / d for j in UZn for d in delta] 
+--R 
+--R
+--R   (18)
+--R   [C1,
+--R
+--R                       2     2
+--R             t0 t1 - t1  + t2
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R        *
+--R             3
+--R           xi
+--R       + 
+--R                       2
+--R             t0 t2 - t1  + t1 t2
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R        *
+--R             2
+--R           xi
+--R       + 
+--R                               2
+--R             t0 t1 + t0 t2 - t1
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R        *
+--R           xi
+--R       + 
+--R             2     2
+--R           t0  - t1  + t1 t2
+--R        /
+--R               4     3       3       2  2      2          2  2        3
+--R             t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R           + 
+--R                     2              2        3     4     3       2  2        3
+--R             - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R           + 
+--R               4
+--R             t2
+--R    *
+--R         2
+--R       C1
+--R     ,
+--R
+--R                 3       3       2          2  2        3        2
+--R               t0 t1 - t0 t2 + t0 t1 t2 + t0 t2  - t0 t1  + t0 t1 t2
+--R             + 
+--R                          2        3     3       2  2         3     4
+--R               - 4t0 t1 t2  + t0 t2  + t1 t2 - t1 t2  + 2t1 t2  - t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R        *
+--R             3
+--R           xi
+--R       + 
+--R                 3       3       2  2     2          2  2        3           2
+--R               t0 t1 + t0 t2 - t0 t1  + t0 t1 t2 - t0 t2  - t0 t1  - t0 t1 t2
+--R             + 
+--R                     3     4     3          3     4
+--R               2t0 t2  + t1  - t1 t2 + t1 t2  - t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R        *
+--R             2
+--R           xi
+--R       + 
+--R                  3        2  2      2          2  2        3        2
+--R               2t0 t1 - 2t0 t1  - 2t0 t1 t2 + t0 t2  + t0 t1  + t0 t1 t2
+--R             + 
+--R                         2     3       2  2        3     4
+--R               - t0 t1 t2  - t1 t2 + t1 t2  + t1 t2  - t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R        *
+--R           xi
+--R       + 
+--R             4     3       2  2      2                 2        3     2  2     4
+--R           t0  - t0 t2 - t0 t1  + 2t0 t1 t2 - 2t0 t1 t2  + t0 t2  + t1 t2  - t2
+--R        /
+--R               8      7        7        6  2      6           6  2      5  3
+--R             t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R           + 
+--R                   5  2        5     2      5  3      4  4       4  3
+--R             - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R           + 
+--R                 4  2  2      4  4      3  5       3  4         3  3  2
+--R             10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R           + 
+--R                  3  5      2  6      2  5        2  4  2       2  3  3
+--R             - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R           + 
+--R                 2  2  4      2     5      2  6         7         6
+--R             10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R           + 
+--R                   5  2          4  3          3  4          2  5            6
+--R             8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R           + 
+--R                     7     8      7        6  2      5  3      4  4      3  5
+--R             - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R           + 
+--R                2  6         7     8
+--R             3t1 t2  - 2t1 t2  + t2
+--R    *
+--R         3
+--R       C1
+--R     ,
+--R
+--R                  5       5        4  2      4           4  2     3  3
+--R               2t0 t1 - t0 t2 - 3t0 t1  + 3t0 t1 t2 + 3t0 t2  - t0 t1
+--R             + 
+--R                  3  2         3     2      2  3         2     3      2  4
+--R               6t0 t1 t2 - 14t0 t1 t2  - 2t0 t1 t2 + 14t0 t1 t2  - 3t0 t2
+--R             + 
+--R                    5         3  2         2  3            4        5     5
+--R               t0 t1  + 2t0 t1 t2  - 6t0 t1 t2  - 3t0 t1 t2  + t0 t2  - t1 t2
+--R             + 
+--R                 3  3      2  4         5
+--R               t1 t2  + 3t1 t2  - 2t1 t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R        *
+--R             3
+--R           xi
+--R       + 
+--R                 5        5        4  2      4           4  2      3  2
+--R               t0 t1 + 2t0 t2 - 3t0 t1  + 3t0 t1 t2 - 2t0 t2  - 3t0 t1 t2
+--R             + 
+--R                    3     2      3  3      2  4     2  3        2  2  2
+--R               - 7t0 t1 t2  + 3t0 t2  + 3t0 t1  - t0 t1 t2 + 9t0 t1 t2
+--R             + 
+--R                  2     3      2  4        5        4           3  2
+--R               4t0 t1 t2  - 4t0 t2  - t0 t1  - t0 t1 t2 - 3t0 t1 t2
+--R             + 
+--R                       2  3           4     5        4  2      3  3     2  4
+--R               - 2t0 t1 t2  + t0 t1 t2  + t1 t2 - 2t1 t2  + 4t1 t2  - t1 t2
+--R             + 
+--R                       5     6
+--R               - 2t1 t2  + t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R        *
+--R             2
+--R           xi
+--R       + 
+--R                  5       5        4  2      4           3  3      3  2
+--R               3t0 t1 + t0 t2 - 5t0 t1  - 5t0 t1 t2 + 3t0 t1  + 8t0 t1 t2
+--R             + 
+--R                    3     2     3  3     2  4      2  3        2  2  2
+--R               - 4t0 t1 t2  - t0 t2  - t0 t1  - 2t0 t1 t2 - 3t0 t1 t2
+--R             + 
+--R                   2     3      2  4        5         4           2  3
+--R               10t0 t1 t2  - 3t0 t2  - t0 t1  + 2t0 t1 t2 + 2t0 t1 t2
+--R             + 
+--R                          4         5     6      5       4  2      3  3
+--R               - 8t0 t1 t2  + 2t0 t2  + t1  - 2t1 t2 - t1 t2  + 4t1 t2
+--R             + 
+--R                    2  4        5
+--R               - 2t1 t2  + t1 t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R        *
+--R           xi
+--R       + 
+--R               6     5        4  2      4          4  2      3  3      3  2
+--R             t0  - t0 t2 - 4t0 t1  + 4t0 t1 t2 - t0 t2  + 3t0 t1  + 4t0 t1 t2
+--R           + 
+--R                   3     2      3  3      2  4      2  3        2  2  2
+--R             - 10t0 t1 t2  + 3t0 t2  - 2t0 t1  - 5t0 t1 t2 + 9t0 t1 t2
+--R           + 
+--R                2     3      2  4         5        4          3  2         2  3
+--R             7t0 t1 t2  - 5t0 t2  + 2t0 t1  - t0 t1 t2 + t0 t1 t2  - 9t0 t1 t2
+--R           + 
+--R                   5      5        4  2     3  3        5
+--R             3t0 t2  - 2t1 t2 + 3t1 t2  + t1 t2  - t1 t2
+--R        /
+--R               12      11        11        10  2       10           10  2
+--R             t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R           + 
+--R                   9  3       9  2         9     2       9  3       8  4
+--R             - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R           + 
+--R                 8  3         8  2  2       8     3       8  4       7  5
+--R             45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R           + 
+--R                   7  4         7  3  2       7  2  3       7     4       7  5
+--R             - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R           + 
+--R                 6  6       6  5         6  4  2       6  3  3       6  2  4
+--R             19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R           + 
+--R                6     5       6  6       5  7       5  6         5  5  2
+--R             9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R           + 
+--R                   5  4  3       5  3  4       5  2  5      5     6       5  7
+--R             - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R           + 
+--R                 4  8       4  7         4  6  2       4  5  3       4  3  5
+--R             15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R           + 
+--R                 4  2  6       4     7       4  8       3  9       3  8
+--R             45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R           + 
+--R                   3  7  2       3  6  3       3  5  4       3  4  5
+--R             - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R           + 
+--R                 3  3  6       3  2  7       3     8       3  9      2  10
+--R             20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R           + 
+--R                 2  9         2  7  3       2  6  4       2  5  5       2  4  6
+--R             15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2
+--R           + 
+--R                   2  3  7       2  2  8       2     9      2  10         11
+--R             - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1
+--R           + 
+--R                     10            9  2          8  3          7  4
+--R             - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R           + 
+--R                      6  5          5  6          4  7          3  8
+--R             - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R           + 
+--R                      2  9             10         11     12      11        10  2
+--R             - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2
+--R           + 
+--R                   9  3       8  4       7  5       6  6       5  7       4  8
+--R             - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2
+--R           + 
+--R                   3  9      2  10         11     12
+--R             - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R    *
+--R         4
+--R       C1
+--R     ]
 --E 18 
 
 @
 en principe [c**n for c in C] = B
 <<*>>=
 --S 19 of 22
-r : List(L) := [reduce(+, [c * xi**(k*j) for j in UZn for c in C]) for k in 0 .. n-1] ;
+r : List(L) := [reduce(+, [c * xi**(k*j) for j in UZn for c in C]) for k in 0 .. n-1] 
+--R 
+--R
+--R   (19)
+--R   [
+--R                    5       5        4  2      4           4  2     3  3
+--R                 2t0 t1 - t0 t2 - 3t0 t1  + 3t0 t1 t2 + 3t0 t2  - t0 t1
+--R               + 
+--R                    3  2         3     2      2  3         2     3      2  4
+--R                 6t0 t1 t2 - 14t0 t1 t2  - 2t0 t1 t2 + 14t0 t1 t2  - 3t0 t2
+--R               + 
+--R                      5         3  2         2  3            4        5     5
+--R                 t0 t1  + 2t0 t1 t2  - 6t0 t1 t2  - 3t0 t1 t2  + t0 t2  - t1 t2
+--R               + 
+--R                   3  3      2  4         5
+--R                 t1 t2  + 3t1 t2  - 2t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                   5        5        4  2      4           4  2      3  2
+--R                 t0 t1 + 2t0 t2 - 3t0 t1  + 3t0 t1 t2 - 2t0 t2  - 3t0 t1 t2
+--R               + 
+--R                      3     2      3  3      2  4     2  3        2  2  2
+--R                 - 7t0 t1 t2  + 3t0 t2  + 3t0 t1  - t0 t1 t2 + 9t0 t1 t2
+--R               + 
+--R                    2     3      2  4        5        4           3  2
+--R                 4t0 t1 t2  - 4t0 t2  - t0 t1  - t0 t1 t2 - 3t0 t1 t2
+--R               + 
+--R                         2  3           4     5        4  2      3  3     2  4
+--R                 - 2t0 t1 t2  + t0 t1 t2  + t1 t2 - 2t1 t2  + 4t1 t2  - t1 t2
+--R               + 
+--R                         5     6
+--R                 - 2t1 t2  + t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                    5       5        4  2      4           3  3      3  2
+--R                 3t0 t1 + t0 t2 - 5t0 t1  - 5t0 t1 t2 + 3t0 t1  + 8t0 t1 t2
+--R               + 
+--R                      3     2     3  3     2  4      2  3        2  2  2
+--R                 - 4t0 t1 t2  - t0 t2  - t0 t1  - 2t0 t1 t2 - 3t0 t1 t2
+--R               + 
+--R                     2     3      2  4        5         4           2  3
+--R                 10t0 t1 t2  - 3t0 t2  - t0 t1  + 2t0 t1 t2 + 2t0 t1 t2
+--R               + 
+--R                            4         5     6      5       4  2      3  3
+--R                 - 8t0 t1 t2  + 2t0 t2  + t1  - 2t1 t2 - t1 t2  + 4t1 t2
+--R               + 
+--R                      2  4        5
+--R                 - 2t1 t2  + t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R             xi
+--R         + 
+--R                 6     5        4  2      4          4  2      3  3      3  2
+--R               t0  - t0 t2 - 4t0 t1  + 4t0 t1 t2 - t0 t2  + 3t0 t1  + 4t0 t1 t2
+--R             + 
+--R                     3     2      3  3      2  4      2  3        2  2  2
+--R               - 10t0 t1 t2  + 3t0 t2  - 2t0 t1  - 5t0 t1 t2 + 9t0 t1 t2
+--R             + 
+--R                  2     3      2  4         5        4          3  2
+--R               7t0 t1 t2  - 5t0 t2  + 2t0 t1  - t0 t1 t2 + t0 t1 t2
+--R             + 
+--R                       2  3         5      5        4  2     3  3        5
+--R               - 9t0 t1 t2  + 3t0 t2  - 2t1 t2 + 3t1 t2  + t1 t2  - t1 t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R      *
+--R           4
+--R         C1
+--R     + 
+--R                   3       3       2          2  2        3        2
+--R                 t0 t1 - t0 t2 + t0 t1 t2 + t0 t2  - t0 t1  + t0 t1 t2
+--R               + 
+--R                            2        3     3       2  2         3     4
+--R                 - 4t0 t1 t2  + t0 t2  + t1 t2 - t1 t2  + 2t1 t2  - t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                   3       3       2  2     2          2  2        3           2
+--R                 t0 t1 + t0 t2 - t0 t1  + t0 t1 t2 - t0 t2  - t0 t1  - t0 t1 t2
+--R               + 
+--R                       3     4     3          3     4
+--R                 2t0 t2  + t1  - t1 t2 + t1 t2  - t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                    3        2  2      2          2  2        3        2
+--R                 2t0 t1 - 2t0 t1  - 2t0 t1 t2 + t0 t2  + t0 t1  + t0 t1 t2
+--R               + 
+--R                           2     3       2  2        3     4
+--R                 - t0 t1 t2  - t1 t2 + t1 t2  + t1 t2  - t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                 4     3       2  2      2                 2        3     2  2
+--R               t0  - t0 t2 - t0 t1  + 2t0 t1 t2 - 2t0 t1 t2  + t0 t2  + t1 t2
+--R             + 
+--R                   4
+--R               - t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R      *
+--R           3
+--R         C1
+--R     + 
+--R                         2     2
+--R               t0 t1 - t1  + t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                         2
+--R               t0 t2 - t1  + t1 t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                                 2
+--R               t0 t1 + t0 t2 - t1
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R               2     2
+--R             t0  - t1  + t1 t2
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R      *
+--R           2
+--R         C1
+--R     + 
+--R       C1
+--R     ,
+--R
+--R                     6     5        4  2      4          4  2      3  3
+--R                 - t0  + t0 t2 + 4t0 t1  - 4t0 t1 t2 + t0 t2  - 3t0 t1
+--R               + 
+--R                      3  2         3     2      3  3      2  4      2  3
+--R                 - 4t0 t1 t2 + 10t0 t1 t2  - 3t0 t2  + 2t0 t1  + 5t0 t1 t2
+--R               + 
+--R                      2  2  2      2     3      2  4         5        4
+--R                 - 9t0 t1 t2  - 7t0 t1 t2  + 5t0 t2  - 2t0 t1  + t0 t1 t2
+--R               + 
+--R                        3  2         2  3         5      5        4  2     3  3
+--R                 - t0 t1 t2  + 9t0 t1 t2  - 3t0 t2  + 2t1 t2 - 3t1 t2  - t1 t2
+--R               + 
+--R                      5
+--R                 t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                     6      5       4  2     4           4  2      3  3
+--R                 - t0  + 2t0 t1 + t0 t1  - t0 t1 t2 + 4t0 t2  - 4t0 t1
+--R               + 
+--R                    3  2        3     2      3  3      2  4      2  3
+--R                 2t0 t1 t2 - 4t0 t1 t2  - 3t0 t2  + 2t0 t1  + 3t0 t1 t2
+--R               + 
+--R                      2  2  2      2     3      2  4        5        4
+--R                 - 9t0 t1 t2  + 7t0 t1 t2  + 2t0 t2  - t0 t1  + t0 t1 t2
+--R               + 
+--R                      3  2         2  3            4         5     5        4  2
+--R                 t0 t1 t2  + 3t0 t1 t2  - 3t0 t1 t2  - 2t0 t2  + t1 t2 - 3t1 t2
+--R               + 
+--R                    2  4        5
+--R                 3t1 t2  - t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                     6     5        5       4  2     4          4  2      3  3
+--R                 - t0  + t0 t1 + 3t0 t2 + t0 t1  - t0 t1 t2 - t0 t2  - 3t0 t1
+--R               + 
+--R                      3  2        3     2      2  4      2  3        2     3
+--R                 - 7t0 t1 t2 + 3t0 t1 t2  + 5t0 t1  + 4t0 t1 t2 - 3t0 t1 t2
+--R               + 
+--R                   2  4         5         3  2         2  3           4
+--R                 t0 t2  - 3t0 t1  - 4t0 t1 t2  + 7t0 t1 t2  + t0 t1 t2
+--R               + 
+--R                         5      5        4  2      3  3     2  4        5     6
+--R                 - 3t0 t2  + 3t1 t2 - 5t1 t2  + 3t1 t2  - t1 t2  - t1 t2  + t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R             xi
+--R         + 
+--R                   6      5        5       4  2      4          4  2      3  2
+--R               - t0  + 3t0 t1 + 2t0 t2 - t0 t1  - 9t0 t1 t2 + t0 t2  + 4t0 t1 t2
+--R             + 
+--R                  3     2      3  3     2  4      2  3         2  2  2
+--R               6t0 t1 t2  - 4t0 t2  + t0 t1  + 3t0 t1 t2 - 12t0 t1 t2
+--R             + 
+--R                  2     3      2  4         5         4          3  2
+--R               3t0 t1 t2  + 2t0 t2  - 3t0 t1  + 3t0 t1 t2 - t0 t1 t2
+--R             + 
+--R                      2  3            4        5     6      4  2      3  3
+--R               11t0 t1 t2  - 8t0 t1 t2  - t0 t2  + t1  - 4t1 t2  + 3t1 t2
+--R             + 
+--R                    2  4         5
+--R               - 2t1 t2  + 2t1 t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R      *
+--R           4
+--R         C1
+--R     + 
+--R                   4      3       3       2  2      2          2  2        3
+--R                 t0  - 2t0 t1 - t0 t2 + t0 t1  + 4t0 t1 t2 - t0 t2  - t0 t1
+--R               + 
+--R                        2             2        3     3          3
+--R                 - t0 t1 t2 - t0 t1 t2  + t0 t2  + t1 t2 - t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                      3        2  2      2          2  2        3        2
+--R                 - 2t0 t1 + 2t0 t1  + 2t0 t1 t2 - t0 t2  - t0 t1  - t0 t1 t2
+--R               + 
+--R                         2     3       2  2        3     4
+--R                 t0 t1 t2  + t1 t2 - t1 t2  - t1 t2  + t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                     3       3        2  2      2              3            2
+--R                 - t0 t1 - t0 t2 + 2t0 t1  + 3t0 t1 t2 - 2t0 t1  - 3t0 t1 t2
+--R               + 
+--R                      3      3        2  2        3
+--R                 t0 t2  + 2t1 t2 - 2t1 t2  + t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                   3       3       2  2      2           2  2         3
+--R               - t0 t1 + t0 t2 + t0 t1  + 3t0 t1 t2 - 2t0 t2  - 2t0 t1
+--R             + 
+--R                      2           3     4     2  2
+--R               - t0 t1 t2 + 2t0 t2  + t1  - t1 t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R      *
+--R           3
+--R         C1
+--R     + 
+--R               t0 t1 - t1 t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                 2
+--R               t0  - t0 t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                           2
+--R               - t0 t2 + t1  - t1 t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                                       2
+--R             t0 t1 - t0 t2 - t1 t2 + t2
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R      *
+--R           2
+--R         C1
+--R     + 
+--R       xi C1
+--R     ,
+--R
+--R                   6      5        5       4  2      4          4  2      3  2
+--R                 t0  - 3t0 t1 - 2t0 t2 + t0 t1  + 9t0 t1 t2 - t0 t2  - 4t0 t1 t2
+--R               + 
+--R                      3     2      3  3     2  4      2  3         2  2  2
+--R                 - 6t0 t1 t2  + 4t0 t2  - t0 t1  - 3t0 t1 t2 + 12t0 t1 t2
+--R               + 
+--R                      2     3      2  4         5         4          3  2
+--R                 - 3t0 t1 t2  - 2t0 t2  + 3t0 t1  - 3t0 t1 t2 + t0 t1 t2
+--R               + 
+--R                          2  3            4        5     6      4  2      3  3
+--R                 - 11t0 t1 t2  + 8t0 t1 t2  + t0 t2  - t1  + 4t1 t2  - 3t1 t2
+--R               + 
+--R                    2  4         5
+--R                 2t1 t2  - 2t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                      5       5        4  2      4           3  3      3  2
+--R                 - 3t0 t1 - t0 t2 + 5t0 t1  + 5t0 t1 t2 - 3t0 t1  - 8t0 t1 t2
+--R               + 
+--R                    3     2     3  3     2  4      2  3        2  2  2
+--R                 4t0 t1 t2  + t0 t2  + t0 t1  + 2t0 t1 t2 + 3t0 t1 t2
+--R               + 
+--R                       2     3      2  4        5         4           2  3
+--R                 - 10t0 t1 t2  + 3t0 t2  + t0 t1  - 2t0 t1 t2 - 2t0 t1 t2
+--R               + 
+--R                          4         5     6      5       4  2      3  3
+--R                 8t0 t1 t2  - 2t0 t2  - t1  + 2t1 t2 + t1 t2  - 4t1 t2
+--R               + 
+--R                    2  4        5
+--R                 2t1 t2  - t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                     5        5        4  2      4           4  2      3  3
+--R                 - t0 t1 - 2t0 t2 + 2t0 t1  + 8t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                      3  2         3     2     3  3     2  4      2  2  2
+--R                 - 2t0 t1 t2 - 10t0 t1 t2  + t0 t2  + t0 t1  + 3t0 t1 t2
+--R               + 
+--R                    2     3         5         4           3  2         2  3
+--R                 4t0 t1 t2  + 2t0 t1  - 2t0 t1 t2 + 2t0 t1 t2  - 8t0 t1 t2
+--R               + 
+--R                          4        5     6     5       4  2      3  3      2  4
+--R                 5t0 t1 t2  - t0 t2  - t1  + t1 t2 + t1 t2  - 3t1 t2  + 5t1 t2
+--R               + 
+--R                         5
+--R                 - 3t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R             xi
+--R         + 
+--R                    5       5        4  2      4           4  2      3  3
+--R               - 2t0 t1 + t0 t2 + 2t0 t1  + 8t0 t1 t2 - 2t0 t2  - 3t0 t1
+--R             + 
+--R                     3  2        3     2      3  3      2  4     2  3
+--R               - 11t0 t1 t2 - 3t0 t1 t2  + 4t0 t2  + 4t0 t1  + t0 t1 t2
+--R             + 
+--R                   2  2  2      2     3     2  4         4           3  2
+--R               12t0 t1 t2  - 6t0 t1 t2  - t0 t2  - 3t0 t1 t2 - 3t0 t1 t2
+--R             + 
+--R                       2  3            4         5     6      5       4  2
+--R               - 4t0 t1 t2  + 9t0 t1 t2  - 2t0 t2  - t1  + 3t1 t2 - t1 t2
+--R             + 
+--R                 2  4         5     6
+--R               t1 t2  - 3t1 t2  + t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R      *
+--R           4
+--R         C1
+--R     + 
+--R                    3       2  2      2  2        2              2        3
+--R                 2t0 t2 - t0 t1  - 2t0 t2  - t0 t1 t2 + 3t0 t1 t2  + t0 t2
+--R               + 
+--R                   4      3       2  2        3
+--R                 t1  - 2t1 t2 + t1 t2  - t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                   3       3        2  2      2              3            2
+--R                 t0 t1 + t0 t2 - 2t0 t1  - 3t0 t1 t2 + 2t0 t1  + 3t0 t1 t2
+--R               + 
+--R                        3      3        2  2        3
+--R                 - t0 t2  - 2t1 t2 + 2t1 t2  - t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                   4     3       2  2     2          2  2        3        2
+--R                 t0  - t0 t1 - t0 t1  + t0 t1 t2 - t0 t2  + t0 t1  - t0 t1 t2
+--R               + 
+--R                          2     3        2  2         3
+--R                 2t0 t1 t2  - t1 t2 + 2t1 t2  - 2t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                   3       3       2          2  2        3        2
+--R               - t0 t1 + t0 t2 - t0 t1 t2 - t0 t2  + t0 t1  - t0 t1 t2
+--R             + 
+--R                        2        3     3       2  2         3     4
+--R               4t0 t1 t2  - t0 t2  - t1 t2 + t1 t2  - 2t1 t2  + t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R      *
+--R           3
+--R         C1
+--R     + 
+--R                   2     2
+--R               - t0  + t1  - t1 t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                   2                     2
+--R               - t0  + t0 t1 - t1 t2 + t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                   2
+--R               - t0  + t0 t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                 2
+--R             - t0  + t0 t1 + t0 t2 - t1 t2
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R      *
+--R           2
+--R         C1
+--R     + 
+--R         2
+--R       xi C1
+--R     ,
+--R
+--R                    5       5        4  2      4           4  2      3  3
+--R                 2t0 t1 - t0 t2 - 2t0 t1  - 8t0 t1 t2 + 2t0 t2  + 3t0 t1
+--R               + 
+--R                     3  2        3     2      3  3      2  4     2  3
+--R                 11t0 t1 t2 + 3t0 t1 t2  - 4t0 t2  - 4t0 t1  - t0 t1 t2
+--R               + 
+--R                       2  2  2      2     3     2  4         4           3  2
+--R                 - 12t0 t1 t2  + 6t0 t1 t2  + t0 t2  + 3t0 t1 t2 + 3t0 t1 t2
+--R               + 
+--R                       2  3            4         5     6      5       4  2
+--R                 4t0 t1 t2  - 9t0 t1 t2  + 2t0 t2  + t1  - 3t1 t2 + t1 t2
+--R               + 
+--R                     2  4         5     6
+--R                 - t1 t2  + 3t1 t2  - t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                   6     5        5       4  2     4          4  2      3  3
+--R                 t0  - t0 t1 - 3t0 t2 - t0 t1  + t0 t1 t2 + t0 t2  + 3t0 t1
+--R               + 
+--R                    3  2        3     2      2  4      2  3        2     3
+--R                 7t0 t1 t2 - 3t0 t1 t2  - 5t0 t1  - 4t0 t1 t2 + 3t0 t1 t2
+--R               + 
+--R                     2  4         5         3  2         2  3           4
+--R                 - t0 t2  + 3t0 t1  + 4t0 t1 t2  - 7t0 t1 t2  - t0 t1 t2
+--R               + 
+--R                       5      5        4  2      3  3     2  4        5     6
+--R                 3t0 t2  - 3t1 t2 + 5t1 t2  - 3t1 t2  + t1 t2  + t1 t2  - t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                     5        5        4  2      4           4  2      3  2
+--R                 - t0 t1 - 2t0 t2 + 3t0 t1  - 3t0 t1 t2 + 2t0 t2  + 3t0 t1 t2
+--R               + 
+--R                    3     2      3  3      2  4     2  3        2  2  2
+--R                 7t0 t1 t2  - 3t0 t2  - 3t0 t1  + t0 t1 t2 - 9t0 t1 t2
+--R               + 
+--R                      2     3      2  4        5        4           3  2
+--R                 - 4t0 t1 t2  + 4t0 t2  + t0 t1  + t0 t1 t2 + 3t0 t1 t2
+--R               + 
+--R                       2  3           4     5        4  2      3  3     2  4
+--R                 2t0 t1 t2  - t0 t1 t2  - t1 t2 + 2t1 t2  - 4t1 t2  + t1 t2
+--R               + 
+--R                       5     6
+--R                 2t1 t2  - t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R             xi
+--R         + 
+--R                 5        5        4  2     3  3      3  2        3     2
+--R               t0 t1 - 3t0 t2 + 5t0 t2  - t0 t1  + 9t0 t1 t2 - 7t0 t1 t2
+--R             + 
+--R                    3  3      2  4     2  3        2  2  2       2     3
+--R               - 3t0 t2  - 3t0 t1  - t0 t1 t2 - 9t0 t1 t2  + 10t0 t1 t2
+--R             + 
+--R                 2  4         5        4           3  2         2  3
+--R               t0 t2  + 2t0 t1  + t0 t1 t2 + 5t0 t1 t2  - 4t0 t1 t2
+--R             + 
+--R                        4        5      5        4  2      3  3      2  4     6
+--R             - 4t0 t1 t2  + t0 t2  - 2t1 t2 + 2t1 t2  - 3t1 t2  + 4t1 t2  - t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R      *
+--R           4
+--R         C1
+--R     + 
+--R                     4     3       2  2      2                 2        3
+--R                 - t0  + t0 t2 + t0 t1  - 2t0 t1 t2 + 2t0 t1 t2  - t0 t2
+--R               + 
+--R                     2  2     4
+--R                 - t1 t2  + t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                     4     3       2  2     2          2  2        3        2
+--R                 - t0  + t0 t1 + t0 t1  - t0 t1 t2 + t0 t2  - t0 t1  + t0 t1 t2
+--R               + 
+--R                            2     3        2  2         3
+--R                 - 2t0 t1 t2  + t1 t2 - 2t1 t2  + 2t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                     4     3        3       2          2  2        3           2
+--R                 - t0  + t0 t1 + 2t0 t2 - t0 t1 t2 - t0 t2  - t0 t1  + t0 t1 t2
+--R               + 
+--R                      3     4     3       2  2        3
+--R                 t0 t2  + t1  - t1 t2 - t1 t2  + t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                   4      3       3       2  2      2          2  2        3
+--R               - t0  + 2t0 t1 + t0 t2 - t0 t1  - 4t0 t1 t2 + t0 t2  + t0 t1
+--R             + 
+--R                    2             2        3     3          3
+--R               t0 t1 t2 + t0 t1 t2  - t0 t2  - t1 t2 + t1 t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R      *
+--R           3
+--R         C1
+--R     + 
+--R                                           2
+--R               - t0 t1 + t0 t2 + t1 t2 - t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                         2
+--R               t0 t2 - t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                 2                     2
+--R               t0  - t0 t1 + t1 t2 - t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                         2     2
+--R             - t0 t1 + t1  - t2
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R      *
+--R           2
+--R         C1
+--R     + 
+--R         3
+--R       xi C1
+--R     ,
+--R
+--R                     5        5        4  2     3  3      3  2        3     2
+--R                 - t0 t1 + 3t0 t2 - 5t0 t2  + t0 t1  - 9t0 t1 t2 + 7t0 t1 t2
+--R               + 
+--R                    3  3      2  4     2  3        2  2  2       2     3
+--R                 3t0 t2  + 3t0 t1  + t0 t1 t2 + 9t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  4         5        4           3  2         2  3
+--R                 - t0 t2  - 2t0 t1  - t0 t1 t2 - 5t0 t1 t2  + 4t0 t1 t2
+--R               + 
+--R                        4        5      5        4  2      3  3      2  4     6
+--R               4t0 t1 t2  - t0 t2  + 2t1 t2 - 2t1 t2  + 3t1 t2  - 4t1 t2  + t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                   5        5        4  2      4           4  2      3  3
+--R                 t0 t1 + 2t0 t2 - 2t0 t1  - 8t0 t1 t2 - 3t0 t2  + 4t0 t1
+--R               + 
+--R                    3  2         3     2     3  3     2  4      2  2  2
+--R                 2t0 t1 t2 + 10t0 t1 t2  - t0 t2  - t0 t1  - 3t0 t1 t2
+--R               + 
+--R                      2     3         5         4           3  2         2  3
+--R                 - 4t0 t1 t2  - 2t0 t1  + 2t0 t1 t2 - 2t0 t1 t2  + 8t0 t1 t2
+--R               + 
+--R                            4        5     6     5       4  2      3  3
+--R                 - 5t0 t1 t2  + t0 t2  + t1  - t1 t2 - t1 t2  + 3t1 t2
+--R               + 
+--R                      2  4         5
+--R                 - 5t1 t2  + 3t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                   6      5       4  2     4           4  2      3  3
+--R                 t0  - 2t0 t1 - t0 t1  + t0 t1 t2 - 4t0 t2  + 4t0 t1
+--R               + 
+--R                      3  2        3     2      3  3      2  4      2  3
+--R                 - 2t0 t1 t2 + 4t0 t1 t2  + 3t0 t2  - 2t0 t1  - 3t0 t1 t2
+--R               + 
+--R                    2  2  2      2     3      2  4        5        4
+--R                 9t0 t1 t2  - 7t0 t1 t2  - 2t0 t2  + t0 t1  - t0 t1 t2
+--R               + 
+--R                        3  2         2  3            4         5     5
+--R                 - t0 t1 t2  - 3t0 t1 t2  + 3t0 t1 t2  + 2t0 t2  - t1 t2
+--R               + 
+--R                    4  2      2  4        5
+--R                 3t1 t2  - 3t1 t2  + t1 t2
+--R            /
+--R                   12      11        11        10  2       10           10  2
+--R                 t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R               + 
+--R                       9  3       9  2         9     2       9  3       8  4
+--R                 - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R               + 
+--R                     8  3         8  2  2       8     3       8  4       7  5
+--R                 45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R               + 
+--R                       7  4         7  3  2       7  2  3       7     4
+--R                 - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                       7  5       6  6       6  5         6  4  2       6  3  3
+--R                 - 18t0 t2  + 19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2
+--R               + 
+--R                     6  2  4      6     5       6  6       5  7       5  6
+--R                 45t0 t1 t2  + 9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2
+--R               + 
+--R                       5  5  2       5  4  3       5  3  4       5  2  5
+--R                 - 63t0 t1 t2  - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2
+--R               + 
+--R                    5     6       5  7       4  8       4  7         4  6  2
+--R                 9t0 t1 t2  - 18t0 t2  + 15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2
+--R               + 
+--R                     4  5  3       4  3  5       4  2  6       4     7
+--R                 15t0 t1 t2  + 15t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2
+--R               + 
+--R                     4  8       3  9       3  8         3  7  2       3  6  3
+--R                 15t0 t2  - 10t0 t1  - 30t0 t1 t2 - 30t0 t1 t2  + 15t0 t1 t2
+--R               + 
+--R                     3  5  4       3  4  5       3  3  6       3  2  7
+--R                 15t0 t1 t2  - 60t0 t1 t2  + 20t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                     3     8       3  9      2  10       2  9         2  7  3
+--R                 15t0 t1 t2  - 10t0 t2  + 6t0 t1   + 15t0 t1 t2 - 30t0 t1 t2
+--R               + 
+--R                     2  6  4       2  5  5       2  4  6       2  3  7
+--R                 60t0 t1 t2  - 63t0 t1 t2  + 90t0 t1 t2  - 75t0 t1 t2
+--R               + 
+--R                     2  2  8       2     9      2  10         11         10
+--R                 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2   - 3t0 t1   - 3t0 t1  t2
+--R               + 
+--R                        9  2          8  3          7  4          6  5
+--R                 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2  - 66t0 t1 t2
+--R               + 
+--R                        5  6          4  7          3  8          2  9
+--R                 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2  - 30t0 t1 t2
+--R               + 
+--R                           10         11     12      11        10  2       9  3
+--R                 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2 + 6t1  t2  - 10t1 t2
+--R               + 
+--R                     8  4       7  5       6  6       5  7       4  8       3  9
+--R                 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2  + 15t1 t2  - 10t1 t2
+--R               + 
+--R                    2  10         11     12
+--R                 6t1 t2   - 3t1 t2   + t2
+--R          *
+--R             xi
+--R         + 
+--R                    5       5        4  2      4           4  2     3  3
+--R               - 2t0 t1 + t0 t2 + 3t0 t1  - 3t0 t1 t2 - 3t0 t2  + t0 t1
+--R             + 
+--R                    3  2         3     2      2  3         2     3      2  4
+--R               - 6t0 t1 t2 + 14t0 t1 t2  + 2t0 t1 t2 - 14t0 t1 t2  + 3t0 t2
+--R             + 
+--R                      5         3  2         2  3            4        5     5
+--R               - t0 t1  - 2t0 t1 t2  + 6t0 t1 t2  + 3t0 t1 t2  - t0 t2  + t1 t2
+--R             + 
+--R                   3  3      2  4         5
+--R               - t1 t2  - 3t1 t2  + 2t1 t2
+--R          /
+--R                 12      11        11        10  2       10           10  2
+--R               t0   - 3t0  t1 - 3t0  t2 + 6t0  t1  + 12t0  t1 t2 + 6t0  t2
+--R             + 
+--R                     9  3       9  2         9     2       9  3       8  4
+--R               - 10t0 t1  - 30t0 t1 t2 - 15t0 t1 t2  - 10t0 t2  + 15t0 t1
+--R             + 
+--R                   8  3         8  2  2       8     3       8  4       7  5
+--R               45t0 t1 t2 + 45t0 t1 t2  + 15t0 t1 t2  + 15t0 t2  - 18t0 t1
+--R             + 
+--R                     7  4         7  3  2       7  2  3       7     4       7  5
+--R               - 60t0 t1 t2 - 75t0 t1 t2  - 30t0 t1 t2  - 15t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   6  6       6  5         6  4  2       6  3  3       6  2  4
+--R               19t0 t1  + 69t0 t1 t2 + 90t0 t1 t2  + 20t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                  6     5       6  6       5  7       5  6         5  5  2
+--R               9t0 t1 t2  + 19t0 t2  - 18t0 t1  - 66t0 t1 t2 - 63t0 t1 t2
+--R             + 
+--R                     5  4  3       5  3  4       5  2  5      5     6       5  7
+--R               - 60t0 t1 t2  + 15t0 t1 t2  - 63t0 t1 t2  + 9t0 t1 t2  - 18t0 t2
+--R             + 
+--R                   4  8       4  7         4  6  2       4  5  3       4  3  5
+--R               15t0 t1  + 45t0 t1 t2 + 60t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2
+--R             + 
+--R                   4  2  6       4     7       4  8       3  9       3  8
+--R               45t0 t1 t2  - 15t0 t1 t2  + 15t0 t2  - 10t0 t1  - 30t0 t1 t2
+--R             + 
+--R                     3  7  2       3  6  3       3  5  4       3  4  5
+--R               - 30t0 t1 t2  + 15t0 t1 t2  + 15t0 t1 t2  - 60t0 t1 t2
+--R             + 
+--R                   3  3  6       3  2  7       3     8       3  9      2  10
+--R               20t0 t1 t2  - 30t0 t1 t2  + 15t0 t1 t2  - 10t0 t2  + 6t0 t1
+--R             + 
+--R                   2  9         2  7  3       2  6  4       2  5  5
+--R               15t0 t1 t2 - 30t0 t1 t2  + 60t0 t1 t2  - 63t0 t1 t2
+--R             + 
+--R                   2  4  6       2  3  7       2  2  8       2     9      2  10
+--R               90t0 t1 t2  - 75t0 t1 t2  + 45t0 t1 t2  - 15t0 t1 t2  + 6t0 t2
+--R             + 
+--R                       11         10            9  2          8  3          7  4
+--R               - 3t0 t1   - 3t0 t1  t2 + 15t0 t1 t2  - 30t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        6  5          5  6          4  7          3  8
+--R               - 66t0 t1 t2  + 69t0 t1 t2  - 60t0 t1 t2  + 45t0 t1 t2
+--R             + 
+--R                        2  9             10         11     12      11
+--R               - 30t0 t1 t2  + 12t0 t1 t2   - 3t0 t2   + t1   - 3t1  t2
+--R             + 
+--R                  10  2       9  3       8  4       7  5       6  6       5  7
+--R               6t1  t2  - 10t1 t2  + 15t1 t2  - 18t1 t2  + 19t1 t2  - 18t1 t2
+--R             + 
+--R                   4  8       3  9      2  10         11     12
+--R               15t1 t2  - 10t1 t2  + 6t1 t2   - 3t1 t2   + t2
+--R      *
+--R           4
+--R         C1
+--R     + 
+--R                   3       3       2  2      2           2  2         3
+--R                 t0 t1 - t0 t2 - t0 t1  - 3t0 t1 t2 + 2t0 t2  + 2t0 t1
+--R               + 
+--R                      2           3     4     2  2
+--R                 t0 t1 t2 - 2t0 t2  - t1  + t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                   4     3        3       2          2  2        3           2
+--R                 t0  - t0 t1 - 2t0 t2 + t0 t1 t2 + t0 t2  + t0 t1  - t0 t1 t2
+--R               + 
+--R                        3     4     3       2  2        3
+--R                 - t0 t2  - t1  + t1 t2 + t1 t2  - t1 t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                     3       3       2  2     2          2  2        3
+--R                 - t0 t1 - t0 t2 + t0 t1  - t0 t1 t2 + t0 t2  + t0 t1
+--R               + 
+--R                         2         3     4     3          3     4
+--R                 t0 t1 t2  - 2t0 t2  - t1  + t1 t2 - t1 t2  + t2
+--R            /
+--R                   8      7        7        6  2      6           6  2      5  3
+--R                 t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R               + 
+--R                       5  2        5     2      5  3      4  4       4  3
+--R                 - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R               + 
+--R                     4  2  2      4  4      3  5       3  4         3  3  2
+--R                 10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R               + 
+--R                      3  5      2  6      2  5        2  4  2       2  3  3
+--R                 - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R               + 
+--R                     2  2  4      2     5      2  6         7         6
+--R                 10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R               + 
+--R                       5  2          4  3          3  4          2  5
+--R                 8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2
+--R               + 
+--R                          6         7     8      7        6  2      5  3
+--R                 6t0 t1 t2  - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2
+--R               + 
+--R                    4  4      3  5      2  6         7     8
+--R                 5t1 t2  - 4t1 t2  + 3t1 t2  - 2t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R                    3       2  2      2  2        2              2        3
+--R               - 2t0 t2 + t0 t1  + 2t0 t2  + t0 t1 t2 - 3t0 t1 t2  - t0 t2
+--R             + 
+--R                   4      3       2  2        3
+--R               - t1  + 2t1 t2 - t1 t2  + t1 t2
+--R          /
+--R                 8      7        7        6  2      6           6  2      5  3
+--R               t0  - 2t0 t1 - 2t0 t2 + 3t0 t1  + 6t0 t1 t2 + 3t0 t2  - 4t0 t1
+--R             + 
+--R                     5  2        5     2      5  3      4  4       4  3
+--R               - 12t0 t1 t2 - 2t0 t1 t2  - 4t0 t2  + 5t0 t1  + 10t0 t1 t2
+--R             + 
+--R                   4  2  2      4  4      3  5       3  4         3  3  2
+--R               10t0 t1 t2  + 5t0 t2  - 4t0 t1  - 10t0 t1 t2 - 10t0 t1 t2
+--R             + 
+--R                    3  5      2  6      2  5        2  4  2       2  3  3
+--R               - 4t0 t2  + 3t0 t1  + 8t0 t1 t2 + 5t0 t1 t2  - 10t0 t1 t2
+--R             + 
+--R                   2  2  4      2     5      2  6         7         6
+--R               10t0 t1 t2  - 2t0 t1 t2  + 3t0 t2  - 2t0 t1  - 4t0 t1 t2
+--R             + 
+--R                     5  2          4  3          3  4          2  5            6
+--R               8t0 t1 t2  - 10t0 t1 t2  + 10t0 t1 t2  - 12t0 t1 t2  + 6t0 t1 t2
+--R             + 
+--R                       7     8      7        6  2      5  3      4  4      3  5
+--R               - 2t0 t2  + t1  - 2t1 t2 + 3t1 t2  - 4t1 t2  + 5t1 t2  - 4t1 t2
+--R             + 
+--R                  2  6         7     8
+--R               3t1 t2  - 2t1 t2  + t2
+--R      *
+--R           3
+--R         C1
+--R     + 
+--R                 2
+--R               t0  - t0 t1 - t0 t2 + t1 t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               3
+--R             xi
+--R         + 
+--R                                   2
+--R               - t0 t1 - t0 t2 + t1
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R               2
+--R             xi
+--R         + 
+--R                           2
+--R               - t0 t2 + t2
+--R            /
+--R                   4     3       3       2  2      2          2  2        3
+--R                 t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R               + 
+--R                         2              2        3     4     3       2  2
+--R                 - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2
+--R               + 
+--R                        3     4
+--R                 - t1 t2  + t2
+--R          *
+--R             xi
+--R         + 
+--R             - t0 t1 + t1 t2
+--R          /
+--R                 4     3       3       2  2      2          2  2        3
+--R               t0  - t0 t1 - t0 t2 + t0 t1  + 2t0 t1 t2 + t0 t2  - t0 t1
+--R             + 
+--R                       2              2        3     4     3       2  2        3
+--R               - 3t0 t1 t2 + 2t0 t1 t2  - t0 t2  + t1  - t1 t2 + t1 t2  - t1 t2
+--R             + 
+--R                 4
+--R               t2
+--R      *
+--R           2
+--R         C1
+--R     + 
+--R            3     2
+--R       (- xi  - xi  - xi - 1)C1
+--R     ]
 --E 19 
 
 --S 20 of 22
-LX := UP('X, L) ;  X : LX := monomial(1, 1) ;
+LX := UP('X, L) ;  X : LX := monomial(1, 1) 
+--R 
+--R
+--R   (20)  X
 --E 20 
 
 --S 21 of 22
-g : LX := reduce(*, [X - rho for rho in r]) ;
+g : LX := reduce(*, [X - rho for rho in r]) 
+--R 
+--R
+--R   (21)
+--R      5
+--R     X
+--R   + 
+--R               4       3         3         2  2       2            2  2
+--R         - 10t0  + 10t0 t1 + 10t0 t2 - 10t0 t1  - 20t0 t1 t2 - 10t0 t2
+--R       + 
+--R                3          2               2          3       4       3
+--R         10t0 t1  + 30t0 t1 t2 - 20t0 t1 t2  + 10t0 t2  - 10t1  + 10t1 t2
+--R       + 
+--R               2  2          3       4
+--R         - 10t1 t2  + 10t1 t2  - 10t2
+--R    *
+--R        3
+--R       X
+--R   + 
+--R               6       5         5         4  2       4            4  2
+--R         - 20t0  + 30t0 t1 + 30t0 t2 - 25t0 t1  - 75t0 t1 t2 - 25t0 t2
+--R       + 
+--R             3  3        3  2         3  3       2  4       2  3         2  2  2
+--R         25t0 t1  + 100t0 t1 t2 + 25t0 t2  - 25t0 t1  - 25t0 t1 t2 - 50t0 t1 t2
+--R       + 
+--R             2     3       2  4         5          3  2          2  3
+--R         25t0 t1 t2  - 25t0 t2  + 5t0 t1  + 50t0 t1 t2  - 50t0 t1 t2
+--R       + 
+--R                   4         5      6       5         4  2       3  3       2  4
+--R         25t0 t1 t2  + 5t0 t2  + 5t1  - 20t1 t2 + 25t1 t2  - 25t1 t2  + 25t1 t2
+--R       + 
+--R                  5      6
+--R         - 20t1 t2  + 5t2
+--R    *
+--R        2
+--R       X
+--R   + 
+--R               8       7         7         6  2       6            6  2
+--R         - 15t0  + 30t0 t1 + 30t0 t2 - 20t0 t1  - 90t0 t1 t2 - 20t0 t2
+--R       + 
+--R             5  3        5  2         5     2       5  3       4  3
+--R         10t0 t1  + 105t0 t1 t2 + 55t0 t1 t2  + 10t0 t2  - 50t0 t1 t2
+--R       + 
+--R                4  2  2       4     3       3  5       3  4          3  3  2
+--R         - 100t0 t1 t2  + 25t0 t1 t2  - 15t0 t1  - 25t0 t1 t2 + 125t0 t1 t2
+--R       + 
+--R               3  2  3       3     4       3  5       2  6      2  5
+--R         - 75t0 t1 t2  + 25t0 t1 t2  - 15t0 t2  + 30t0 t1  + 5t0 t1 t2
+--R       + 
+--R                2  3  3        2  2  4       2     5       2  6          7
+--R         - 125t0 t1 t2  + 150t0 t1 t2  - 45t0 t1 t2  + 30t0 t2  - 20t0 t1
+--R       + 
+--R                  6            5  2          4  3          3  4          2  5
+--R         - 15t0 t1 t2 + 80t0 t1 t2  - 25t0 t1 t2  - 50t0 t1 t2  - 20t0 t1 t2
+--R       + 
+--R                   6          7       8       7        6  2       5  3
+--R         35t0 t1 t2  - 20t0 t2  + 10t1  - 20t1 t2 + 5t1 t2  + 10t1 t2
+--R       + 
+--R             3  5       2  6         7       8
+--R         10t1 t2  - 20t1 t2  + 5t1 t2  + 10t2
+--R    *
+--R       X
+--R   + 
+--R          10       9         9        8  2       8           8  2      7  3
+--R     - 4t0   + 10t0 t1 + 10t0 t2 - 5t0 t1  - 35t0 t1 t2 - 5t0 t2  - 5t0 t1
+--R   + 
+--R         7  2         7     2      7  3       6  4      6  3         6  2  2
+--R     35t0 t1 t2 + 35t0 t1 t2  - 5t0 t2  + 15t0 t1  + 5t0 t1 t2 - 70t0 t1 t2
+--R   + 
+--R         6  4       5  5       5  4         5  3  2       5  2  3       5  5
+--R     15t0 t2  - 28t0 t1  - 45t0 t1 t2 + 55t0 t1 t2  + 25t0 t1 t2  - 28t0 t2
+--R   + 
+--R         4  6       4  5          4  3  3       4  2  4       4     5       4  6
+--R     35t0 t1  + 60t0 t1 t2 - 125t0 t1 t2  + 50t0 t1 t2  - 15t0 t1 t2  + 35t0 t2
+--R   + 
+--R           3  7       3  6         3  5  2        3  4  3       3  3  4
+--R     - 30t0 t1  - 60t0 t1 t2 + 20t0 t1 t2  + 125t0 t1 t2  - 25t0 t1 t2
+--R   + 
+--R           3  2  5       3     6       3  7       2  8       2  7
+--R     - 30t0 t1 t2  + 15t0 t1 t2  - 30t0 t2  + 20t0 t1  + 35t0 t1 t2
+--R   + 
+--R           2  6  2       2  5  3        2  4  4        2  3  5       2  2  6
+--R     - 65t0 t1 t2  + 20t0 t1 t2  - 125t0 t1 t2  + 145t0 t1 t2  - 40t0 t1 t2
+--R   + 
+--R           2     7       2  8          9         8            7  2
+--R     - 15t0 t1 t2  + 20t0 t2  - 10t0 t1  + 5t0 t1 t2 - 20t0 t1 t2
+--R   + 
+--R             6  3           5  4          4  5          3  6          2  7
+--R     100t0 t1 t2  - 110t0 t1 t2  + 65t0 t1 t2  - 45t0 t1 t2  + 30t0 t1 t2
+--R   + 
+--R              9     10      9         8  2       7  3       6  4       5  5
+--R     - 10t0 t2  + t1   + 5t1 t2 - 20t1 t2  + 25t1 t2  - 25t1 t2  + 27t1 t2
+--R   + 
+--R           4  6      3  7     10
+--R     - 20t1 t2  + 5t1 t2  + t2
 --E 21
 
 --S 22 of 22
diff --git a/src/input/reclos.input.pamphlet b/src/input/reclos.input.pamphlet
index 5967963..1e96d74 100644
--- a/src/input/reclos.input.pamphlet
+++ b/src/input/reclos.input.pamphlet
@@ -425,7 +425,7 @@ These came from J.M. Arnaudies
 
 )cl prop s4 s7 e1 e2
 
---S 39  of 70
+--S 39 of 70
 s3 := sqrt(3)$Ran
 --R 
 --R
@@ -486,7 +486,7 @@ ee1::Boolean
 
 )cl prop pol r1 alpha beta
 
---S 45  of 70
+--S 45 of 70
 pol : UP(x,Ran) := x**4+(7/3)*x**2+30*x-(100/3)
 --R 
 --R
@@ -544,7 +544,7 @@ pol.(alpha+beta-1/3)
 
 )cl prop qol r2 alpha beta
 
---S 50  of 70
+--S 50 of 70
 r2 := sqrt(153)$Ran
 --R 
 --R
diff --git a/src/input/schaum1.input.pamphlet b/src/input/schaum1.input.pamphlet
index 615d907..6af52a9 100644
--- a/src/input/schaum1.input.pamphlet
+++ b/src/input/schaum1.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 108
 aa:=integrate(1/(a*x+b),x)
 --R
 --R        log(a x + b)
@@ -27,7 +27,7 @@ aa:=integrate(1/(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 1
 
---S 2
+--S 2 of 108
 bb:=1/a*log(a*x+b)
 --R
 --R        log(a x + b)
@@ -36,7 +36,7 @@ bb:=1/a*log(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:59 Schaums and Axiom agree
+--S 3 of 108      14:59 Schaums and Axiom agree
 cc:=bb-aa
 --R
 --R   (3)  0
@@ -51,7 +51,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 108
 aa:=integrate(x/(a*x+b),x)
 --R 
 --R
@@ -62,7 +62,7 @@ aa:=integrate(x/(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 108
 bb:=x/a-b/a^2*log(a*x+b)
 --R
 --R        - b log(a x + b) + a x
@@ -72,7 +72,7 @@ bb:=x/a-b/a^2*log(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:60 Schaums and Axiom agree
+--S 6 of 108      14:60 Schaums and Axiom agree
 cc:=bb-aa
 --R
 --R   (3)  0
@@ -88,7 +88,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 108
 aa:=integrate(x^2/(a*x+b),x)
 --R
 --R          2                2 2
@@ -99,7 +99,7 @@ aa:=integrate(x^2/(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 108
 bb:=(a*x+b)^2/(2*a^3)-(2*b*(a*x+b))/a^3+b^2/a^3*log(a*x+b)
 --R
 --R          2                2 2              2
@@ -110,7 +110,7 @@ bb:=(a*x+b)^2/(2*a^3)-(2*b*(a*x+b))/a^3+b^2/a^3*log(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 108
 cc:=bb-aa
 --R
 --R            2
@@ -124,7 +124,7 @@ cc:=bb-aa
 This factor is constant with respect to $x$ as shown by taking the
 derivative. It is a constant of integration.
 <<*>>=
---S 10     14:61 Schaums and Axiom differ by a constant
+--S 10 of 108     14:61 Schaums and Axiom differ by a constant
 differentiate(cc,x)
 --R
 --R   (4)  0
@@ -140,7 +140,7 @@ $$
 <<*>>=
 )clear all
 
---S 11
+--S 11 of 108
 aa:=integrate(x^3/(a*x+b),x)
 --R
 --R            3                 3 3     2   2       2
@@ -153,7 +153,7 @@ aa:=integrate(x^3/(a*x+b),x)
 @
 and the book expression is:
 <<*>>=
---S 12
+--S 12 of 108
 bb:=(a*x+b)^3/(3*a^4)-(3*b*(a*x+b)^2)/(2*a^4)+(3*b^2*(a*x+b))/a^4-(b^3/a^4)*log(a*x+b)
 --R
 --R            3                 3 3     2   2       2       3
@@ -167,7 +167,7 @@ bb:=(a*x+b)^3/(3*a^4)-(3*b*(a*x+b)^2)/(2*a^4)+(3*b^2*(a*x+b))/a^4-(b^3/a^4)*log(
 
 The difference is a constant with respect to x:
 <<*>>=
---S 13
+--S 13 of 108
 cc:=aa-bb
 --R
 --R             3
@@ -182,7 +182,7 @@ cc:=aa-bb
 If we differentiate each expression we see that this is the integration
 constant.
 <<*>>=
---S 14     14:62 Schaums and Axiom differ by a constant
+--S 14 of 108     14:62 Schaums and Axiom differ by a constant
 dd:=D(cc,x)
 --R
 --R   (4)  0
@@ -198,7 +198,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 108
 aa:=integrate(1/(x*(a*x+b)),x)
 --R
 --R        - log(a x + b) + log(x)
@@ -207,7 +207,7 @@ aa:=integrate(1/(x*(a*x+b)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 16
+--S 16 of 108
 bb:=1/b*log(x/(a*x+b))
 --R
 --R               x
@@ -218,7 +218,7 @@ bb:=1/b*log(x/(a*x+b))
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 108
 cc:=aa-bb
 --R
 --R                                         x
@@ -233,7 +233,7 @@ but we know that $$\log(a)-\log(b)=\log(\frac{a}{b})$$
 
 We can express this fact as a rule:
 <<*>>=
---S 18
+--S 18 of 108
 logdiv:=rule(log(a)-log(b) == log(a/b))
 --R
 --R                                      a
@@ -244,7 +244,7 @@ logdiv:=rule(log(a)-log(b) == log(a/b))
 @
 and use this rule to rewrite the logs into divisions:
 <<*>>=
---S 19     14:63 Schaums and Axiom agree
+--S 19 of 108     14:63 Schaums and Axiom agree
 dd:=logdiv cc
 --R
 --R   (5)  0
@@ -261,7 +261,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 108
 aa:=integrate(1/(x^2*(a*x+b)),x)
 --R
 --R        a x log(a x + b) - a x log(x) - b
@@ -274,7 +274,7 @@ aa:=integrate(1/(x^2*(a*x+b)),x)
 
 The original form given in the book expands to:
 <<*>>=
---S 21
+--S 21 of 108
 bb:=-1/(b*x)+a/b^2*log((a*x+b)/x)
 --R
 --R                a x + b
@@ -286,7 +286,7 @@ bb:=-1/(b*x)+a/b^2*log((a*x+b)/x)
 --R                                                     Type: Expression Integer
 --E 
 
---S 22
+--S 22 of 108
 cc:=aa-bb
 --R
 --R                                          a x + b
@@ -301,7 +301,7 @@ cc:=aa-bb
 
 We can define the following rule to expand log forms:
 <<*>>=
---S 23
+--S 23 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -312,7 +312,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 @
 and apply it to the difference
 <<*>>=
---S 24     14:64 Schaums and Axiom agree
+--S 24 of 108     14:64 Schaums and Axiom agree
 divlog cc
 --R
 --R   (5)  0
@@ -327,7 +327,7 @@ $$\int{\frac{1}{x^3~(ax+b)}}=
 $$
 <<*>>=
 )clear all
---S 25
+--S 25 of 108
 aa:=integrate(1/(x^3*(a*x+b)),x)
 --R
 --R            2 2                 2 2                   2
@@ -338,7 +338,7 @@ aa:=integrate(1/(x^3*(a*x+b)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 26
+--S 26 of 108
 bb:=(2*a*x-b)/(2*b^2*x^2)+a^2/b^3*log(x/(a*x+b))
 --R
 --R          2 2       x                 2
@@ -350,7 +350,7 @@ bb:=(2*a*x-b)/(2*b^2*x^2)+a^2/b^3*log(x/(a*x+b))
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 108
 cc:=aa-bb
 --R
 --R           2                2          2       x
@@ -362,7 +362,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 28
+--S 28 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -371,7 +371,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 29     14:65 Schaums and Axiom agree
+--S 29 of 108     14:65 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -387,7 +387,7 @@ $$
 <<*>>=
 )clear all
 
---S 30
+--S 30 of 108
 aa:=integrate(1/(a*x+b)^2,x)
 --R
 --R              1
@@ -397,7 +397,7 @@ aa:=integrate(1/(a*x+b)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 31
+--S 31 of 108
 bb:=-1/(a*(a*x+b))
 --R
 --R              1
@@ -407,7 +407,7 @@ bb:=-1/(a*(a*x+b))
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 32     14:66 Schaums and Axiom agree
+--S 32 of 108     14:66 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -424,7 +424,7 @@ $$
 <<*>>=
 )clear all
 
---S 33
+--S 33 of 108
 aa:=integrate(x/(a*x+b)^2,x)
 --R
 --R        (a x + b)log(a x + b) + b
@@ -434,7 +434,7 @@ aa:=integrate(x/(a*x+b)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 34
+--S 34 of 108
 bb:=b/(a^2*(a*x+b))+1/a^2*log(a*x+b)
 --R
 --R        (a x + b)log(a x + b) + b
@@ -444,7 +444,7 @@ bb:=b/(a^2*(a*x+b))+1/a^2*log(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 35     14:67 Schaums and Axiom agree
+--S 35 of 108     14:67 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -462,7 +462,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 108
 aa:=integrate(x^2/(a*x+b)^2,x)
 --R
 --R                      2                 2 2            2
@@ -475,7 +475,7 @@ aa:=integrate(x^2/(a*x+b)^2,x)
 @
 and the book expression expands into
 <<*>>=
---S 37
+--S 37 of 108
 bb:=(a*x+b)/a^3-b^2/(a^3*(a*x+b))-((2*b)/a^3)*log(a*x+b)
 --R
 --R                      2                 2 2
@@ -489,7 +489,7 @@ bb:=(a*x+b)/a^3-b^2/(a^3*(a*x+b))-((2*b)/a^3)*log(a*x+b)
 
 These two expressions differ by the constant
 <<*>>=
---S 38
+--S 38 of 108
 cc:=aa-bb
 --R
 --R           b
@@ -502,7 +502,7 @@ cc:=aa-bb
 
 That this expression is constant can be shown by differentiation:
 <<*>>=
---S 39     14:68 Schaums and Axiom differ by a constant
+--S 39 of 108     14:68 Schaums and Axiom differ by a constant
 D(cc,x)
 --R
 --R   (4)  0
@@ -519,7 +519,7 @@ $$
 <<*>>=
 )clear all
 
---S 40
+--S 40 of 108
 aa:=integrate(x^3/(a*x+b)^2,x)
 --R
 --R             2      3                 3 3     2   2       2      3
@@ -530,7 +530,7 @@ aa:=integrate(x^3/(a*x+b)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 41
+--S 41 of 108
 bb:=(a*x+b)^2/(2*a^4)-(3*b*(a*x+b))/a^4+b^3/(a^4*(a*x+b))+(3*b^2/a^4)*log(a*x+b)
 --R
 --R             2      3                 3 3     2   2       2      3
@@ -541,7 +541,7 @@ bb:=(a*x+b)^2/(2*a^4)-(3*b*(a*x+b))/a^4+b^3/(a^4*(a*x+b))+(3*b^2/a^4)*log(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 108
 cc:=aa-bb
 --R
 --R          2
@@ -552,7 +552,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 43     14:69 Schaums and Axiom differ by a constant
+--S 43 of 108     14:69 Schaums and Axiom differ by a constant
 dd:=D(cc,x)
 --R
 --R   (4)  0
@@ -567,7 +567,7 @@ $$
 <<*>>=
 )clear all
 
---S 44
+--S 44 of 108
 aa:=integrate(1/(x*(a*x+b)^2),x)
 --R
 --R        (- a x - b)log(a x + b) + (a x + b)log(x) + b
@@ -579,7 +579,7 @@ aa:=integrate(1/(x*(a*x+b)^2),x)
 @
 and the book says:
 <<*>>=
---S 45
+--S 45 of 108
 bb:=(1/(b*(a*x+b))+(1/b^2)*log(x/(a*x+b)))
 --R
 --R                        x
@@ -591,7 +591,7 @@ bb:=(1/(b*(a*x+b))+(1/b^2)*log(x/(a*x+b)))
 --R                                                     Type: Expression Integer
 --E
 
---S 46
+--S 46 of 108
 cc:=aa-bb
 --R
 --R                                         x
@@ -605,7 +605,7 @@ cc:=aa-bb
 @
 So we look at the divlog rule again:
 <<*>>=
---S 47
+--S 47 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -617,7 +617,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 
 we apply it:
 <<*>>=
---S 48     14:70 Schaums and Axiom agree
+--S 48 of 108     14:70 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -634,7 +634,7 @@ $$
 <<*>>=
 )clear all
 
---S 49
+--S 49 of 108
 aa:=integrate(1/(x^2*(a*x+b)^2),x)
 --R
 --R           2 2                              2 2                             2
@@ -647,7 +647,7 @@ aa:=integrate(1/(x^2*(a*x+b)^2),x)
 @
 and the book says:
 <<*>>=
---S 50
+--S 50 of 108
 bb:=(-a/(b^2*(a*x+b)))-(1/(b^2*x))+((2*a)/b^3)*log((a*x+b)/x)
 --R
 --R           2 2              a x + b              2
@@ -659,7 +659,7 @@ bb:=(-a/(b^2*(a*x+b)))-(1/(b^2*x))+((2*a)/b^3)*log((a*x+b)/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 108
 cc:=aa-bb
 --R
 --R                                             a x + b
@@ -673,7 +673,7 @@ cc:=aa-bb
 @
 which calls for our divlog rule:
 <<*>>=
---S 52
+--S 52 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -684,7 +684,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 @
 which we use to transform the result:
 <<*>>=
---S 53     14:71 Schaums and Axiom agree
+--S 53 of 108     14:71 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -700,7 +700,7 @@ $$
 <<*>>=
 )clear all
 
---S 54
+--S 54 of 108
 aa:=integrate(1/(x^3*(a*x+b)^2),x)
 --R
 --R   (1)
@@ -715,7 +715,7 @@ aa:=integrate(1/(x^3*(a*x+b)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 55
+--S 55 of 108
 bb:=-(a*x+b)^2/(2*b^4*x^2)+(3*a*(a*x+b))/(b^4*x)-(a^3*x)/(b^4*(a*x+b))-((3*a^2)/b^4)*log((a*x+b)/x)
 --R
 --R             3 3     2   2     a x + b      3 3     2   2       2     3
@@ -727,7 +727,7 @@ bb:=-(a*x+b)^2/(2*b^4*x^2)+(3*a*(a*x+b))/(b^4*x)-(a^3*x)/(b^4*(a*x+b))-((3*a^2)/
 --R                                                     Type: Expression Integer
 --E
 
---S 56
+--S 56 of 108
 cc:=aa-bb
 --R
 --R            2                 2           2    a x + b      2
@@ -739,7 +739,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -748,7 +748,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 58
+--S 58 of 108
 dd:=divlog cc
 --R
 --R            2
@@ -759,7 +759,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 59     14:72 Schaums and Axiom differ by a constant
+--S 59 of 108     14:72 Schaums and Axiom differ by a constant
 ee:=D(dd,x)
 --R
 --R   (6)  0
@@ -775,7 +775,7 @@ $$
 <<*>>=
 )clear all
 
---S 60
+--S 60 of 108
 aa:=integrate(1/(a*x+b)^3,x)
 --R
 --R                     1
@@ -785,7 +785,7 @@ aa:=integrate(1/(a*x+b)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 61
+--S 61 of 108
 bb:=-1/(2*(a*x+b)^2)
 --R
 --R                    1
@@ -795,7 +795,7 @@ bb:=-1/(2*(a*x+b)^2)
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 62
+--S 62 of 108
 cc:=aa-bb
 --R
 --R                 a - 1
@@ -805,7 +805,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 63
+--S 63 of 108
 dd:=aa/bb
 --R
 --R        1
@@ -814,7 +814,7 @@ dd:=aa/bb
 --R                                                     Type: Expression Integer
 --E
 
---S 64     14:73 Schaums and Axiom differ by a constant
+--S 64 of 108     14:73 Schaums and Axiom differ by a constant
 ee:=D(dd,x)
 --R
 --R   (5)  0
@@ -830,7 +830,7 @@ $$
 <<*>>=
 )clear all
 
---S 65
+--S 65 of 108
 aa:=integrate(x/(a*x+b)^3,x)
 --R
 --R              - 2a x - b
@@ -840,7 +840,7 @@ aa:=integrate(x/(a*x+b)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 66
+--S 66 of 108
 bb:=-1/(a^2*(a*x+b))+b/(2*a^2*(a*x+b)^2)
 --R
 --R              - 2a x - b
@@ -850,7 +850,7 @@ bb:=-1/(a^2*(a*x+b))+b/(2*a^2*(a*x+b)^2)
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 67     14:74 Schaums and Axiom agree
+--S 67 of 108     14:74 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -867,7 +867,7 @@ $$
 <<*>>=
 )clear all
 
---S 68
+--S 68 of 108
 aa:=integrate(x^2/(a*x+b)^3,x)
 --R
 --R           2 2              2                           2
@@ -878,7 +878,7 @@ aa:=integrate(x^2/(a*x+b)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 69
+--S 69 of 108
 bb:=(2*b)/(a^3*(a*x+b))-(b^2)/(2*a^3*(a*x+b)^2)+1/a^3*log(a*x+b)
 --R
 --R           2 2              2                           2
@@ -889,7 +889,7 @@ bb:=(2*b)/(a^3*(a*x+b))-(b^2)/(2*a^3*(a*x+b)^2)+1/a^3*log(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 70     14:75 Schaums and Axiom agree
+--S 70 of 108     14:75 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -905,7 +905,7 @@ $$\int{\frac{x^3}{(ax+b)^3}}=
 $$
 <<*>>=
 )clear all
---S 71
+--S 71 of 108
 aa:=integrate(x^3/(a*x+b)^3,x)
 --R
 --R   (1)
@@ -917,7 +917,7 @@ aa:=integrate(x^3/(a*x+b)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 72
+--S 72 of 108
 bb:=(x/a^3)-(3*b^2)/(a^4*(a*x+b))+b^3/(2*a^4*(a*x+b)^2)-(3*b)/a^4*log(a*x+b)
 --R
 --R   (2)
@@ -929,7 +929,7 @@ bb:=(x/a^3)-(3*b^2)/(a^4*(a*x+b))+b^3/(2*a^4*(a*x+b)^2)-(3*b)/a^4*log(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 73     14:76 Schaums and Axiom agree
+--S 73 of 108     14:76 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -947,7 +947,7 @@ $$
 <<*>>=
 )clear all
 
---S 74
+--S 74 of 108
 aa:=integrate(1/(x*(a*x+b)^3),x)
 --R
 --R   (1)
@@ -962,7 +962,7 @@ aa:=integrate(1/(x*(a*x+b)^3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 75
+--S 75 of 108
 bb:=(a^2*x^2)/(2*b^3*(a*x+b)^2)-(2*a*x)/(b^3*(a*x+b))-(1/b^3)*log((a*x+b)/x)
 --R
 --R             2 2              2     a x + b      2 2
@@ -974,7 +974,7 @@ bb:=(a^2*x^2)/(2*b^3*(a*x+b)^2)-(2*a*x)/(b^3*(a*x+b))-(1/b^3)*log((a*x+b)/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 76
+--S 76 of 108
 cc:=aa-bb
 --R
 --R                                         a x + b
@@ -986,7 +986,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 77
+--S 77 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -995,7 +995,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 78
+--S 78 of 108
 dd:=divlog cc
 --R
 --R         3
@@ -1005,7 +1005,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 79     14:77 Schaums and Axiom differ by a constant
+--S 79 of 108     14:77 Schaums and Axiom differ by a constant
 ee:=D(dd,x)
 --R
 --R   (6)  0
@@ -1022,7 +1022,7 @@ $$
 <<*>>=
 )clear all
 
---S 80
+--S 80 of 108
 aa:=integrate(1/(x^2*(a*x+b)^3),x)
 --R
 --R   (1)
@@ -1037,7 +1037,7 @@ aa:=integrate(1/(x^2*(a*x+b)^3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 81
+--S 81 of 108
 bb:=-a/(2*b^2*(a*x+b)^2)-(2*a)/(b^3*(a*x+b))-1/(b^3*x)+((3*a)/b^4)*log((a*x+b)/x)
 --R
 --R           3 3      2   2       2      a x + b      2   2       2      3
@@ -1049,7 +1049,7 @@ bb:=-a/(2*b^2*(a*x+b)^2)-(2*a)/(b^3*(a*x+b))-1/(b^3*x)+((3*a)/b^4)*log((a*x+b)/x
 --R                                                     Type: Expression Integer
 --E
 
---S 82
+--S 82 of 108
 cc:=aa-bb
 --R
 --R                                             a x + b
@@ -1061,7 +1061,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 83
+--S 83 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -1070,7 +1070,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 84     14:78 Schaums and Axiom agree
+--S 84 of 108     14:78 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -1090,7 +1090,7 @@ $$\int{\frac{1}{x^3(ax+b)^3}}=
 <<*>>=
 )clear all
 
---S 85
+--S 85 of 108
 aa:=integrate(1/(x^3*(a*x+b)^3),x)
 --R
 --R   (1)
@@ -1105,7 +1105,7 @@ aa:=integrate(1/(x^3*(a*x+b)^3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 86
+--S 86 of 108
 bb:=-1/(2*b*x^2*(a*x+b)^2)_
     +(2*a)/(b^2*x*(a*x+b)^2)_
     +(9*a^2)/(b^3*(a*x+b)^2)_
@@ -1125,7 +1125,7 @@ bb:=-1/(2*b*x^2*(a*x+b)^2)_
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 108
 cc:=aa-bb
 --R
 --R            2                 2           2    a x + b
@@ -1137,7 +1137,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 88
+--S 88 of 108
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -1146,7 +1146,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 89     14:79 Schaums and Axiom agree
+--S 89 of 108     14:79 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -1161,7 +1161,7 @@ $$\int{(ax+b)^n}=
 $$
 <<*>>=
 )clear all
---S 90
+--S 90 of 108
 aa:=integrate((a*x+b)^n,x)
 --R
 --R                   n log(a x + b)
@@ -1171,7 +1171,7 @@ aa:=integrate((a*x+b)^n,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 91
+--S 91 of 108
 bb:=(a*x+b)^(n+1)/((n+1)*a)
 --R
 --R                 n + 1
@@ -1181,7 +1181,7 @@ bb:=(a*x+b)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 92
+--S 92 of 108
 cc:=aa-bb
 --R
 --R                   n log(a x + b)            n + 1
@@ -1193,7 +1193,7 @@ cc:=aa-bb
 @
 This messy formula can be simplified using the explog rule:
 <<*>>=
---S 93
+--S 93 of 108
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1201,7 +1201,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 94
+--S 94 of 108
 dd:=explog cc
 --R
 --R                   n + 1                     n
@@ -1211,7 +1211,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 95     14:80 Schaums and Axiom agree
+--S 95 of 108     14:80 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1227,7 +1227,7 @@ $$\int{x(ax+b)^n}=
 $$
 <<*>>=
 )clear all
---S 96
+--S 96 of 108
 aa:=integrate(x*(a*x+b)^n,x)
 --R
 --R           2     2  2              2   n log(a x + b)
@@ -1238,7 +1238,7 @@ aa:=integrate(x*(a*x+b)^n,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 97
+--S 97 of 108
 bb:=((a*x+b)^(n+2))/((n+2)*a^2)-(b*(a*x+b)^(n+1))/((n+1)*a^2)
 --R
 --R                        n + 2                        n + 1
@@ -1249,7 +1249,7 @@ bb:=((a*x+b)^(n+2))/((n+2)*a^2)-(b*(a*x+b)^(n+1))/((n+1)*a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 98
+--S 98 of 108
 cc:=aa-bb
 --R
 --R   (3)
@@ -1264,7 +1264,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 99
+--S 99 of 108
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1272,7 +1272,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 100
+--S 100 of 108
 dd:=explog cc
 --R
 --R   (5)
@@ -1287,7 +1287,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 101
+--S 101 of 108
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1305,7 +1305,7 @@ $$
 
 <<*>>=
 )clear all
---S 102
+--S 102 of 108
 aa:=integrate(x^2*(a*x+b)^n,x)
 --R
 --R   (1)
@@ -1317,7 +1317,7 @@ aa:=integrate(x^2*(a*x+b)^n,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 103
+--S 103 of 108
 bb:=(a*x+b)^(n+3)/((n+3)*a^3)-(2*b*(a*x+b)^(n+2))/((n+2)*a^3)+(b^2*(a*x+b)^(n+1))/((n+1)*a^3)
 --R
 --R   (2)
@@ -1332,7 +1332,7 @@ bb:=(a*x+b)^(n+3)/((n+3)*a^3)-(2*b*(a*x+b)^(n+2))/((n+2)*a^3)+(b^2*(a*x+b)^(n+1)
 --R                                                     Type: Expression Integer
 --E
 
---S 104
+--S 104 of 108
 cc:=aa-bb
 --R
 --R   (3)
@@ -1353,7 +1353,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 105
+--S 105 of 108
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1361,7 +1361,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 106
+--S 106 of 108
 dd:=explog cc
 --R
 --R   (5)
@@ -1379,7 +1379,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 107    14:82 Schaums and Axiom agree
+--S 107 of 108    14:82 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1407,7 +1407,7 @@ $$\int{x^m(ax+b)^n}
 $$
 
 <<*>>=
---S 108    14:83 Axiom cannot do this integration
+--S 108 of 108    14:83 Axiom cannot do this integration
 aa:=integrate(x^m*(a*x+b)^n,x)
 --R
 --R           x
diff --git a/src/input/schaum10.input.pamphlet b/src/input/schaum10.input.pamphlet
index 6149cc0..4daac8c 100644
--- a/src/input/schaum10.input.pamphlet
+++ b/src/input/schaum10.input.pamphlet
@@ -15,7 +15,7 @@ $$\int{\frac{1}{\sqrt{x^2-a^2}}}=\ln\left(x+\sqrt{x^2-a^2}\right)$$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 150
 aa:=integrate(1/(sqrt(x^2-a^2)),x)
 --R 
 --R
@@ -25,7 +25,7 @@ aa:=integrate(1/(sqrt(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 150
 bb:=log(x+sqrt(x^2-a^2))
 --R
 --R             +-------+
@@ -34,7 +34,7 @@ bb:=log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 150
 cc:=aa-bb
 --R
 --R               +-------+             +-------+
@@ -43,14 +43,14 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 150
 logmul1:=rule(c*log(a)+c*log(b) == c*log(a*b))
 --R
 --I   (4)  c log(b) + c log(a) + %I == c log(a b) + %I
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 5      14:210 Schaums and Axiom differ by a constant
+--S 5 of 150      14:210 Schaums and Axiom differ by a constant
 dd:=logmul1 cc
 --R
 --R                 2
@@ -64,7 +64,7 @@ $$\int{\frac{x}{\sqrt{x^2-a^2}}}=\sqrt{x^2-a^2}$$
 <<*>>=
 )clear all
 
---S 6
+--S 6 of 150
 aa:=integrate(x/(sqrt(x^2-a^2)),x)
 --R 
 --R
@@ -78,7 +78,7 @@ aa:=integrate(x/(sqrt(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 7
+--S 7 of 150
 bb:=sqrt(x^2-a^2)
 --R
 --R         +-------+
@@ -87,7 +87,7 @@ bb:=sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 8      14:xxx Schaums and Axiom agree
+--S 8 of 150      14:xxx Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -103,7 +103,7 @@ $$
 <<*>>=
 )clear all
 
---S 9
+--S 9 of 150
 aa:=integrate(x^2/sqrt(x^2-a^2),x)
 --R 
 --R
@@ -122,7 +122,7 @@ aa:=integrate(x^2/sqrt(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 10
+--S 10 of 150
 bb:=(x*sqrt(x^2-a^2))/2+a^2/2*log(x+sqrt(x^2-a^2))
 --R
 --R               +-------+          +-------+
@@ -133,7 +133,7 @@ bb:=(x*sqrt(x^2-a^2))/2+a^2/2*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 11     
+--S 11 of 150
 cc:=aa-bb
 --R
 --R                 +-------+               +-------+
@@ -144,7 +144,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:211 Schaums and Axiom differ by a constant
+--S 12 of 150     14:211 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R           2       2
@@ -164,7 +164,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 150
 aa:=integrate(x^3/sqrt(x^2-a^2),x)
 --R 
 --R
@@ -178,7 +178,7 @@ aa:=integrate(x^3/sqrt(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 150
 bb:=(x^2-a^2)^(3/2)/3+a^2*sqrt(x^2-a^2)
 --R
 --R                   +-------+
@@ -189,7 +189,7 @@ bb:=(x^2-a^2)^(3/2)/3+a^2*sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 15     14:212 Schaums and Axiom agree
+--S 15 of 150     14:212 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -204,7 +204,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 150
 aa:=integrate(1/(x*sqrt(x^2-a^2)),x)
 --R 
 --R
@@ -218,7 +218,7 @@ aa:=integrate(1/(x*sqrt(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 17
+--S 17 of 150
 bb:=1/a*asec(x/a)
 --R
 --R             x
@@ -229,7 +229,7 @@ bb:=1/a*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 150
 cc:=aa-bb
 --R
 --R               +-------+
@@ -242,7 +242,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -258,7 +258,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 20
+--S 20 of 150
 dd:=asecrule cc
 --R
 --R                    +-------+
@@ -274,7 +274,7 @@ dd:=asecrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 21
+--S 21 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -285,7 +285,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 22
+--S 22 of 150
 ee:=atanrule dd
 --R
 --R                    +-------+
@@ -303,7 +303,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 23
+--S 23 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -322,7 +322,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 24
+--S 24 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -338,7 +338,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 25     14:213 Schaums and Axiom differ by a constant
+--S 25 of 150     14:213 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R           %pi
@@ -356,7 +356,7 @@ $$
 <<*>>=
 )clear all
 
---S 26
+--S 26 of 150
 aa:=integrate(1/(x^2*sqrt(x^2-a^2)),x)
 --R 
 --R
@@ -368,7 +368,7 @@ aa:=integrate(1/(x^2*sqrt(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 27
+--S 27 of 150
 bb:=sqrt(x^2-a^2)/(a^2*x)
 --R
 --R         +-------+
@@ -380,7 +380,7 @@ bb:=sqrt(x^2-a^2)/(a^2*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 28     14:214 Schaums and Axiom differ by a constant
+--S 28 of 150     14:214 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R         1
@@ -399,7 +399,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 150
 aa:=integrate(1/(x^3*sqrt(x^2-a^2)),x)
 --R 
 --R
@@ -420,7 +420,7 @@ aa:=integrate(1/(x^3*sqrt(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 150
 bb:=sqrt(x^2-a^2)/(2*a^2*x^2)+1/(2*a^3)*asec(x/a)
 --R
 --R          +-------+
@@ -433,7 +433,7 @@ bb:=sqrt(x^2-a^2)/(2*a^2*x^2)+1/(2*a^3)*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 150
 cc:=aa-bb
 --R 
 --R
@@ -448,7 +448,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -459,7 +459,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 33
+--S 33 of 150
 dd:=atanrule cc
 --R
 --R                    +-------+
@@ -475,7 +475,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 34
+--S 34 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -491,7 +491,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 35
+--S 35 of 150
 ee:=asecrule dd
 --R
 --R                    +-------+
@@ -510,7 +510,7 @@ ee:=asecrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 36
+--S 36 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -530,7 +530,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 37
+--S 37 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -547,7 +547,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 38     14:215 Schaums and Axiom differ by a constant
+--S 38 of 150     14:215 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R           %pi
@@ -566,7 +566,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 150
 aa:=integrate(sqrt(x^2-a^2),x)
 --R 
 --R
@@ -585,7 +585,7 @@ aa:=integrate(sqrt(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 40
+--S 40 of 150
 bb:=(x*sqrt(x^2-a^2))/2-a^2/2*log(x+sqrt(x^2-a^2))
 --R
 --R                 +-------+          +-------+
@@ -596,7 +596,7 @@ bb:=(x*sqrt(x^2-a^2))/2-a^2/2*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 150
 cc:=aa-bb
 --R
 --R               +-------+               +-------+
@@ -607,7 +607,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 42     14:216 Schaums and Axiom differ by a constant 
+--S 42 of 150     14:216 Schaums and Axiom differ by a constant 
 dd:=complexNormalize cc
 --R
 --R         2       2
@@ -625,7 +625,7 @@ $$
 <<*>>=
 )clear all
 
---S 43
+--S 43 of 150
 aa:=integrate(x*sqrt(x^2-a^2),x)
 --R 
 --R
@@ -639,7 +639,7 @@ aa:=integrate(x*sqrt(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 44
+--S 44 of 150
 bb:=(x^2-a^2)^(3/2)/3
 --R
 --R                  +-------+
@@ -650,7 +650,7 @@ bb:=(x^2-a^2)^(3/2)/3
 --R                                                     Type: Expression Integer
 --E
 
---S 45     14:217 Schaums and Axiom agree
+--S 45 of 150     14:217 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -667,7 +667,7 @@ $$
 <<*>>=
 )clear all
 
---S 46
+--S 46 of 150
 aa:=integrate(x^2*sqrt(x^2-a^2),x)
 --R 
 --R
@@ -686,7 +686,7 @@ aa:=integrate(x^2*sqrt(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 47
+--S 47 of 150
 bb:=(x*(x^2-a^2)^(3/2))/4+(a^2*x*sqrt(x^2-a^2))/8-a^4/8*log(x+sqrt(x^2-a^2))
 --R
 --R                 +-------+                    +-------+
@@ -697,7 +697,7 @@ bb:=(x*(x^2-a^2)^(3/2))/4+(a^2*x*sqrt(x^2-a^2))/8-a^4/8*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 48     
+--S 48 of 150
 cc:=aa-bb
 --R
 --R               +-------+               +-------+
@@ -708,7 +708,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 49     14:218 Schaums and Axiom differ by a constant
+--S 49 of 150     14:218 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R         4       2
@@ -727,7 +727,7 @@ $$
 <<*>>=
 )clear all
 
---S 50
+--S 50 of 150
 aa:=integrate(x^3*sqrt(x^2-a^2),x)
 --R 
 --R
@@ -745,7 +745,7 @@ aa:=integrate(x^3*sqrt(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 51
+--S 51 of 150
 bb:=(x^2-a^2)^(5/2)/5+(a^2*(x^2-a^2)^(3/2))/3
 --R
 --R                           +-------+
@@ -756,7 +756,7 @@ bb:=(x^2-a^2)^(5/2)/5+(a^2*(x^2-a^2)^(3/2))/3
 --R                                                     Type: Expression Integer
 --E
 
---S 52     14:219 Schaums and Axiom agree
+--S 52 of 150     14:219 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -772,7 +772,7 @@ $$
 <<*>>=
 )clear all
 
---S 53
+--S 53 of 150
 aa:=integrate(sqrt(x^2-a^2)/x,x)
 --R 
 --R
@@ -788,7 +788,7 @@ aa:=integrate(sqrt(x^2-a^2)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 54
+--S 54 of 150
 bb:=sqrt(x^2-a^2)-a*asec(x/a)
 --R
 --R         +-------+
@@ -798,7 +798,7 @@ bb:=sqrt(x^2-a^2)-a*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 55
+--S 55 of 150
 cc:=aa-bb
 --R
 --R                   +-------+
@@ -809,7 +809,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 56
+--S 56 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -820,7 +820,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 57
+--S 57 of 150
 dd:=atanrule cc
 --R
 --R                    +-------+
@@ -833,7 +833,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 58
+--S 58 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -849,7 +849,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 59
+--S 59 of 150
 ee:=asecrule dd
 --R
 --R   (7)
@@ -868,7 +868,7 @@ ee:=asecrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 60
+--S 60 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -887,7 +887,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 61
+--S 61 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -903,7 +903,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 62     14:220 Schaums and Axiom differ by a constant
+--S 62 of 150     14:220 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         a %pi
@@ -921,7 +921,7 @@ $$
 <<*>>=
 )clear all
 
---S 63
+--S 63 of 150
 aa:=integrate(sqrt(x^2-a^2)/x^2,x)
 --R 
 --R
@@ -935,7 +935,7 @@ aa:=integrate(sqrt(x^2-a^2)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 64
+--S 64 of 150
 bb:=-sqrt(x^2-a^2)/x+log(x+sqrt(x^2-a^2))
 --R
 --R               +-------+         +-------+
@@ -946,7 +946,7 @@ bb:=-sqrt(x^2-a^2)/x+log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 65
+--S 65 of 150
 cc:=aa-bb
 --R
 --R               +-------+             +-------+
@@ -955,7 +955,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 66     14:221 Schaums and Axiom differ by a constant
+--S 66 of 150     14:221 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R                 2
@@ -974,7 +974,7 @@ $$
 <<*>>=
 )clear all
 
---S 67
+--S 67 of 150
 aa:=integrate(sqrt(x^2-a^2)/x^3,x)
 --R 
 --R
@@ -995,7 +995,7 @@ aa:=integrate(sqrt(x^2-a^2)/x^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 68
+--S 68 of 150
 bb:=-sqrt(x^2-a^2)/(2*x^2)+1/(2*a)*asec(x/a)
 --R
 --R            +-------+
@@ -1008,7 +1008,7 @@ bb:=-sqrt(x^2-a^2)/(2*x^2)+1/(2*a)*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 150
 cc:=aa-bb
 --R
 --R               +-------+
@@ -1021,7 +1021,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -1037,7 +1037,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 71
+--S 71 of 150
 dd:=asecrule cc
 --R
 --R                    +-------+
@@ -1053,7 +1053,7 @@ dd:=asecrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 72
+--S 72 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1064,7 +1064,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 73
+--S 73 of 150
 ee:=atanrule dd
 --R
 --R                    +-------+
@@ -1082,7 +1082,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 74
+--S 74 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -1101,7 +1101,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 75
+--S 75 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -1117,7 +1117,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 76     14:222 Schaums and Axiom differ by a constant
+--S 76 of 150     14:222 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R           %pi
@@ -1134,7 +1134,7 @@ $$
 <<*>>=
 )clear all
 
---S 77
+--S 77 of 150
 aa:=integrate(1/(x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1146,7 +1146,7 @@ aa:=integrate(1/(x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 78
+--S 78 of 150
 bb:=-x/(a^2*sqrt(x^2-a^2))
 --R
 --R                x
@@ -1157,7 +1157,7 @@ bb:=-x/(a^2*sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 79     14:223 Schaums and Axiom differ by a constant
+--S 79 of 150     14:223 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R           1
@@ -1176,7 +1176,7 @@ $$
 <<*>>=
 )clear all
 
---S 80
+--S 80 of 150
 aa:=integrate(x/(x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1190,7 +1190,7 @@ aa:=integrate(x/(x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 81
+--S 81 of 150
 bb:=-1/sqrt(x^2-a^2)
 --R
 --R               1
@@ -1201,7 +1201,7 @@ bb:=-1/sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 82     14:224 Schaums and Axiom agree
+--S 82 of 150     14:224 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1217,7 +1217,7 @@ $$
 <<*>>=
 )clear all
 
---S 83
+--S 83 of 150
 aa:=integrate(x^2/(x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1231,7 +1231,7 @@ aa:=integrate(x^2/(x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 84
+--S 84 of 150
 bb:=-x/sqrt(x^2-a^2)+log(x+sqrt(x^2-a^2))
 --R
 --R         +-------+     +-------+
@@ -1244,7 +1244,7 @@ bb:=-x/sqrt(x^2-a^2)+log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 85     
+--S 85      of 150
 cc:=aa-bb
 --R
 --R               +-------+             +-------+
@@ -1253,7 +1253,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 86     14:225 Schaums and Axiom differ by a constant
+--S 86 of 150     14:225 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R                 2
@@ -1270,7 +1270,7 @@ $$
 <<*>>=
 )clear all
 
---S 87
+--S 87 of 150
 aa:=integrate(x^3/(x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1284,7 +1284,7 @@ aa:=integrate(x^3/(x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 88
+--S 88 of 150
 bb:=sqrt(x^2-a^2)-a^2/sqrt(x^2-a^2)
 --R
 --R          2     2
@@ -1296,7 +1296,7 @@ bb:=sqrt(x^2-a^2)-a^2/sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 89     14:226 Schaums and Axiom agree
+--S 89 of 150     14:226 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1313,7 +1313,7 @@ $$
 <<*>>=
 )clear all
 
---S 90
+--S 90 of 150
 aa:=integrate(1/(x*(x^2-a^2)^(3/2)),x)
 --R 
 --R
@@ -1329,7 +1329,7 @@ aa:=integrate(1/(x*(x^2-a^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 91
+--S 91 of 150
 bb:=-1/(a^2*sqrt(x^2-a^2))-1/a^3*asec(x/a)
 --R
 --R                  +-------+
@@ -1343,7 +1343,7 @@ bb:=-1/(a^2*sqrt(x^2-a^2))-1/a^3*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 92
+--S 92 of 150
 cc:=aa-bb
 --R
 --R                 +-------+
@@ -1357,7 +1357,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 93
+--S 93 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1368,7 +1368,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 94
+--S 94 of 150
 dd:=atanrule cc
 --R
 --R                  +-------+
@@ -1384,7 +1384,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 95
+--S 95 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -1400,7 +1400,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 96
+--S 96 of 150
 ee:=asecrule dd
 --R
 --R                  +-------+
@@ -1419,7 +1419,7 @@ ee:=asecrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 97
+--S 97 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -1439,7 +1439,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 98
+--S 98 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -1456,7 +1456,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 99     14:227 Schaums and Axiom differ by a constant
+--S 99 of 150     14:227 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         %pi
@@ -1476,7 +1476,7 @@ $$
 <<*>>=
 )clear all
 
---S 100
+--S 100 of 150
 aa:=integrate(1/(x^2*(x^2-a^2)^(3/2)),x)
 --R 
 --R
@@ -1488,7 +1488,7 @@ aa:=integrate(1/(x^2*(x^2-a^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 101
+--S 101 of 150
 bb:=-sqrt(x^2-a^2)/(a^4*x)-x/(a^4*sqrt(x^2-a^2))
 --R
 --R              2    2
@@ -1500,7 +1500,7 @@ bb:=-sqrt(x^2-a^2)/(a^4*x)-x/(a^4*sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 102    14:228 Schaums and Axiom differ by a constant
+--S 102 of 150    14:228 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R           2
@@ -1522,7 +1522,7 @@ $$
 <<*>>=
 )clear all
 
---S 103
+--S 103 of 150
 aa:=integrate(1/(x^3*(x^2-a^2)^(3/2)),x)
 --R 
 --R
@@ -1543,7 +1543,7 @@ aa:=integrate(1/(x^3*(x^2-a^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 104
+--S 104 of 150
 bb:=1/(2*a^2*x^2*sqrt(x^2-a^2))-3/(2*a^4*sqrt(x^2-a^2))-3/(2*a^5)*asec(x/a)
 --R
 --R                     +-------+
@@ -1557,7 +1557,7 @@ bb:=1/(2*a^2*x^2*sqrt(x^2-a^2))-3/(2*a^4*sqrt(x^2-a^2))-3/(2*a^5)*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 105
+--S 105 of 150
 cc:=aa-bb
 --R
 --R                 +-------+
@@ -1571,7 +1571,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 106
+--S 106 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1582,7 +1582,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 107
+--S 107 of 150
 dd:=atanrule cc
 --R
 --R                   +-------+
@@ -1598,7 +1598,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 108
+--S 108 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -1614,7 +1614,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 109
+--S 109 of 150
 ee:=asecrule dd
 --R
 --R                  +-------+
@@ -1633,7 +1633,7 @@ ee:=asecrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 110
+--S 110 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -1653,7 +1653,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 111
+--S 111 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -1670,7 +1670,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 112    14:229 Schaums and Axiom differ by a constant
+--S 112 of 150    14:229 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         3%pi
@@ -1688,7 +1688,7 @@ $$
 <<*>>=
 )clear all
 
---S 113
+--S 113 of 150
 aa:=integrate((x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1710,7 +1710,7 @@ aa:=integrate((x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 114
+--S 114 of 150
 bb:=(x*(x^2-a^2)^(3/2))/4-(3*a^2*x*sqrt(x^2-a^2))/8+3/8*a^4*log(x+sqrt(x^2-a^2))
 --R
 --R                +-------+                     +-------+
@@ -1721,7 +1721,7 @@ bb:=(x*(x^2-a^2)^(3/2))/4-(3*a^2*x*sqrt(x^2-a^2))/8+3/8*a^4*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 115
+--S 115 of 150
 cc:=aa-bb
 --R
 --R                  +-------+                +-------+
@@ -1732,7 +1732,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 116    14:230 Schaums and Axiom differ by a constant
+--S 116 of 150    14:230 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R            4       2
@@ -1749,7 +1749,7 @@ $$\int{x(x^2-a^2)^{3/2}}=\frac{(x^2-a^2)^{5/2}}{5}$$
 <<*>>=
 )clear all
 
---S 117
+--S 117 of 150
 aa:=integrate(x*(x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1767,7 +1767,7 @@ aa:=integrate(x*(x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 118
+--S 118 of 150
 bb:=(x^2-a^2)^(5/2)/5
 --R
 --R                          +-------+
@@ -1778,7 +1778,7 @@ bb:=(x^2-a^2)^(5/2)/5
 --R                                                     Type: Expression Integer
 --E
 
---S 119    14:231 Schaums and Axiom agree
+--S 119 of 150    14:231 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1795,7 +1795,7 @@ $$
 <<*>>=
 )clear all
 
---S 120
+--S 120 of 150
 aa:=integrate(x^2*(x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1824,7 +1824,7 @@ aa:=integrate(x^2*(x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 121
+--S 121 of 150
 bb:=(x*(x^2-a^2)^(5/2))/6+(a^2*x*(x^2-a^2)^(3/2))/24-(a^4*x*sqrt(x^2-a^2))/16+a^6/16*log(x+sqrt(x^2-a^2))
 --R
 --R                +-------+                              +-------+
@@ -1835,7 +1835,7 @@ bb:=(x*(x^2-a^2)^(5/2))/6+(a^2*x*(x^2-a^2)^(3/2))/24-(a^4*x*sqrt(x^2-a^2))/16+a^
 --R                                                     Type: Expression Integer
 --E
 
---S 122
+--S 122 of 150
 cc:=aa-bb
 --R
 --R                 +-------+               +-------+
@@ -1846,7 +1846,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 123    14:232 Schaums and Axiom differ by a constant
+--S 123 of 150    14:232 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R           6       2
@@ -1864,7 +1864,7 @@ $$
 <<*>>=
 )clear all
 
---S 124
+--S 124 of 150
 aa:=integrate(x^3*(x^2-a^2)^(3/2),x)
 --R 
 --R
@@ -1894,7 +1894,7 @@ aa:=integrate(x^3*(x^2-a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 125
+--S 125 of 150
 bb:=(x^2-a^2)^(7/2)/7+(a^2*(x^2-a^2)^(5/2))/5
 --R
 --R                                   +-------+
@@ -1905,7 +1905,7 @@ bb:=(x^2-a^2)^(7/2)/7+(a^2*(x^2-a^2)^(5/2))/5
 --R                                                     Type: Expression Integer
 --E
 
---S 126    14:233 Schaums and Axiom agree
+--S 126 of 150    14:233 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1922,7 +1922,7 @@ $$
 <<*>>=
 )clear all
 
---S 127
+--S 127 of 150
 aa:=integrate((x^2-a^2)^(3/2)/x,x)
 --R 
 --R
@@ -1943,7 +1943,7 @@ aa:=integrate((x^2-a^2)^(3/2)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 128
+--S 128 of 150
 bb:=(x^2-a^2)^(3/2)/3-a^2*sqrt(x^2-a^2)+a^3*asec(x/a)
 --R
 --R                   +-------+
@@ -1955,7 +1955,7 @@ bb:=(x^2-a^2)^(3/2)/3-a^2*sqrt(x^2-a^2)+a^3*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 129
+--S 129 of 150
 cc:=aa-bb
 --R
 --R                 +-------+
@@ -1966,7 +1966,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 130
+--S 130 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -1982,7 +1982,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 131
+--S 131 of 150
 dd:=asecrule cc
 --R
 --R                      +-------+
@@ -1998,7 +1998,7 @@ dd:=asecrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 132
+--S 132 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -2009,7 +2009,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 133
+--S 133 of 150
 ee:=atanrule dd
 --R
 --R   (7)
@@ -2028,7 +2028,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 134
+--S 134 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -2047,7 +2047,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 135
+--S 135 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -2063,7 +2063,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 136    14:234 Schaums and Axiom differ by a constant
+--S 136 of 150    14:234 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R            3
@@ -2083,7 +2083,7 @@ $$
 <<*>>=
 )clear all
 
---S 137
+--S 137 of 150
 aa:=integrate((x^2-a^2)^{3/2}/x^2,x)
 --R 
 --R
@@ -2102,7 +2102,7 @@ aa:=integrate((x^2-a^2)^{3/2}/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 138
+--S 138 of 150
 bb:=-(x^2-a^2)^(3/2)/x+3*x*sqrt(x^2-a^2)/2-3/2*a^2*log(x+sqrt(x^2-a^2))
 --R
 --R                    +-------+                   +-------+
@@ -2113,7 +2113,7 @@ bb:=-(x^2-a^2)^(3/2)/x+3*x*sqrt(x^2-a^2)/2-3/2*a^2*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 139
+--S 139 of 150
 cc:=aa-bb
 --R
 --R                +-------+                +-------+
@@ -2124,7 +2124,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 140    14:235 Schaums and Axiom differ by a constant
+--S 140 of 150    14:235 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R          2       2      2
@@ -2145,7 +2145,7 @@ $$
 <<*>>=
 )clear all
 
---S 141
+--S 141 of 150
 aa:=integrate((x^2-a^2)^(3/2)/x^3,x)
 --R 
 --R
@@ -2166,7 +2166,7 @@ aa:=integrate((x^2-a^2)^(3/2)/x^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 142
+--S 142 of 150
 bb:=-(x^2-a^2)^(3/2)/(2*x^2)+(3*sqrt(x^2-a^2))/2-3/2*a*asec(x/a)
 --R
 --R                   +-------+
@@ -2179,7 +2179,7 @@ bb:=-(x^2-a^2)^(3/2)/(2*x^2)+(3*sqrt(x^2-a^2))/2-3/2*a*asec(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 143
+--S 143 of 150
 cc:=aa-bb
 --R
 --R                   +-------+
@@ -2192,7 +2192,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 144
+--S 144 of 150
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -2203,7 +2203,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 145
+--S 145 of 150
 dd:=atanrule cc
 --R
 --R                     +-------+
@@ -2218,7 +2218,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 146
+--S 146 of 150
 asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R
 --R                             +------+
@@ -2234,7 +2234,7 @@ asecrule:=rule(asec(x) == 1/2*%pi+%i*log(sqrt(1-1/x^2)+%i/x))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 147
+--S 147 of 150
 ee:=asecrule dd
 --R
 --R   (7)
@@ -2253,7 +2253,7 @@ ee:=asecrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 148
+--S 148 of 150
 ff:=expandLog ee
 --R
 --R   (8)
@@ -2272,7 +2272,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 149
+--S 149 of 150
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -2288,7 +2288,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 150    14:236 Schaums and Axiom differ by a constant
+--S 150 of 150    14:236 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         3a %pi
diff --git a/src/input/schaum11.input.pamphlet b/src/input/schaum11.input.pamphlet
index fc3117e..84bc9ab 100644
--- a/src/input/schaum11.input.pamphlet
+++ b/src/input/schaum11.input.pamphlet
@@ -15,7 +15,7 @@ $$\int{\frac{1}{\sqrt{a^2-x^2}}}=\ln\left(x+\sqrt{a^2-x^2}\right)$$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 170
 aa:=integrate(1/(sqrt(a^2-x^2)),x)
 --R 
 --R
@@ -27,7 +27,7 @@ aa:=integrate(1/(sqrt(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 170
 bb:=asin(x/a)
 --R
 --R             x
@@ -36,7 +36,7 @@ bb:=asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 170
 cc:=aa-bb
 --R
 --R                 +---------+
@@ -47,7 +47,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -58,7 +58,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 5
+--S 5 of 170
 dd:=atanrule cc
 --R
 --R                  +---------+
@@ -71,7 +71,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 6
+--S 6 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -80,7 +80,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 7
+--S 7 of 170
 ee:=asinrule dd
 --R
 --R                   +---------+
@@ -96,7 +96,7 @@ ee:=asinrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 8
+--S 8 of 170
 ff:=rootSimp ee
 --R
 --R                    +-------+                     +-------+
@@ -109,7 +109,7 @@ ff:=rootSimp ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 9      14:238 Schaums and Axiom agree
+--S 9 of 170      14:238 Schaums and Axiom agree
 gg:=complexNormalize ff
 --R
 --R   (9)  0
@@ -123,7 +123,7 @@ $$\int{\frac{x}{\sqrt{a^2-x^2}}}=\sqrt{a^2-x^2}$$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 170
 aa:=integrate(x/(sqrt(a^2-x^2)),x)
 --R 
 --R
@@ -136,7 +136,7 @@ aa:=integrate(x/(sqrt(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 170
 bb:=-sqrt(a^2-x^2)
 --R
 --R           +---------+
@@ -145,7 +145,7 @@ bb:=-sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:238 Schaums and Axiom differ by a constant
+--S 12 of 170     14:238 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R   (3)  - a
@@ -161,7 +161,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 170
 aa:=integrate(x^2/sqrt(a^2-x^2),x)
 --R 
 --R
@@ -182,7 +182,7 @@ aa:=integrate(x^2/sqrt(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 170
 bb:=-(x*sqrt(a^2-x^2))/2+a^2/2*asin(x/a)
 --R
 --R            +---------+
@@ -194,7 +194,7 @@ bb:=-(x*sqrt(a^2-x^2))/2+a^2/2*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 170
 cc:=aa-bb
 --R
 --R                   +---------+
@@ -207,7 +207,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -218,7 +218,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 17
+--S 17 of 170
 dd:=atanrule cc
 --R
 --R                    +---------+
@@ -233,7 +233,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 18
+--S 18 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -242,7 +242,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 19
+--S 19 of 170
 ee:=asinrule dd
 --R
 --R                     +---------+
@@ -260,7 +260,7 @@ ee:=asinrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 20
+--S 20 of 170
 ff:=expandLog ee
 --R
 --R   (8)
@@ -279,7 +279,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 21
+--S 21 of 170
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -295,7 +295,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 22     14:239 Schaums and Axiom agree
+--S 22 of 170     14:239 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (10)  0
@@ -312,7 +312,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 170
 aa:=integrate(x^3/sqrt(a^2-x^2),x)
 --R 
 --R
@@ -326,7 +326,7 @@ aa:=integrate(x^3/sqrt(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 170
 bb:=(a^2-x^2)^(3/2)/3-a^2*sqrt(a^2-x^2)
 --R
 --R                     +---------+
@@ -337,7 +337,7 @@ bb:=(a^2-x^2)^(3/2)/3-a^2*sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 25     14:240 Schaums and Axiom differ by a constant
+--S 25 of 170     14:240 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R            3
@@ -355,7 +355,7 @@ $$
 <<*>>=
 )clear all
 
---S 26
+--S 26 of 170
 aa:=integrate(1/(x*sqrt(a^2-x^2)),x)
 --R 
 --R
@@ -369,7 +369,7 @@ aa:=integrate(1/(x*sqrt(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 27
+--S 27 of 170
 bb:=-1/a*log((a+sqrt(a^2-x^2))/x)
 --R
 --R               +---------+
@@ -382,7 +382,7 @@ bb:=-1/a*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 28
+--S 28 of 170
 cc:=aa-bb
 --R
 --R             +---------+             +---------+
@@ -395,7 +395,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 29
+--S 29 of 170
 dd:=expandLog cc
 --R
 --R             +---------+             +---------+
@@ -406,7 +406,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 170
 ee:=complexNormalize dd
 --R
 --R                  x
@@ -419,7 +419,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E
 
---S 31     14:241 Schaums and Axiom differ by a constant
+--S 31 of 170     14:241 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R              +---+
@@ -438,7 +438,7 @@ $$
 <<*>>=
 )clear all
 
---S 32
+--S 32 of 170
 aa:=integrate(1/(x^2*sqrt(a^2-x^2)),x)
 --R 
 --R
@@ -452,7 +452,7 @@ aa:=integrate(1/(x^2*sqrt(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 33
+--S 33 of 170
 bb:=-sqrt(a^2-x^2)/(a^2*x)
 --R
 --R           +---------+
@@ -464,7 +464,7 @@ bb:=-sqrt(a^2-x^2)/(a^2*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 34     14:242 Schaums and Axiom agree
+--S 34 of 170     14:242 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -480,7 +480,7 @@ $$
 <<*>>=
 )clear all
 
---S 35
+--S 35 of 170
 aa:=integrate(1/(x^3*sqrt(a^2-x^2)),x)
 --R 
 --R
@@ -501,7 +501,7 @@ aa:=integrate(1/(x^3*sqrt(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 36
+--S 36 of 170
 bb:=-sqrt(a^2-x^2)/(2*a^2*x^2)-1/(2*a^3)*log((a+sqrt(a^2-x^2))/x)
 --R
 --R                 +---------+
@@ -515,7 +515,7 @@ bb:=-sqrt(a^2-x^2)/(2*a^2*x^2)-1/(2*a^3)*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 170
 cc:=aa-bb
 --R
 --R             +---------+             +---------+
@@ -529,7 +529,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 170
 dd:=expandLog cc
 --R
 --R             +---------+             +---------+
@@ -541,7 +541,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 39
+--S 39 of 170
 ee:=complexNormalize dd
 --R
 --R                 x
@@ -555,7 +555,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E 
 
---S 40     14:243 Schaums and Axiom differ by a constant
+--S 40 of 170     14:243 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R             +---+
@@ -574,7 +574,7 @@ $$
 <<*>>=
 )clear all
 
---S 41
+--S 41 of 170
 aa:=integrate(sqrt(a^2-x^2),x)
 --R 
 --R
@@ -595,7 +595,7 @@ aa:=integrate(sqrt(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 42
+--S 42 of 170
 bb:=(x*sqrt(a^2-x^2))/2+a^2/2*asin(x/a)
 --R
 --R          +---------+
@@ -607,7 +607,7 @@ bb:=(x*sqrt(a^2-x^2))/2+a^2/2*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 170
 cc:=aa-bb
 --R
 --R                   +---------+
@@ -620,7 +620,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -629,7 +629,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 45
+--S 45 of 170
 dd:=asinrule cc
 --R
 --R                     +---------+
@@ -645,7 +645,7 @@ dd:=asinrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 46
+--S 46 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -656,7 +656,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 47
+--S 47 of 170
 ee:=atanrule dd
 --R
 --R                     +---------+
@@ -674,7 +674,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 48
+--S 48 of 170
 ff:=expandLog ee
 --R
 --R   (8)
@@ -693,7 +693,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 49
+--S 49 of 170
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -709,7 +709,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 50     14:244 Schaums and Axiom agree
+--S 50 of 170     14:244 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (10)  0
@@ -724,7 +724,7 @@ $$
 <<*>>=
 )clear all
 
---S 51
+--S 51 of 170
 aa:=integrate(x*sqrt(a^2-x^2),x)
 --R 
 --R
@@ -738,7 +738,7 @@ aa:=integrate(x*sqrt(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 52
+--S 52 of 170
 bb:=-(a^2-x^2)^(3/2)/3
 --R
 --R                  +---------+
@@ -749,7 +749,7 @@ bb:=-(a^2-x^2)^(3/2)/3
 --R                                                     Type: Expression Integer
 --E
 
---S 53     14:245 Schaums and Axiom differ by a constant
+--S 53 of 170     14:245 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R           3
@@ -769,7 +769,7 @@ $$
 <<*>>=
 )clear all
 
---S 54
+--S 54 of 170
 aa:=integrate(x^2*sqrt(a^2-x^2),x)
 --R 
 --R
@@ -794,7 +794,7 @@ aa:=integrate(x^2*sqrt(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 55
+--S 55 of 170
 bb:=-(x*(a^2-x^2)^(3/2))/4+(a^2*x*sqrt(a^2-x^2))/8+a^4/8*asin(x/a)
 --R
 --R                    +---------+
@@ -806,7 +806,7 @@ bb:=-(x*(a^2-x^2)^(3/2))/4+(a^2*x*sqrt(a^2-x^2))/8+a^4/8*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 56
+--S 56 of 170
 cc:=aa-bb
 --R
 --R                   +---------+
@@ -819,7 +819,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -830,7 +830,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 58
+--S 58 of 170
 dd:=atanrule cc
 --R
 --R                    +---------+
@@ -845,7 +845,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 59
+--S 59 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -854,7 +854,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 60
+--S 60 of 170
 ee:=asinrule dd
 --R
 --R                     +---------+
@@ -872,7 +872,7 @@ ee:=asinrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 61
+--S 61 of 170
 ff:=expandLog ee
 --R
 --R   (8)
@@ -891,7 +891,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 62
+--S 62 of 170
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -907,7 +907,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 63     14:246 Schaums and Axiom agree
+--S 63 of 170     14:246 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (10)  0
@@ -923,7 +923,7 @@ $$
 <<*>>=
 )clear all
 
---S 64
+--S 64 of 170
 aa:=integrate(x^3*sqrt(a^2-x^2),x)
 --R 
 --R
@@ -938,7 +938,7 @@ aa:=integrate(x^3*sqrt(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 65
+--S 65 of 170
 bb:=(a^2-x^2)^(5/2)/5-(a^2*(a^2-x^2)^(3/2))/3
 --R
 --R                           +---------+
@@ -949,7 +949,7 @@ bb:=(a^2-x^2)^(5/2)/5-(a^2*(a^2-x^2)^(3/2))/3
 --R                                                     Type: Expression Integer
 --E 
 
---S 66     14:247 Schaums and Axiom differ by a constant
+--S 66 of 170     14:247 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R            5
@@ -968,7 +968,7 @@ $$
 <<*>>=
 )clear all
 
---S 67
+--S 67 of 170
 aa:=integrate(sqrt(a^2-x^2)/x,x)
 --R 
 --R
@@ -984,7 +984,7 @@ aa:=integrate(sqrt(a^2-x^2)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 68
+--S 68 of 170
 bb:=sqrt(a^2-x^2)-a*log((a+sqrt(a^2-x^2))/x)
 --R
 --R                 +---------+
@@ -995,7 +995,7 @@ bb:=sqrt(a^2-x^2)-a*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 170
 cc:=aa-bb
 --R
 --R               +---------+               +---------+
@@ -1006,7 +1006,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 170
 dd:=expandLog cc
 --R
 --R               +---------+               +---------+
@@ -1015,7 +1015,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 71
+--S 71 of 170
 ee:=complexNormalize dd
 --R
 --R                    x
@@ -1026,7 +1026,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E
 
---S 72     14:248 Schaums and Axiom differ by a constant
+--S 72 of 170     14:248 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R                +---+
@@ -1043,7 +1043,7 @@ $$
 <<*>>=
 )clear all
 
---S 73
+--S 73 of 170
 aa:=integrate(sqrt(a^2-x^2)/x^2,x)
 --R 
 --R
@@ -1060,7 +1060,7 @@ aa:=integrate(sqrt(a^2-x^2)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 74
+--S 74 of 170
 bb:=-sqrt(a^2-x^2)/x-asin(x/a)
 --R
 --R           +---------+
@@ -1072,7 +1072,7 @@ bb:=-sqrt(a^2-x^2)/x-asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 75
+--S 75 of 170
 cc:=aa-bb
 --R
 --R               +---------+
@@ -1083,7 +1083,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 76
+--S 76 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -1092,7 +1092,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 77
+--S 77 of 170
 dd:=asinrule cc
 --R
 --R                 +---------+
@@ -1106,7 +1106,7 @@ dd:=asinrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 78
+--S 78 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1117,7 +1117,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 79
+--S 79 of 170
 ee:=atanrule dd
 --R
 --R                 +---------+
@@ -1133,7 +1133,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 80
+--S 80 of 170
 ff:=expandLog ee
 --R
 --R   (8)
@@ -1150,7 +1150,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 81
+--S 81 of 170
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -1164,7 +1164,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 82     14:249 Schaums and Axiom agree
+--S 82 of 170     14:249 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (10)  0
@@ -1181,7 +1181,7 @@ $$
 <<*>>=
 )clear all
 
---S 83
+--S 83 of 170
 aa:=integrate(sqrt(a^2-x^2)/x^3,x)
 --R 
 --R
@@ -1202,7 +1202,7 @@ aa:=integrate(sqrt(a^2-x^2)/x^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 84
+--S 84 of 170
 bb:=-sqrt(a^2-x^2)/(2*x^2)+1/(2*a)*log((a+sqrt(a^2-x^2))/x)
 --R
 --R               +---------+
@@ -1216,7 +1216,7 @@ bb:=-sqrt(a^2-x^2)/(2*x^2)+1/(2*a)*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 85
+--S 85 of 170
 cc:=aa-bb
 --R
 --R               +---------+             +---------+
@@ -1229,7 +1229,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 86
+--S 86 of 170
 dd:=expandLog cc
 --R
 --R               +---------+             +---------+
@@ -1240,7 +1240,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 170
 ee:=complexNormalize dd
 --R
 --R               x
@@ -1253,7 +1253,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E
 
---S 88     14:250 Schaums and Axiom differ by a constant
+--S 88 of 170     14:250 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R               +---+
@@ -1271,7 +1271,7 @@ $$
 <<*>>=
 )clear all
 
---S 89
+--S 89 of 170
 aa:=integrate(1/(a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -1285,7 +1285,7 @@ aa:=integrate(1/(a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 90
+--S 90 of 170
 bb:=x/(a^2*sqrt(a^2-x^2))
 --R
 --R               x
@@ -1296,7 +1296,7 @@ bb:=x/(a^2*sqrt(a^2-x^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 91     14:251 Schaums and Axiom agree
+--S 91 of 170     14:251 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1312,7 +1312,7 @@ $$
 <<*>>=
 )clear all
 
---S 92
+--S 92 of 170
 aa:=integrate(x/(a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -1325,7 +1325,7 @@ aa:=integrate(x/(a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 93
+--S 93 of 170
 bb:=1/sqrt(a^2-x^2)
 --R
 --R              1
@@ -1336,7 +1336,7 @@ bb:=1/sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 94     14:252 Schaums and Axiom differ by a constant
+--S 94 of 170     14:252 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R        1
@@ -1354,7 +1354,7 @@ $$
 <<*>>=
 )clear all
 
---S 95
+--S 95 of 170
 aa:=integrate(x^2/(a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -1371,7 +1371,7 @@ aa:=integrate(x^2/(a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 96
+--S 96 of 170
 bb:=x/sqrt(a^2-x^2)-asin(x/a)
 --R
 --R                  +---------+
@@ -1385,7 +1385,7 @@ bb:=x/sqrt(a^2-x^2)-asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 97
+--S 97 of 170
 cc:=aa-bb
 --R
 --R               +---------+
@@ -1396,7 +1396,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 98
+--S 98 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1407,7 +1407,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 99
+--S 99 of 170
 dd:=atanrule cc
 --R
 --R                    +---------+
@@ -1420,7 +1420,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 100
+--S 100 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -1429,7 +1429,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 101
+--S 101 of 170
 ee:=asinrule dd
 --R
 --R                 +---------+
@@ -1445,7 +1445,7 @@ ee:=asinrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 102
+--S 102 of 170
 ff:=expandLog ee
 --R
 --R   (8)
@@ -1462,7 +1462,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 103
+--S 103 of 170
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -1476,7 +1476,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 104    14:253 Schaums and Axiom agree
+--S 104 of 170    14:253 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (10)  0
@@ -1492,7 +1492,7 @@ $$
 <<*>>=
 )clear all
 
---S 105
+--S 105 of 170
 aa:=integrate(x^3/(a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -1505,7 +1505,7 @@ aa:=integrate(x^3/(a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 106
+--S 106 of 170
 bb:=sqrt(a^2-x^2)+a^2/sqrt(a^2-x^2)
 --R
 --R            2     2
@@ -1517,7 +1517,7 @@ bb:=sqrt(a^2-x^2)+a^2/sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 107    14:254 Schaums and Axiom differ by a constant
+--S 107 of 170    14:254 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R   (3)  2a
@@ -1534,7 +1534,7 @@ $$
 <<*>>=
 )clear all
 
---S 108
+--S 108 of 170
 aa:=integrate(1/(x*(a^2-x^2)^(3/2)),x)
 --R 
 --R
@@ -1550,7 +1550,7 @@ aa:=integrate(1/(x*(a^2-x^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 109
+--S 109 of 170
 bb:=1/(a^2*sqrt(a^2-x^2))-1/a^3*log((a+sqrt(a^2-x^2))/x)
 --R
 --R                           +---------+
@@ -1565,7 +1565,7 @@ bb:=1/(a^2*sqrt(a^2-x^2))-1/a^3*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 110
+--S 110 of 170
 cc:=aa-bb
 --R
 --R             +---------+             +---------+
@@ -1579,7 +1579,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 111
+--S 111 of 170
 dd:=expandLog cc
 --R
 --R             +---------+             +---------+
@@ -1591,7 +1591,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 112
+--S 112 of 170
 ee:=complexNormalize dd
 --R
 --R                  x
@@ -1605,7 +1605,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E
 
---S 113    14:255 Schaums and Axiom differ by a constant
+--S 113 of 170    14:255 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R              +---+
@@ -1625,7 +1625,7 @@ $$
 <<*>>=
 )clear all
 
---S 114
+--S 114 of 170
 aa:=integrate(1/(x^2*(a^2-x^2)^(3/2)),x)
 --R 
 --R
@@ -1639,7 +1639,7 @@ aa:=integrate(1/(x^2*(a^2-x^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 115
+--S 115 of 170
 bb:=-sqrt(a^2-x^2)/(a^4*x)+x/(a^4*sqrt(a^2-x^2))
 --R
 --R              2    2
@@ -1651,7 +1651,7 @@ bb:=-sqrt(a^2-x^2)/(a^4*x)+x/(a^4*sqrt(a^2-x^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 116    14:256 Schaums and Axiom agree
+--S 116 of 170    14:256 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1669,7 +1669,7 @@ $$
 <<*>>=
 )clear all
 
---S 117
+--S 117 of 170
 aa:=integrate(1/(x^3*(a^2-x^2)^(3/2)),x)
 --R 
 --R
@@ -1694,7 +1694,7 @@ aa:=integrate(1/(x^3*(a^2-x^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 118
+--S 118 of 170
 bb:=-1/(2*a^2*x^2*sqrt(a^2-x^2))+3/(2*a^4*sqrt(a^2-x^2))-3/(2*a^5)*log((a+sqrt(a^2-x^2))/x)
 --R
 --R                              +---------+
@@ -1709,7 +1709,7 @@ bb:=-1/(2*a^2*x^2*sqrt(a^2-x^2))+3/(2*a^4*sqrt(a^2-x^2))-3/(2*a^5)*log((a+sqrt(a
 --R                                                     Type: Expression Integer
 --E
 
---S 119
+--S 119 of 170
 cc:=aa-bb
 --R
 --R              +---------+              +---------+
@@ -1723,7 +1723,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 120
+--S 120 of 170
 dd:=expandLog cc
 --R
 --R              +---------+              +---------+
@@ -1735,7 +1735,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 121
+--S 121 of 170
 ee:=complexNormalize dd
 --R
 --R                  x
@@ -1749,7 +1749,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E
 
---S 122    14:257 Schaums and Axiom differ by a constant
+--S 122 of 170    14:257 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R              +---+
@@ -1769,7 +1769,7 @@ $$
 <<*>>=
 )clear all
 
---S 123
+--S 123 of 170
 aa:=integrate((a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -1797,7 +1797,7 @@ aa:=integrate((a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 124
+--S 124 of 170
 bb:=(x*(a^2-x^2)^(3/2))/4+(3*a^2*x*sqrt(a^2-x^2))/8+3/8*a^4*asin(x/a)
 --R
 --R                       +---------+
@@ -1809,7 +1809,7 @@ bb:=(x*(a^2-x^2)^(3/2))/4+(3*a^2*x*sqrt(a^2-x^2))/8+3/8*a^4*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 125
+--S 125 of 170
 cc:=aa-bb
 --R
 --R                   +---------+
@@ -1822,7 +1822,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 126
+--S 126 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -1831,7 +1831,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E 
 
---S 127
+--S 127 of 170
 ee:=asinrule cc
 --R
 --R                      +---------+
@@ -1847,7 +1847,7 @@ ee:=asinrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 128
+--S 128 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1858,7 +1858,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 129
+--S 129 of 170
 ff:=atanrule ee
 --R
 --R   (7)
@@ -1877,7 +1877,7 @@ ff:=atanrule ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 130
+--S 130 of 170
 gg:=expandLog ff
 --R
 --R   (8)
@@ -1896,7 +1896,7 @@ gg:=expandLog ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 131
+--S 131 of 170
 hh:=rootSimp gg
 --R
 --R   (9)
@@ -1912,7 +1912,7 @@ hh:=rootSimp gg
 --R                                             Type: Expression Complex Integer
 --E
 
---S 132    14:258 Schaums and Axiom agree
+--S 132 of 170    14:258 Schaums and Axiom agree
 ii:=complexNormalize hh
 --R
 --R   (10)  0
@@ -1925,7 +1925,7 @@ $$\int{x(a^2-x^2)^{3/2}}=\frac{(a^2-x^2)^{5/2}}{5}$$
 <<*>>=
 )clear all
 
---S 133
+--S 133 of 170
 aa:=integrate(x*(a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -1943,7 +1943,7 @@ aa:=integrate(x*(a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 134
+--S 134 of 170
 bb:=-(a^2-x^2)^(5/2)/5
 --R
 --R                            +---------+
@@ -1954,7 +1954,7 @@ bb:=-(a^2-x^2)^(5/2)/5
 --R                                                     Type: Expression Integer
 --E
 
---S 135    14:259 Schaums and Axiom differ by a constant
+--S 135 of 170    14:259 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R           5
@@ -1974,7 +1974,7 @@ $$
 <<*>>=
 )clear all
 
---S 136
+--S 136 of 170
 aa:=integrate(x^2*(a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -2008,7 +2008,7 @@ aa:=integrate(x^2*(a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 137
+--S 137 of 170
 bb:=-(x*(a^2-x^2)^(5/2))/6+(a^2*x*(a^2-x^2)^(3/2))/24+(a^4*x*sqrt(a^2-x^2))/16+a^6/16*asin(x/a)
 --R
 --R                                +---------+
@@ -2020,7 +2020,7 @@ bb:=-(x*(a^2-x^2)^(5/2))/6+(a^2*x*(a^2-x^2)^(3/2))/24+(a^4*x*sqrt(a^2-x^2))/16+a
 --R                                                     Type: Expression Integer
 --E
 
---S 138
+--S 138 of 170
 cc:=aa-bb
 --R
 --R                   +---------+
@@ -2033,7 +2033,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E 
 
---S 139
+--S 139 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -2044,7 +2044,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 140
+--S 140 of 170
 dd:=atanrule cc
 --R
 --R                    +---------+
@@ -2059,7 +2059,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 141
+--S 141 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -2068,7 +2068,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 142
+--S 142 of 170
 ee:=asinrule dd
 --R
 --R                     +---------+
@@ -2086,7 +2086,7 @@ ee:=asinrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 143
+--S 143 of 170
 ff:=expandLog ee
 --R
 --R   (8)
@@ -2105,7 +2105,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 144
+--S 144 of 170
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -2121,7 +2121,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 145    14:260 Schaums and Axiom agree
+--S 145 of 170    14:260 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (10)  0
@@ -2136,7 +2136,7 @@ $$
 <<*>>=
 )clear all
 
---S 146
+--S 146 of 170
 aa:=integrate(x^3*(a^2-x^2)^(3/2),x)
 --R 
 --R
@@ -2157,7 +2157,7 @@ aa:=integrate(x^3*(a^2-x^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 147
+--S 147 of 170
 bb:=(a^2-x^2)^(7/2)/7-(a^2*(a^2-x^2)^(5/2))/5
 --R
 --R                                     +---------+
@@ -2168,7 +2168,7 @@ bb:=(a^2-x^2)^(7/2)/7-(a^2*(a^2-x^2)^(5/2))/5
 --R                                                     Type: Expression Integer
 --E
 
---S 148    14:261 Schaums and Axiom differ by a constant
+--S 148 of 170    14:261 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R            7
@@ -2188,7 +2188,7 @@ $$
 <<*>>=
 )clear all
 
---S 149
+--S 149 of 170
 aa:=integrate((a^2-x^2)^(3/2)/x,x)
 --R 
 --R
@@ -2209,7 +2209,7 @@ aa:=integrate((a^2-x^2)^(3/2)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 150
+--S 150 of 170
 bb:=(a^2-x^2)^(3/2)/3+a^2*sqrt(a^2-x^2)-a^3*log((a+sqrt(a^2-x^2))/x)
 --R
 --R                  +---------+
@@ -2222,7 +2222,7 @@ bb:=(a^2-x^2)^(3/2)/3+a^2*sqrt(a^2-x^2)-a^3*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 151
+--S 151 of 170
 cc:=aa-bb
 --R
 --R                +---------+                +---------+
@@ -2235,7 +2235,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 152
+--S 152 of 170
 dd:=expandLog cc
 --R
 --R                +---------+                +---------+
@@ -2246,7 +2246,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 153
+--S 153 of 170
 ee:=complexNormalize dd
 --R
 --R            3       x         3
@@ -2259,7 +2259,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E
 
---S 154    14:262 Schaums and Axiom differ by a constant
+--S 154 of 170    14:262 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R          3     +---+      3
@@ -2279,7 +2279,7 @@ $$
 <<*>>=
 )clear all
 
---S 155
+--S 155 of 170
 aa:=integrate((a^2-x^2)^{3/2}/x^2,x)
 --R 
 --R
@@ -2300,7 +2300,7 @@ aa:=integrate((a^2-x^2)^{3/2}/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 156
+--S 156 of 170
 bb:=-(a^2-x^2)^(3/2)/x-(3*x*sqrt(a^2-x^2))/2-3/2*a^2*asin(x/a)
 --R
 --R                     +---------+
@@ -2312,7 +2312,7 @@ bb:=-(a^2-x^2)^(3/2)/x-(3*x*sqrt(a^2-x^2))/2-3/2*a^2*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 157
+--S 157 of 170
 cc:=aa-bb
 --R
 --R                 +---------+
@@ -2325,7 +2325,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 158
+--S 158 of 170
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -2334,7 +2334,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 159
+--S 159 of 170
 dd:=asinrule cc
 --R
 --R                    +---------+
@@ -2350,7 +2350,7 @@ dd:=asinrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 160
+--S 160 of 170
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -2361,7 +2361,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 161
+--S 161 of 170
 ee:=atanrule dd
 --R
 --R                    +---------+
@@ -2379,7 +2379,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 162
+--S 162 of 170
 ff:=expandLog ee
 --R
 --R   (8)
@@ -2398,7 +2398,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E 
 
---S 163
+--S 163 of 170
 gg:=rootSimp ff
 --R
 --R   (9)
@@ -2414,7 +2414,7 @@ gg:=rootSimp ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 164    14:263 Schaums and Axiom agree
+--S 164 of 170    14:263 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (10)  0
@@ -2431,7 +2431,7 @@ $$
 <<*>>=
 )clear all
 
---S 165
+--S 165 of 170
 aa:=integrate((a^2-x^2)^(3/2)/x^3,x)
 --R 
 --R
@@ -2452,7 +2452,7 @@ aa:=integrate((a^2-x^2)^(3/2)/x^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 166
+--S 166 of 170
 bb:=-(a^2-x^2)^(3/2)/(2*x^2)-(3*sqrt(a^2-x^2))/2+3/2*a*log((a+sqrt(a^2-x^2))/x)
 --R
 --R                  +---------+
@@ -2466,7 +2466,7 @@ bb:=-(a^2-x^2)^(3/2)/(2*x^2)-(3*sqrt(a^2-x^2))/2+3/2*a*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 167
+--S 167 of 170
 cc:=aa-bb
 --R
 --R                  +---------+                +---------+
@@ -2479,7 +2479,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 168
+--S 168 of 170
 dd:=expandLog cc
 --R
 --R                  +---------+                +---------+
@@ -2490,7 +2490,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 169
+--S 169 of 170
 ee:=complexNormalize dd
 --R
 --R                  x
@@ -2501,7 +2501,7 @@ ee:=complexNormalize dd
 --R                                                     Type: Expression Integer
 --E
 
---S 170    14:264 Schaums and Axiom differ by a constant
+--S 170 of 170    14:264 Schaums and Axiom differ by a constant
 ff:=rootSimp ee
 --R
 --R                  +---+
diff --git a/src/input/schaum12.input.pamphlet b/src/input/schaum12.input.pamphlet
index 7d5d77a..5bd9dc9 100644
--- a/src/input/schaum12.input.pamphlet
+++ b/src/input/schaum12.input.pamphlet
@@ -24,7 +24,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 84
 aa:=integrate(1/(a*x^2+b*x+c),x)
 --R
 --R   (1)
@@ -57,7 +57,7 @@ aa:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 2
+--S 2 of 84
 bb1:=2/sqrt(4*a*c-b^2)*atan((2*a*x+b)/sqrt(4*a*c-b^2))
 --R 
 --R
@@ -73,7 +73,7 @@ bb1:=2/sqrt(4*a*c-b^2)*atan((2*a*x+b)/sqrt(4*a*c-b^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 84
 bb2:=1/sqrt(b^2-4*a*c)*log((2*a*x+b-sqrt(b^2-4*a*c))/(2*a*x+b+sqrt(b^2-4*a*c)))
 --R 
 --R
@@ -91,7 +91,7 @@ bb2:=1/sqrt(b^2-4*a*c)*log((2*a*x+b-sqrt(b^2-4*a*c))/(2*a*x+b+sqrt(b^2-4*a*c)))
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 84
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -123,7 +123,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 5
+--S 5 of 84
 cc2:=aa.1-bb2
 --R
 --R   (5)
@@ -152,7 +152,7 @@ cc2:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 84
 cc3:=aa.2-bb1
 --R
 --R                         +---------+
@@ -169,7 +169,7 @@ cc3:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 84
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -194,7 +194,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 84
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -205,7 +205,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 9
+--S 9 of 84
 dd3:=atanrule cc3
 --R
 --R   (9)
@@ -231,7 +231,7 @@ dd3:=atanrule cc3
 --R                                             Type: Expression Complex Integer
 --E
 
---S 10
+--S 10 of 84
 ee3:=expandLog dd3
 --R
 --R   (10)
@@ -257,7 +257,7 @@ ee3:=expandLog dd3
 --R                                             Type: Expression Complex Integer
 --E
 
---S 11     14:265 Schaums and Axiom agree
+--S 11 of 84     14:265 Schaums and Axiom agree
 ff3:=complexNormalize ee3
 --R
 --R   (11)  0
@@ -273,7 +273,7 @@ $$
 <<*>>=
 )clear all
 
---S 12
+--S 12 of 84
 aa:=integrate(x/(a*x^2+b*x+c),x)
 --R
 --R   (1)
@@ -312,7 +312,7 @@ aa:=integrate(x/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 13
+--S 13 of 84
 t1:=integrate(1/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -346,7 +346,7 @@ t1:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 14
+--S 14 of 84
 bb1:=1/(2*a)*log(a*x^2+b*x+c)-b/(2*a)*t1.1
 --R 
 --R
@@ -375,7 +375,7 @@ bb1:=1/(2*a)*log(a*x^2+b*x+c)-b/(2*a)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 84
 bb2:=1/(2*a)*log(a*x^2+b*x+c)-b/(2*a)*t1.2
 --R 
 --R
@@ -392,7 +392,7 @@ bb2:=1/(2*a)*log(a*x^2+b*x+c)-b/(2*a)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 84
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -428,7 +428,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 84
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -460,7 +460,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 84
 cc3:=aa.2-bb1
 --R
 --R   (7)
@@ -492,7 +492,7 @@ cc3:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 19     14:266 Schaums and Axiom agree
+--S 19 of 84     14:266 Schaums and Axiom agree
 cc4:=aa.2-bb2
 --R
 --R   (8)  0
@@ -510,7 +510,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 84
 aa:=integrate(x^2/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -557,7 +557,7 @@ aa:=integrate(x^2/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 21
+--S 21 of 84
 t1:=integrate(1/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -591,7 +591,7 @@ t1:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 22
+--S 22 of 84
 bb1:=x/a-b/(2*a^2)*log(a*x^2+b*x+c)+(b^2-2*a*c)/(2*a^2)*t1.1
 --R 
 --R
@@ -620,7 +620,7 @@ bb1:=x/a-b/(2*a^2)*log(a*x^2+b*x+c)+(b^2-2*a*c)/(2*a^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 84
 bb2:=x/a-b/(2*a^2)*log(a*x^2+b*x+c)+(b^2-2*a*c)/(2*a^2)*t1.2
 --R 
 --R
@@ -642,7 +642,7 @@ bb2:=x/a-b/(2*a^2)*log(a*x^2+b*x+c)+(b^2-2*a*c)/(2*a^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 84
 cc1:=bb1-aa.1
 --R
 --R   (5)
@@ -680,7 +680,7 @@ cc1:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 25     14:267 Schaums and Axiom differ by a constant
+--S 25 of 84     14:267 Schaums and Axiom differ by a constant
 dd1:=complexNormalize cc1
 --R
 --R                   2          3      2 2
@@ -702,7 +702,7 @@ $$
 <<*>>=
 )clear all
 
---S 26     14:268 Axiom cannot compute this integral
+--S 26 of 84     14:268 Axiom cannot compute this integral
 aa:=integrate(x^m/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -725,7 +725,7 @@ $$
 <<*>>=
 )clear all
 
---S 27
+--S 27 of 84
 aa:=integrate(1/(x*(a*x^2+b*x+c)),x)
 --R 
 --R
@@ -771,7 +771,7 @@ aa:=integrate(1/(x*(a*x^2+b*x+c)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 28
+--S 28 of 84
 t1:=integrate(1/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -805,7 +805,7 @@ t1:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 29
+--S 29 of 84
 bb1:=1/(2*c)*log(x^2/(a*x^2+b*x+c))-b/(2*c)*t1.1
 --R 
 --R
@@ -836,7 +836,7 @@ bb1:=1/(2*c)*log(x^2/(a*x^2+b*x+c))-b/(2*c)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 84
 bb2:=1/(2*c)*log(x^2/(a*x^2+b*x+c))-b/(2*c)*t1.2
 --R 
 --R
@@ -853,7 +853,7 @@ bb2:=1/(2*c)*log(x^2/(a*x^2+b*x+c))-b/(2*c)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 84
 cc1:=bb1-aa.1
 --R
 --R   (5)
@@ -897,7 +897,7 @@ cc1:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 84
 dd1:=expandLog cc1
 --R
 --R   (6)
@@ -932,7 +932,7 @@ dd1:=expandLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 33     14:269 Schaums and Axiom differ by a constant
+--S 33 of 84     14:269 Schaums and Axiom differ by a constant
 ee1:=complexNormalize dd1
 --R
 --R                     3      2 2
@@ -954,7 +954,7 @@ $$
 <<*>>=
 )clear all
 
---S 34
+--S 34 of 84
 aa:=integrate(1/(x^2*(a*x^2+b*x+c)),x)
 --R 
 --R
@@ -1001,7 +1001,7 @@ aa:=integrate(1/(x^2*(a*x^2+b*x+c)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 35
+--S 35 of 84
 t1:=integrate(1/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -1035,7 +1035,7 @@ t1:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 36
+--S 36 of 84
 bb1:=b/(2*c^2)*log((a*x^2+b*x+c)/x^2)-1/(c*x)+(b^2-2*a*c)/(2*c^2)*t1.1
 --R 
 --R
@@ -1066,7 +1066,7 @@ bb1:=b/(2*c^2)*log((a*x^2+b*x+c)/x^2)-1/(c*x)+(b^2-2*a*c)/(2*c^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 84
 bb2:=b/(2*c^2)*log((a*x^2+b*x+c)/x^2)-1/(c*x)+(b^2-2*a*c)/(2*c^2)*t1.2
 --R 
 --R
@@ -1090,7 +1090,7 @@ bb2:=b/(2*c^2)*log((a*x^2+b*x+c)/x^2)-1/(c*x)+(b^2-2*a*c)/(2*c^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 84
 cc1:=bb1-aa.1
 --R
 --R   (5)
@@ -1134,7 +1134,7 @@ cc1:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 39
+--S 39 of 84
 dd1:=expandLog cc1
 --R
 --R   (6)
@@ -1169,7 +1169,7 @@ dd1:=expandLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 40     14:270 Schaums and Axiom differ by a constant
+--S 40 of 84     14:270 Schaums and Axiom differ by a constant
 ee1:=complexNormalize dd1
 --R
 --R                   2          3      2 2
@@ -1192,7 +1192,7 @@ $$
 <<*>>=
 )clear all
 
---S 41     14:271 Axiom cannot compute this integral
+--S 41 of 84     14:271 Axiom cannot compute this integral
 aa:=integrate(1/(x^n*(a*x^2+b*x+c)),x)
 --R 
 --R
@@ -1215,7 +1215,7 @@ $$
 <<*>>=
 )clear all
 
---S 42
+--S 42 of 84
 aa:=integrate(1/(a*x^2+b*x+c)^2,x)
 --R 
 --R
@@ -1257,7 +1257,7 @@ aa:=integrate(1/(a*x^2+b*x+c)^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 43
+--S 43 of 84
 t1:=integrate(1/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -1291,7 +1291,7 @@ t1:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 44
+--S 44 of 84
 bb1:=(2*a*x+b)/((4*a*c-b^2)*(a*x^2+b*x+c))+(2*a)/(4*a*c-b^2)*t1.1
 --R
 --R   (3)
@@ -1319,7 +1319,7 @@ bb1:=(2*a*x+b)/((4*a*c-b^2)*(a*x^2+b*x+c))+(2*a)/(4*a*c-b^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 84
 bb2:=(2*a*x+b)/((4*a*c-b^2)*(a*x^2+b*x+c))+(2*a)/(4*a*c-b^2)*t1.2
 --R
 --R   (4)
@@ -1336,14 +1336,14 @@ bb2:=(2*a*x+b)/((4*a*c-b^2)*(a*x^2+b*x+c))+(2*a)/(4*a*c-b^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 46
+--S 46 of 84
 cc1:=aa.1-bb1
 --R
 --R   (5)  0
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 84
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -1376,7 +1376,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 84
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -1408,7 +1408,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 49     14:272 Schaums and Axiom agree
+--S 49 of 84     14:272 Schaums and Axiom agree
 cc4:=aa.2-bb2
 --R
 --R   (8)  0
@@ -1426,7 +1426,7 @@ $$
 <<*>>=
 )clear all
 
---S 50
+--S 50 of 84
 aa:=integrate(x/(a*x^2+b*x+c)^2,x)
 --R 
 --R
@@ -1473,7 +1473,7 @@ aa:=integrate(x/(a*x^2+b*x+c)^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 51
+--S 51 of 84
 t1:=integrate(1/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -1507,7 +1507,7 @@ t1:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 52
+--S 52 of 84
 bb1:=-(b*x+2*c)/((4*a*c-b^2)*(a*x^2+b*x+c))-b/(4*a*c-b^2)*t1.1
 --R 
 --R
@@ -1536,7 +1536,7 @@ bb1:=-(b*x+2*c)/((4*a*c-b^2)*(a*x^2+b*x+c))-b/(4*a*c-b^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 53
+--S 53 of 84
 bb2:=-(b*x+2*c)/((4*a*c-b^2)*(a*x^2+b*x+c))-b/(4*a*c-b^2)*t1.2
 --R 
 --R
@@ -1558,7 +1558,7 @@ bb2:=-(b*x+2*c)/((4*a*c-b^2)*(a*x^2+b*x+c))-b/(4*a*c-b^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 84
 cc1:=bb1-aa.1
 --R
 --R   (5)
@@ -1596,7 +1596,7 @@ cc1:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 55
+--S 55 of 84
 dd1:=expandLog cc1
 --R
 --R   (6)
@@ -1631,7 +1631,7 @@ dd1:=expandLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 56     14:273 Schaums and Axiom differ by a constant
+--S 56 of 84     14:273 Schaums and Axiom differ by a constant
 ee1:=complexNormalize dd1
 --R
 --R                       3      2 2
@@ -1654,7 +1654,7 @@ $$
 <<*>>=
 )clear all
 
---S 57
+--S 57 of 84
 aa:=integrate(x^2/(a*x^2+b*x+c)^2,x)
 --R 
 --R
@@ -1701,7 +1701,7 @@ aa:=integrate(x^2/(a*x^2+b*x+c)^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 58
+--S 58 of 84
 t1:=integrate(1/(a*x^2+b*x+c),x)
 --R 
 --R
@@ -1735,7 +1735,7 @@ t1:=integrate(1/(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 59
+--S 59 of 84
 bb1:=((b^2-2*a*c)*x+b*c)/(a*(4*a*c-b^2)*(a*x^2+b*x+c))+(2*c)/(4*a*c-b^2)*t1.1
 --R
 --R   (3)
@@ -1763,7 +1763,7 @@ bb1:=((b^2-2*a*c)*x+b*c)/(a*(4*a*c-b^2)*(a*x^2+b*x+c))+(2*c)/(4*a*c-b^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 60
+--S 60 of 84
 bb2:=((b^2-2*a*c)*x+b*c)/(a*(4*a*c-b^2)*(a*x^2+b*x+c))+(2*c)/(4*a*c-b^2)*t1.2
 --R
 --R   (4)
@@ -1784,7 +1784,7 @@ bb2:=((b^2-2*a*c)*x+b*c)/(a*(4*a*c-b^2)*(a*x^2+b*x+c))+(2*c)/(4*a*c-b^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 61     14:274 Schaums and Axiom agree
+--S 61 of 84     14:274 Schaums and Axiom agree
 cc1:=aa.1-bb1
 --R
 --R   (5)  0
@@ -1807,7 +1807,7 @@ $$
 <<*>>=
 )clear all
 
---S 62     14:275 Axiom cannot compute this integral
+--S 62 of 84     14:275 Axiom cannot compute this integral
 aa:=integrate(x^m/(a*x^2+b*x+c)^n,x)
 --R 
 --R
@@ -1835,7 +1835,7 @@ $$
 <<*>>=
 )clear all
 
---S 63     14:276 Axiom cannot compute this integral
+--S 63 of 84     14:276 Axiom cannot compute this integral
 aa:=integrate(x^(2*n-1)/(a*x^2+b*x+c)^n,x)
 --R 
 --R
@@ -1863,7 +1863,7 @@ $$
 <<*>>=
 )clear all
 
---S 64
+--S 64 of 84
 aa:=integrate(1/(x*(a*x^2+b*x+c)^2),x)
 --R 
 --R
@@ -1937,7 +1937,7 @@ aa:=integrate(1/(x*(a*x^2+b*x+c)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 65
+--S 65 of 84
 t1:=integrate(1/(a*x^2+b*x+c)^2,x)
 --R 
 --R
@@ -1979,7 +1979,7 @@ t1:=integrate(1/(a*x^2+b*x+c)^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 66
+--S 66 of 84
 t2:=integrate(1/(x*(a*x^2+b*x+c)),x)
 --R 
 --R
@@ -2025,7 +2025,7 @@ t2:=integrate(1/(x*(a*x^2+b*x+c)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 67
+--S 67 of 84
 bb1:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.1+1/c*t2.1
 --R 
 --R
@@ -2080,7 +2080,7 @@ bb1:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.1+1/c*t2.1
 --R                                                     Type: Expression Integer
 --E
 
---S 68
+--S 68 of 84
 bb2:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.2+1/c*t2.1
 --R 
 --R
@@ -2137,7 +2137,7 @@ bb2:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.2+1/c*t2.1
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 84
 bb3:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.1+1/c*t2.2
 --R 
 --R
@@ -2193,7 +2193,7 @@ bb3:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.1+1/c*t2.2
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 84
 bb4:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.2+1/c*t2.2
 --R 
 --R
@@ -2230,7 +2230,7 @@ bb4:=1/(2*c*(a*x^2+b*x+c))-b/(2*c)*t1.2+1/c*t2.2
 --R                                                     Type: Expression Integer
 --E
 
---S 71
+--S 71 of 84
 cc1:=aa.1-bb1
 --R
 --R   (8)
@@ -2266,7 +2266,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 72
+--S 72 of 84
 dd1:=expandLog cc1
 --R
 --R   (9)
@@ -2299,7 +2299,7 @@ dd1:=expandLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 73     14:277 Schaums and Axiom differ by a constant
+--S 73 of 84     14:277 Schaums and Axiom differ by a constant
 ee1:=complexNormalize dd1
 --R
 --R                        3      2 2
@@ -2326,7 +2326,7 @@ $$
 <<*>>=
 )clear all
 
---S 74
+--S 74 of 84
 aa:=integrate(1/(x^2*(a*x^2+b*x+c)^2),x)
 --R 
 --R
@@ -2410,7 +2410,7 @@ aa:=integrate(1/(x^2*(a*x^2+b*x+c)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 75
+--S 75 of 84
 t1:=integrate(1/(a*x^2+b*x+c)^2,x)
 --R 
 --R
@@ -2452,7 +2452,7 @@ t1:=integrate(1/(a*x^2+b*x+c)^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 76
+--S 76 of 84
 t2:=integrate(1/(x*(a*x^2+b*x+c)^2),x)
 --R 
 --R
@@ -2526,7 +2526,7 @@ t2:=integrate(1/(x*(a*x^2+b*x+c)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 77
+--S 77 of 84
 bb1:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.1-(2*b)/c*t2.1
 --R 
 --R
@@ -2583,7 +2583,7 @@ bb1:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.1-(2*b)/c*t2.1
 --R                                                     Type: Expression Integer
 --E
 
---S 78
+--S 78 of 84
 bb2:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.2-(2*b)/c*t2.1
 --R 
 --R
@@ -2645,7 +2645,7 @@ bb2:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.2-(2*b)/c*t2.1
 --R                                                     Type: Expression Integer
 --E
 
---S 79
+--S 79 of 84
 bb3:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.1-(2*b)/c*t2.2
 --R 
 --R
@@ -2703,7 +2703,7 @@ bb3:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.1-(2*b)/c*t2.2
 --R                                                     Type: Expression Integer
 --E
 
---S 80
+--S 80 of 84
 bb4:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.2-(2*b)/c*t2.2
 --R 
 --R
@@ -2745,7 +2745,7 @@ bb4:=-1/(c*x*(a*x^2+b*x+c))-((3*a)/c)*t1.2-(2*b)/c*t2.2
 --R                                                     Type: Expression Integer
 --E
 
---S 81
+--S 81 of 84
 cc1:=aa.1-bb1
 --R
 --R   (8)
@@ -2783,7 +2783,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 82
+--S 82 of 84
 dd1:=expandLog cc1
 --R
 --R   (9)
@@ -2818,7 +2818,7 @@ dd1:=expandLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 83     14:278 Schaums and Axiom differ by a constant
+--S 83 of 84     14:278 Schaums and Axiom differ by a constant
 ee1:=complexNormalize dd1
 --R
 --R             2         3      2 2
@@ -2845,7 +2845,7 @@ $$
 <<*>>=
 )clear all
 
---S 84     14:279 Axiom cannot compute this integral
+--S 84 of 84     14:279 Axiom cannot compute this integral
 aa:=integrate(1/(x^m*(a*x^2+b*x+c)^n),x)
 --R 
 --R
diff --git a/src/input/schaum13.input.pamphlet b/src/input/schaum13.input.pamphlet
index 678e41c..5df3793 100644
--- a/src/input/schaum13.input.pamphlet
+++ b/src/input/schaum13.input.pamphlet
@@ -29,7 +29,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 131
 aa:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (1)
@@ -60,7 +60,7 @@ aa:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 131
 bb1:=1/sqrt(a)*log(2*sqrt(a)*sqrt(a*x^2+b*x+c)+2*a*x+b)
 --R
 --R                  +--------------+
@@ -72,7 +72,7 @@ bb1:=1/sqrt(a)*log(2*sqrt(a)*sqrt(a*x^2+b*x+c)+2*a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 131
 bb2:=-1/sqrt(-a)*asin((2*a*x+b)/sqrt(b^2-4*a*c))
 --R
 --R                  2a x + b
@@ -86,7 +86,7 @@ bb2:=-1/sqrt(-a)*asin((2*a*x+b)/sqrt(b^2-4*a*c))
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 131
 bb3:=1/sqrt(a)*asinh((2*a*x+b)/sqrt(4*a*c-b^2))
 --R
 --R                2a x + b
@@ -100,7 +100,7 @@ bb3:=1/sqrt(a)*asinh((2*a*x+b)/sqrt(4*a*c-b^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 5
+--S 5 of 131
 cc1:=bb1-aa.1
 --R
 --R   (5)
@@ -126,7 +126,7 @@ cc1:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 131
 cc2:=bb1-aa.2
 --R
 --R   (6)
@@ -145,7 +145,7 @@ cc2:=bb1-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 131
 cc3:=bb2-aa.1
 --R
 --R   (7)
@@ -176,7 +176,7 @@ cc3:=bb2-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 131
 cc4:=bb2-aa.2
 --R
 --R                       +--------------+
@@ -192,7 +192,7 @@ cc4:=bb2-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 131
 cc5:=bb3-aa.1
 --R
 --R   (9)
@@ -220,7 +220,7 @@ cc5:=bb3-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 131
 cc6:=bb3-aa.2
 --R
 --R   (10)
@@ -237,7 +237,7 @@ cc6:=bb3-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 131
 dd1:=simplifyLog cc1
 --R
 --R   (11)
@@ -261,7 +261,7 @@ dd1:=simplifyLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:280 Schaums and Axiom differ by a constant
+--S 12 of 131     14:280 Schaums and Axiom differ by a constant
 ee1:=ratDenom dd1
 --R
 --R                      +-+     +-+
@@ -282,7 +282,7 @@ $$
 <<*>>=
 )clear all
 
---S 11
+--S 11 of 131
 aa:=integrate(x/sqrt(a*x^2+b*x+c),x)
 --R 
 --R
@@ -334,7 +334,7 @@ aa:=integrate(x/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 12
+--S 12 of 131
 t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -365,7 +365,7 @@ t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 13
+--S 13 of 131
 bb1:=sqrt(a*x^2+b*x+c)/a-b/(2*a)*t1.1
 --R
 --R   (3)
@@ -393,7 +393,7 @@ bb1:=sqrt(a*x^2+b*x+c)/a-b/(2*a)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 14
+--S 14 of 131
 bb2:=sqrt(a*x^2+b*x+c)/a-b/(2*a)*t1.2
 --R
 --R   (4)
@@ -408,7 +408,7 @@ bb2:=sqrt(a*x^2+b*x+c)/a-b/(2*a)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 131
 cc1:=bb1-aa.1
 --R
 --R   (5)
@@ -454,7 +454,7 @@ cc1:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 131
 cc2:=bb1-aa.2
 --R
 --R   (6)
@@ -494,7 +494,7 @@ cc2:=bb1-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 131
 cc3:=bb2-aa.1
 --R
 --R   (7)
@@ -534,7 +534,7 @@ cc3:=bb2-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 131
 cc4:=bb2-aa.2
 --R
 --R             +--------------+
@@ -547,7 +547,7 @@ cc4:=bb2-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 19     14:281 Schaums and Axiom differ by a constant
+--S 19 of 131     14:281 Schaums and Axiom differ by a constant
 dd1:=ratDenom cc4
 --R
 --R           +-+
@@ -567,7 +567,7 @@ $$
 <<*>>=
 )clear all
 
---S 19
+--S 19 of 131
 aa:=integrate(x^2/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (1)
@@ -651,7 +651,7 @@ aa:=integrate(x^2/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 20
+--S 20 of 131
 t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -682,7 +682,7 @@ t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 21
+--S 21 of 131
 bb1:=(2*a*x-3*b)/(4*a^2)*sqrt(a*x^2+b*x+c)+(3*b^2-4*a*c)/(8*a^2)*t1.1
 --R
 --R   (3)
@@ -710,7 +710,7 @@ bb1:=(2*a*x-3*b)/(4*a^2)*sqrt(a*x^2+b*x+c)+(3*b^2-4*a*c)/(8*a^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 131
 bb2:=(2*a*x-3*b)/(4*a^2)*sqrt(a*x^2+b*x+c)+(3*b^2-4*a*c)/(8*a^2)*t1.2
 --R
 --R   (4)
@@ -729,7 +729,7 @@ bb2:=(2*a*x-3*b)/(4*a^2)*sqrt(a*x^2+b*x+c)+(3*b^2-4*a*c)/(8*a^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 131
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -787,7 +787,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 131
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -851,7 +851,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 131
 cc3:=aa.2-bb1
 --R
 --R   (7)
@@ -915,7 +915,7 @@ cc3:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 131
 cc4:=aa.2-bb2
 --R
 --R   (8)
@@ -935,7 +935,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:282 Schaums and Axiom differ by a constant
+--S 27 of 131     14:282 Schaums and Axiom differ by a constant
 dd4:=ratDenom cc4
 --R
 --R             +-+
@@ -967,7 +967,7 @@ $$
 <<*>>=
 )clear all
 
---S 27
+--S 27 of 131
 aa:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R
 --R                  +--------------+
@@ -981,7 +981,7 @@ aa:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 28
+--S 28 of 131
 bb1:=-1/sqrt(c)*log((2*sqrt(c)*sqrt(a*x^2+b*x+c)+b*x+2*c)/x)
 --R
 --R                    +--------------+
@@ -995,7 +995,7 @@ bb1:=-1/sqrt(c)*log((2*sqrt(c)*sqrt(a*x^2+b*x+c)+b*x+2*c)/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 29
+--S 29 of 131
 bb2:=1/sqrt(-c)*asin((b*x+2*c)/(x*sqrt(b^2-4*a*c)))
 --R
 --R                 b x + 2c
@@ -1009,7 +1009,7 @@ bb2:=1/sqrt(-c)*asin((b*x+2*c)/(x*sqrt(b^2-4*a*c)))
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 131
 bb3:=-1/sqrt(c)*asinh((b*x+2*c)/(x*sqrt(4*a*c-b^2)))
 --R
 --R                   b x + 2c
@@ -1023,7 +1023,7 @@ bb3:=-1/sqrt(c)*asinh((b*x+2*c)/(x*sqrt(4*a*c-b^2)))
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 131
 cc1:=aa-bb1
 --R
 --R   (5)
@@ -1044,7 +1044,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 131
 cc2:=aa-bb2
 --R
 --R   (6)
@@ -1061,7 +1061,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 131
 cc3:=aa-bb3
 --R
 --R                  +--------------+
@@ -1077,7 +1077,7 @@ cc3:=aa-bb3
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 131
 dd1:=expandLog cc1
 --R
 --R   (8)
@@ -1094,7 +1094,7 @@ dd1:=expandLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 131
 ee1:=ratDenom dd1
 --R
 --R   (9)
@@ -1110,7 +1110,7 @@ ee1:=ratDenom dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 36     14:283 Schaums and Axiom differ by a constant
+--S 36 of 131     14:283 Schaums and Axiom differ by a constant
 ff1:=complexNormalize ee1
 --R
 --R                     2  +-+
@@ -1129,7 +1129,7 @@ $$
 <<*>>=
 )clear all
 
---S 37
+--S 37 of 131
 aa:=integrate(1/(x^2*sqrt(a*x^2+b*x+c)),x)
 --R
 --R   (1)
@@ -1153,7 +1153,7 @@ aa:=integrate(1/(x^2*sqrt(a*x^2+b*x+c)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 38
+--S 38 of 131
 t1:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R
 --R                  +--------------+
@@ -1167,7 +1167,7 @@ t1:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 39
+--S 39 of 131
 bb:=-sqrt(a*x^2+b*x+c)/(c*x)-b/(2*c)*t1
 --R
 --R                        +--------------+
@@ -1181,7 +1181,7 @@ bb:=-sqrt(a*x^2+b*x+c)/(c*x)-b/(2*c)*t1
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 131
 cc:=aa-bb
 --R
 --R   (4)
@@ -1215,7 +1215,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 131
 dd:=expandLog cc
 --R
 --R   (5)
@@ -1248,7 +1248,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 131
 ee:=ratDenom dd
 --R
 --R   (6)
@@ -1268,7 +1268,7 @@ ee:=ratDenom dd
 --R                                                     Type: Expression Integer
 --E
 
---S 43     14:284 Schaums and Axiom differ by a constant
+--S 43 of 131     14:284 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R                                   +-+
@@ -1290,7 +1290,7 @@ $$
 <<*>>=
 )clear all
 
---S 44
+--S 44 of 131
 aa:=integrate(sqrt(a*x^2+b*x+c),x)
 --R 
 --R
@@ -1375,7 +1375,7 @@ aa:=integrate(sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 45
+--S 45 of 131
 t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -1406,7 +1406,7 @@ t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 46
+--S 46 of 131
 bb1:=((2*a*x+b)*sqrt(a*x^2+b*x+c))/(4*a)+(4*a*c-b^2)/(8*a)*t1.1
 --R
 --R   (3)
@@ -1434,7 +1434,7 @@ bb1:=((2*a*x+b)*sqrt(a*x^2+b*x+c))/(4*a)+(4*a*c-b^2)/(8*a)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 131
 bb2:=((2*a*x+b)*sqrt(a*x^2+b*x+c))/(4*a)+(4*a*c-b^2)/(8*a)*t1.2
 --R
 --R   (4)
@@ -1453,7 +1453,7 @@ bb2:=((2*a*x+b)*sqrt(a*x^2+b*x+c))/(4*a)+(4*a*c-b^2)/(8*a)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 131
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -1473,7 +1473,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 49
+--S 49 of 131
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -1525,7 +1525,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 131
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -1577,7 +1577,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 131
 cc4:=aa.2-bb2
 --R
 --R   (8)
@@ -1597,7 +1597,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 52     14:285 Schaums and Axiom differ by a constant
+--S 52 of 131     14:285 Schaums and Axiom differ by a constant
 dd4:=ratDenom cc4
 --R
 --R          +-+
@@ -1623,7 +1623,7 @@ $$
 <<*>>=
 )clear all
 
---S 53
+--S 53 of 131
 aa:=integrate(x*sqrt(a*x^2+b*x+c),x)
 --R 
 --R
@@ -1768,7 +1768,7 @@ aa:=integrate(x*sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 54
+--S 54 of 131
 t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -1799,7 +1799,7 @@ t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 55
+--S 55 of 131
 bb1:=(a*x^2+b*x+c)^(3/2)/(3*a)-(b*(2*a*x+b))/(8*a^2)*sqrt(a*x^2+b*x+c)-(b*(4*a*c-b^2))/(16*a^2)*t1.1
 --R
 --R   (3)
@@ -1827,7 +1827,7 @@ bb1:=(a*x^2+b*x+c)^(3/2)/(3*a)-(b*(2*a*x+b))/(8*a^2)*sqrt(a*x^2+b*x+c)-(b*(4*a*c
 --R                                                     Type: Expression Integer
 --E
 
---S 56
+--S 56 of 131
 bb2:=(a*x^2+b*x+c)^(3/2)/(3*a)-(b*(2*a*x+b))/(8*a^2)*sqrt(a*x^2+b*x+c)-(b*(4*a*c-b^2))/(16*a^2)*t1.2
 --R
 --R   (4)
@@ -1846,7 +1846,7 @@ bb2:=(a*x^2+b*x+c)^(3/2)/(3*a)-(b*(2*a*x+b))/(8*a^2)*sqrt(a*x^2+b*x+c)-(b*(4*a*c
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 131
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -1940,7 +1940,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 58
+--S 58 of 131
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -2043,7 +2043,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 59
+--S 59 of 131
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -2146,7 +2146,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 60
+--S 60 of 131
 cc4:=aa.2-bb2
 --R
 --R   (8)
@@ -2178,7 +2178,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 61     14:286 Schaums and Axiom differ by a constant
+--S 61 of 131     14:286 Schaums and Axiom differ by a constant
 dd4:=ratDenom cc4
 --R
 --R                  2  +-+
@@ -2199,7 +2199,7 @@ $$
 <<*>>=
 )clear all
 
---S 62
+--S 62 of 131
 aa:=integrate(x^2*sqrt(a*x^2+b*x+c),x)
 --R 
 --R
@@ -2431,7 +2431,7 @@ aa:=integrate(x^2*sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 63
+--S 63 of 131
 t1:=integrate(sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -2515,7 +2515,7 @@ t1:=integrate(sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 64
+--S 64 of 131
 bb1:=(6*a*x-5*b)/(24*a^2)*(a*x^2+b*x+c)^(3/2)+(5*b^2-4*a*c)/(16*a^2)*t1.1
 --R
 --R   (3)
@@ -2578,7 +2578,7 @@ bb1:=(6*a*x-5*b)/(24*a^2)*(a*x^2+b*x+c)^(3/2)+(5*b^2-4*a*c)/(16*a^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 65
+--S 65 of 131
 bb2:=(6*a*x-5*b)/(24*a^2)*(a*x^2+b*x+c)^(3/2)+(5*b^2-4*a*c)/(16*a^2)*t1.2
 --R
 --R   (4)
@@ -2635,7 +2635,7 @@ bb2:=(6*a*x-5*b)/(24*a^2)*(a*x^2+b*x+c)^(3/2)+(5*b^2-4*a*c)/(16*a^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 66
+--S 66 of 131
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -2831,7 +2831,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 67
+--S 67 of 131
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -3039,7 +3039,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 68
+--S 68 of 131
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -3247,7 +3247,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 131
 cc4:=aa.2-bb2
 --R
 --R   (8)
@@ -3315,7 +3315,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 70     14:287 Schaums and Axiom differ by a constant
+--S 70 of 131     14:287 Schaums and Axiom differ by a constant
 dd4:=ratDenom cc4
 --R
 --R               +-+
@@ -3336,7 +3336,7 @@ $$
 <<*>>=
 )clear all
 
---S 71
+--S 71 of 131
 aa:=integrate(sqrt(a*x^2+b*x+c)/x,x)
 --R 
 --R
@@ -3420,7 +3420,7 @@ aa:=integrate(sqrt(a*x^2+b*x+c)/x,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 72
+--S 72 of 131
 t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -3451,7 +3451,7 @@ t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 73
+--S 73 of 131
 t2:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R
 --R                  +--------------+
@@ -3465,7 +3465,7 @@ t2:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 74
+--S 74 of 131
 bb1:=sqrt(a*x^2+b*x+c)+b/2*t1.1+c*t2
 --R
 --R   (4)
@@ -3499,7 +3499,7 @@ bb1:=sqrt(a*x^2+b*x+c)+b/2*t1.1+c*t2
 --R                                                     Type: Expression Integer
 --E
 
---S 75
+--S 75 of 131
 bb2:=sqrt(a*x^2+b*x+c)+b/2*t1.2+c*t2
 --R
 --R   (5)
@@ -3524,7 +3524,7 @@ bb2:=sqrt(a*x^2+b*x+c)+b/2*t1.2+c*t2
 --R                                                     Type: Expression Integer
 --E
 
---S 76
+--S 76 of 131
 cc1:=aa.1-bb1
 --R
 --R   (6)
@@ -3589,7 +3589,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 77
+--S 77 of 131
 cc2:=aa.2-bb1
 --R
 --R   (7)
@@ -3634,7 +3634,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 78
+--S 78 of 131
 cc3:=aa.1-bb2
 --R
 --R   (8)
@@ -3686,7 +3686,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 79
+--S 79 of 131
 cc4:=aa.2-bb2
 --R
 --R   (9)
@@ -3721,7 +3721,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 80
+--S 80 of 131
 dd4:=ratDenom cc4
 --R
 --R   (10)
@@ -3739,7 +3739,7 @@ dd4:=ratDenom cc4
 --R                                                     Type: Expression Integer
 --E
 
---S 81
+--S 81 of 131
 ee4:=expandLog dd4
 --R
 --R   (11)
@@ -3753,7 +3753,7 @@ ee4:=expandLog dd4
 --R                                                     Type: Expression Integer
 --E
 
---S 82     14:288 Schaums and Axiom differ by a constant
+--S 82 of 131     14:288 Schaums and Axiom differ by a constant
 ff4:=complexNormalize ee4
 --R
 --R                                  +-+
@@ -3774,7 +3774,7 @@ $$
 <<*>>=
 )clear all
 
---S 83
+--S 83 of 131
 aa:=integrate(sqrt(a*x^2+b*x+c)/x^2,x)
 --R 
 --R
@@ -3843,7 +3843,7 @@ aa:=integrate(sqrt(a*x^2+b*x+c)/x^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 84
+--S 84 of 131
 t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -3874,7 +3874,7 @@ t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 85
+--S 85 of 131
 t2:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R
 --R                  +--------------+
@@ -3888,7 +3888,7 @@ t2:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 86
+--S 86 of 131
 bb1:=-sqrt(a*x^2+b*x+c)/x+a*t1.1+b/2*t2
 --R
 --R   (4)
@@ -3922,7 +3922,7 @@ bb1:=-sqrt(a*x^2+b*x+c)/x+a*t1.1+b/2*t2
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 131
 bb2:=-sqrt(a*x^2+b*x+c)/x+a*t1.2+b/2*t2
 --R
 --R   (5)
@@ -3947,7 +3947,7 @@ bb2:=-sqrt(a*x^2+b*x+c)/x+a*t1.2+b/2*t2
 --R                                                     Type: Expression Integer
 --E
 
---S 88
+--S 88 of 131
 cc1:=aa.1-bb1
 --R
 --R   (6)
@@ -4009,7 +4009,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 89
+--S 89 of 131
 cc2:=aa.2-bb1
 --R
 --R   (7)
@@ -4070,7 +4070,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 90
+--S 90 of 131
 cc3:=aa.1-bb2
 --R
 --R   (8)
@@ -4126,7 +4126,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 91
+--S 91 of 131
 cc4:=aa.2-bb2
 --R
 --R   (9)
@@ -4181,7 +4181,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 92
+--S 92 of 131
 dd4:=ratDenom cc4
 --R
 --R   (10)
@@ -4201,7 +4201,7 @@ dd4:=ratDenom cc4
 --R                                                     Type: Expression Integer
 --E
 
---S 93
+--S 93 of 131
 ee4:=expandLog dd4
 --R
 --R   (11)
@@ -4220,7 +4220,7 @@ ee4:=expandLog dd4
 --R                                                     Type: Expression Integer
 --E
 
---S 94     14:289 Schaums and Axiom differ by a constant
+--S 94 of 131     14:289 Schaums and Axiom differ by a constant
 ff4:=complexNormalize ee4
 --R
 --R                                      +-+
@@ -4240,7 +4240,7 @@ $$
 <<*>>=
 )clear all
 
---S 95
+--S 95 of 131
 aa:=integrate(1/(a*x^2+b*x+c)^(3/2),x)
 --R 
 --R
@@ -4254,7 +4254,7 @@ aa:=integrate(1/(a*x^2+b*x+c)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 96
+--S 96 of 131
 bb:=(2*(2*a*x+b))/((4*a*c-b^2)*sqrt(a*x^2+b*x+c))
 --R
 --R                  4a x + 2b
@@ -4265,7 +4265,7 @@ bb:=(2*(2*a*x+b))/((4*a*c-b^2)*sqrt(a*x^2+b*x+c))
 --R                                                     Type: Expression Integer
 --E
 
---S 97
+--S 97 of 131
 cc:=aa-bb
 --R
 --R   (3)
@@ -4279,7 +4279,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 98     14:290 Schaums and Axiom differ by a constant
+--S 98 of 131     14:290 Schaums and Axiom differ by a constant
 dd:=ratDenom cc
 --R
 --R              +-+
@@ -4299,7 +4299,7 @@ $$
 <<*>>=
 )clear all
 
---S 99
+--S 99 of 131
 aa:=integrate(x/(a*x^2+b*x+c)^(3/2),x)
 --R 
 --R
@@ -4312,7 +4312,7 @@ aa:=integrate(x/(a*x^2+b*x+c)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 100
+--S 100 of 131
 bb:=(2*(b*x+2*c))/((b^2-4*a*c)*sqrt(a*x^2+b*x+c))
 --R
 --R                 - 2b x - 4c
@@ -4323,7 +4323,7 @@ bb:=(2*(b*x+2*c))/((b^2-4*a*c)*sqrt(a*x^2+b*x+c))
 --R                                                     Type: Expression Integer
 --E
 
---S 101
+--S 101 of 131
 cc:=aa-bb
 --R
 --R   (3)
@@ -4337,7 +4337,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 102    14:291 Schaums and Axiom differ by a constant
+--S 102 of 131    14:291 Schaums and Axiom differ by a constant
 dd:=ratDenom cc
 --R
 --R              +-+
@@ -4358,7 +4358,7 @@ $$
 <<*>>=
 )clear all
 
---S 103
+--S 103 of 131
 aa:=integrate(x^2/(a*x^2+b*x+c)^(3/2),x)
 --R 
 --R
@@ -4416,7 +4416,7 @@ aa:=integrate(x^2/(a*x^2+b*x+c)^(3/2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 104
+--S 104 of 131
 t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R
 --R   (2)
@@ -4447,7 +4447,7 @@ t1:=integrate(1/sqrt(a*x^2+b*x+c),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 105
+--S 105 of 131
 bb1:=((2*b^2-4*a*c)*x+2*b*c)/(a*(4*a*c-b^2)*sqrt(a*x^2+b*x+c))+1/a*t1.1
 --R
 --R   (3)
@@ -4476,7 +4476,7 @@ bb1:=((2*b^2-4*a*c)*x+2*b*c)/(a*(4*a*c-b^2)*sqrt(a*x^2+b*x+c))+1/a*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 106
+--S 106 of 131
 bb2:=((2*b^2-4*a*c)*x+2*b*c)/(a*(4*a*c-b^2)*sqrt(a*x^2+b*x+c))+1/a*t1.2
 --R
 --R   (4)
@@ -4495,7 +4495,7 @@ bb2:=((2*b^2-4*a*c)*x+2*b*c)/(a*(4*a*c-b^2)*sqrt(a*x^2+b*x+c))+1/a*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 107
+--S 107 of 131
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -4509,7 +4509,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 108
+--S 108 of 131
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -4558,7 +4558,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 109
+--S 109 of 131
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -4607,7 +4607,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 110
+--S 110 of 131
 cc4:=aa.2-bb2
 --R
 --R   (8)
@@ -4621,7 +4621,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 111    14:292 Schaums and Axiom differ by a constant
+--S 111 of 131    14:292 Schaums and Axiom differ by a constant
 dd4:=ratDenom cc4
 --R
 --R              +-+
@@ -4643,7 +4643,7 @@ $$
 <<*>>=
 )clear all
 
---S 112
+--S 112 of 131
 aa:=integrate(1/(x*(a*x^2+b*x+c)^(3/2)),x)
 --R 
 --R
@@ -4669,7 +4669,7 @@ aa:=integrate(1/(x*(a*x^2+b*x+c)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 113
+--S 113 of 131
 t1:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R
 --R                  +--------------+
@@ -4683,7 +4683,7 @@ t1:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 114
+--S 114 of 131
 t2:=integrate(1/(a*x^2+b*x+c)^(3/2),x)
 --R
 --R                          +--------------+
@@ -4696,7 +4696,7 @@ t2:=integrate(1/(a*x^2+b*x+c)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 115
+--S 115 of 131
 bb:=1/(c*sqrt(a*x^2+b*x+c))+1/c*t1-b/(2*c)*t2
 --R
 --R   (4)
@@ -4726,7 +4726,7 @@ bb:=1/(c*sqrt(a*x^2+b*x+c))+1/c*t1-b/(2*c)*t2
 --R                                                     Type: Expression Integer
 --E
 
---S 116
+--S 116 of 131
 cc:=aa-bb
 --R
 --R   (5)
@@ -4773,7 +4773,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 117
+--S 117 of 131
 dd:=ratDenom cc
 --R
 --R   (6)
@@ -4794,7 +4794,7 @@ dd:=ratDenom cc
 --R                                                     Type: Expression Integer
 --E
 
---S 118
+--S 118 of 131
 ee:=expandLog dd
 --R
 --R   (7)
@@ -4814,7 +4814,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 119    14:293 Schaums and Axiom differ by a constant
+--S 119 of 131    14:293 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R                                 +-+
@@ -4840,7 +4840,7 @@ $$
 <<*>>=
 )clear all
 
---S 120
+--S 120 of 131
 aa:=integrate(1/(x^2*(a*x^2+b*x+c)^(3/2)),x)
 --R 
 --R
@@ -4881,7 +4881,7 @@ aa:=integrate(1/(x^2*(a*x^2+b*x+c)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 121
+--S 121 of 131
 t1:=integrate(1/(a*x^2+b*x+c)^(3/2),x)
 --R
 --R                          +--------------+
@@ -4894,7 +4894,7 @@ t1:=integrate(1/(a*x^2+b*x+c)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 122
+--S 122 of 131
 t2:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R
 --R                  +--------------+
@@ -4908,7 +4908,7 @@ t2:=integrate(1/(x*sqrt(a*x^2+b*x+c)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 123
+--S 123 of 131
 bb:=-(a*x^2+2*b*x+c)/(c^2*x*sqrt(a*x^2+b*x+c))+(b^2-2*a*c)/(2*c^2)*t1-(3*b)/(2*c^2)*t2
 --R
 --R   (4)
@@ -4947,7 +4947,7 @@ bb:=-(a*x^2+2*b*x+c)/(c^2*x*sqrt(a*x^2+b*x+c))+(b^2-2*a*c)/(2*c^2)*t1-(3*b)/(2*c
 --R                                                     Type: Expression Integer
 --E
 
---S 124
+--S 124 of 131
 cc:=aa-bb
 --R
 --R   (5)
@@ -5024,7 +5024,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 125
+--S 125 of 131
 dd:=ratDenom cc
 --R
 --R   (6)
@@ -5045,7 +5045,7 @@ dd:=ratDenom cc
 --R                                                     Type: Expression Integer
 --E
 
---S 126
+--S 126 of 131
 ee:=expandLog dd
 --R
 --R   (7)
@@ -5065,7 +5065,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 127    14:294 Schaums and Axiom differ by a constant
+--S 127 of 131    14:294 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R                                     +-+
@@ -5090,7 +5090,7 @@ $$
 <<*>>=
 )clear all
 
---S 128    14:295 Axiom cannot compute this integral
+--S 128 of 131    14:295 Axiom cannot compute this integral
 aa:=integrate((a*x^2+b*x+c)^(n+1/2),x)
 --R 
 --R
@@ -5112,7 +5112,7 @@ $$
 <<*>>=
 )clear all
 
---S 129    14:296 Axiom cannot compute this integral
+--S 129 of 131    14:296 Axiom cannot compute this integral
 aa:=integrate(x*(a*x^2+b*x+c)^(n+1/2),x)
 --R 
 --R
@@ -5138,7 +5138,7 @@ $$
 <<*>>=
 )clear all
 
---S 130    14:297 Axiom cannot compute this integral
+--S 130 of 131    14:297 Axiom cannot compute this integral
 aa:=integrate(1/(a*x^2+b*x+c)^(n+1/2),x)
 --R 
 --R
@@ -5169,7 +5169,7 @@ $$
 <<*>>=
 )clear all
 
---S 131    14:298 Axiom cannot compute this integral
+--S 131 of 131    14:298 Axiom cannot compute this integral
 aa:=integrate(1/(x*(a*x^2+b*x+c)^(n+1/2)),x)
 --R 
 --R
diff --git a/src/input/schaum14.input.pamphlet b/src/input/schaum14.input.pamphlet
index 3452b30..dacd0ee 100644
--- a/src/input/schaum14.input.pamphlet
+++ b/src/input/schaum14.input.pamphlet
@@ -19,7 +19,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 39
 aa:=integrate(1/(x^3+a^3),x)
 --R 
 --R
@@ -33,7 +33,7 @@ aa:=integrate(1/(x^3+a^3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 39
 bb:=1/(6*a^2)*log((x+a)^2/(x^2-a*x+a^2))+1/(a^2*sqrt(3))*atan((2*x-a)/(a*sqrt(3)))
 --R
 --R             2           2                       +-+
@@ -47,7 +47,7 @@ bb:=1/(6*a^2)*log((x+a)^2/(x^2-a*x+a^2))+1/(a^2*sqrt(3))*atan((2*x-a)/(a*sqrt(3)
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 39
 cc:=aa-bb
 --R
 --R                                                  2           2
@@ -61,7 +61,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4      14:299 Schaums and Axiom agree
+--S 4 of 39      14:299 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -78,7 +78,7 @@ $$
 <<*>>=
 )clear all
 
---S 5
+--S 5 of 39
 aa:=integrate(x/(x^3+a^3),x)
 --R 
 --R
@@ -92,7 +92,7 @@ aa:=integrate(x/(x^3+a^3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 6
+--S 6 of 39
 bb:=1/(6*a)*log((x^2-a*x+a^2)/(x+a)^2)+1/(a*sqrt(3))*atan((2*x-a)/(a*sqrt(3)))
 --R
 --R              2          2                       +-+
@@ -105,7 +105,7 @@ bb:=1/(6*a)*log((x^2-a*x+a^2)/(x+a)^2)+1/(a*sqrt(3))*atan((2*x-a)/(a*sqrt(3)))
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 39
 cc:=aa-bb
 --R
 --R                                                 2          2
@@ -118,7 +118,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 8      14:300 Schaums and Axiom agree
+--S 8 of 39      14:300 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -134,7 +134,7 @@ $$
 <<*>>=
 )clear all
 
---S 9
+--S 9 of 39
 aa:=integrate(x^2/(x^3+a^3),x)
 --R 
 --R
@@ -145,7 +145,7 @@ aa:=integrate(x^2/(x^3+a^3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 10
+--S 10 of 39
 bb:=1/3*log(x^3+a^3)
 --R
 --R             3    3
@@ -155,7 +155,7 @@ bb:=1/3*log(x^3+a^3)
 --R                                                     Type: Expression Integer
 --E
 
---S 11     14:301 Schaums and Axiom agree
+--S 11 of 39     14:301 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -171,7 +171,7 @@ $$
 <<*>>=
 )clear all
 
---S 12
+--S 12 of 39
 aa:=integrate(1/(x*(x^3+a^3)),x)
 --R 
 --R
@@ -183,7 +183,7 @@ aa:=integrate(1/(x*(x^3+a^3)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 13
+--S 13 of 39
 bb:=1/(3*a^3)*log(x^3/(x^3+a^3))
 --R
 --R                3
@@ -197,7 +197,7 @@ bb:=1/(3*a^3)*log(x^3/(x^3+a^3))
 --R                                                     Type: Expression Integer
 --E
 
---S 14
+--S 14 of 39
 cc:=aa-bb
 --R
 --R                                           3
@@ -211,7 +211,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 15     14:302 Schaums and Axiom agree
+--S 15 of 39     14:302 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -228,7 +228,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 39
 aa:=integrate(1/(x^2*(x^3+a^3)),x)
 --R 
 --R
@@ -243,7 +243,7 @@ aa:=integrate(1/(x^2*(x^3+a^3)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 16
+--S 16 of 39
 bb:=-1/(a^3*x)-1/(6*a^4)*log((x^2-a*x+a^2)/(x+a)^2)-1/(a^4*sqrt(3))*atan((2*x-a)/(a*sqrt(3)))
 --R
 --R                  2          2                        +-+
@@ -257,7 +257,7 @@ bb:=-1/(a^3*x)-1/(6*a^4)*log((x^2-a*x+a^2)/(x+a)^2)-1/(a^4*sqrt(3))*atan((2*x-a)
 --R                                                     Type: Expression Integer
 --E 
 
---S 17
+--S 17 of 39
 cc:=aa-bb
 --R
 --R                                                   2          2
@@ -271,7 +271,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 18     14:303 Schaums and Axiom agree
+--S 18 of 39     14:303 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -289,7 +289,7 @@ $$
 <<*>>=
 )clear all
 
---S 19
+--S 19 of 39
 aa:=integrate(1/(x^3+a^3)^2,x)
 --R 
 --R
@@ -307,7 +307,7 @@ aa:=integrate(1/(x^3+a^3)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 20
+--S 20 of 39
 bb:=x/(3*a^3*(x^3+a^3))+1/(9*a^5)*log((x+a)^2/(x^2-a*x+a^2))+2/(3*a^5*sqrt(3))*atan((2*x-a)/(a*sqrt(3)))
 --R
 --R   (2)
@@ -322,7 +322,7 @@ bb:=x/(3*a^3*(x^3+a^3))+1/(9*a^5)*log((x+a)^2/(x^2-a*x+a^2))+2/(3*a^5*sqrt(3))*a
 --R                                                     Type: Expression Integer
 --E
 
---S 21
+--S 21 of 39
 cc:=aa-bb
 --R
 --R                                                  2           2
@@ -336,7 +336,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 22     14:304 Schaums and Axiom agree
+--S 22 of 39     14:304 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -354,7 +354,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 39
 aa:=integrate(x/(x^3+a^3)^2,x)
 --R 
 --R
@@ -372,7 +372,7 @@ aa:=integrate(x/(x^3+a^3)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 39
 bb:=x^2/(3*a^3*(x^3+a^3))+1/(18*a^4)*log((x^2-a*x+a^2)/(x+a)^2)+1/(3*a^4*sqrt(3))*atan((2*x-a)/(a*sqrt(3)))
 --R
 --R   (2)
@@ -387,7 +387,7 @@ bb:=x^2/(3*a^3*(x^3+a^3))+1/(18*a^4)*log((x^2-a*x+a^2)/(x+a)^2)+1/(3*a^4*sqrt(3)
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 39
 cc:=aa-bb
 --R
 --R                                                 2          2
@@ -401,7 +401,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 26     14:305 Schaums and Axiom agree
+--S 26 of 39     14:305 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -417,7 +417,7 @@ $$
 <<*>>=
 )clear all
 
---S 27
+--S 27 of 39
 aa:=integrate(x^2/(x^3+a^3)^2,x)
 --R 
 --R
@@ -428,7 +428,7 @@ aa:=integrate(x^2/(x^3+a^3)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 28
+--S 28 of 39
 bb:=-1/(3*(x^3+a^3))
 --R
 --R              1
@@ -438,7 +438,7 @@ bb:=-1/(3*(x^3+a^3))
 --R                                            Type: Fraction Polynomial Integer
 --E 
 
---S 29     14:306 Schaums and Axiom agree
+--S 29 of 39     14:306 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -454,7 +454,7 @@ $$
 <<*>>=
 )clear all
 
---S 30
+--S 30 of 39
 aa:=integrate(1/(x*(x^3+a^3)^2),x)
 --R 
 --R
@@ -466,7 +466,7 @@ aa:=integrate(1/(x*(x^3+a^3)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 31
+--S 31 of 39
 bb:=1/(3*a^3*(x^3+a^3))+1/(3*a^6)*log(x^3/(x^3+a^3))
 --R
 --R                         3
@@ -480,7 +480,7 @@ bb:=1/(3*a^3*(x^3+a^3))+1/(3*a^6)*log(x^3/(x^3+a^3))
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 39
 cc:=aa-bb
 --R
 --R                                           3
@@ -494,7 +494,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 33     14:307 Schaums and Axiom agree
+--S 33 of 39     14:307 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -511,7 +511,7 @@ $$
 <<*>>=
 )clear all
 
---S 34
+--S 34 of 39
 aa:=integrate(1/(x^2*(x^3+a^3)^2),x)
 --R 
 --R
@@ -529,7 +529,7 @@ aa:=integrate(1/(x^2*(x^3+a^3)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 35
+--S 35 of 39
 t1:=integrate(x/(x^3+a^3),x)
 --R
 --R                                                                  +-+
@@ -542,7 +542,7 @@ t1:=integrate(x/(x^3+a^3),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 36
+--S 36 of 39
 bb:=-1/(a^6*x)-x^2/(3*a^6*(x^3+a^3))-4/(3*a^6)*t1
 --R
 --R   (3)
@@ -559,7 +559,7 @@ bb:=-1/(a^6*x)-x^2/(3*a^6*(x^3+a^3))-4/(3*a^6)*t1
 --R                                                     Type: Expression Integer
 --E 
 
---S 37     14:308 Schaums and Axiom agree
+--S 37 of 39     14:308 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (4)  0
@@ -575,7 +575,7 @@ $$
 <<*>>=
 )clear all
 
---S 38     14:309 Axiom cannot compute this integral
+--S 38 of 39     14:309 Axiom cannot compute this integral
 aa:=integrate(x^m/(x^3+a^3),x)
 --R 
 --R
@@ -596,7 +596,7 @@ $$
 <<*>>=
 )clear all
 
---S 39     14:310 Axiom cannot compute this integral
+--S 39 of 39     14:310 Axiom cannot compute this integral
 aa:=integrate(1/(x^n*(x^3+a^3)),x)
 --R 
 --R
diff --git a/src/input/schaum15.input.pamphlet b/src/input/schaum15.input.pamphlet
index 0c01fbb..3a02bf0 100644
--- a/src/input/schaum15.input.pamphlet
+++ b/src/input/schaum15.input.pamphlet
@@ -20,7 +20,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 65
 aa:=integrate(1/(x^4+a^4),x)
 --R 
 --R
@@ -54,7 +54,7 @@ aa:=integrate(1/(x^4+a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 65
 bb:=1/(4*a^3*sqrt(2))*log((x^2+a*x*sqrt(2)+a^2)/(x^2-a*x*sqrt(2)+a^2))-1/(2*a^3*sqrt(2))*atan((a*x*sqrt(2))/(x^2-a^2))
 --R
 --R                      +-+    2    2                  +-+
@@ -68,7 +68,7 @@ bb:=1/(4*a^3*sqrt(2))*log((x^2+a*x*sqrt(2)+a^2)/(x^2-a*x*sqrt(2)+a^2))-1/(2*a^3*
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 65
 cc:=aa-bb
 --R
 --R   (3)
@@ -119,7 +119,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 65
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -130,7 +130,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 5
+--S 5 of 65
 dd:=atanrule cc
 --R
 --R   (5)
@@ -181,7 +181,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 6
+--S 6 of 65
 ee:=rootSimp dd
 --R
 --R   (6)
@@ -208,7 +208,7 @@ ee:=rootSimp dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 7
+--S 7 of 65
 ff:=expandLog ee
 --R
 --R   (7)
@@ -228,7 +228,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 8
+--S 8 of 65
 gg:=complexNormalize ff
 --R
 --R               %i             %i
@@ -240,7 +240,7 @@ gg:=complexNormalize ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 9      14:311 Schaums and Axiom differ by a constant
+--S 9 of 65      14:311 Schaums and Axiom differ by a constant
 hh:=expandLog gg
 --R
 --R        %i log(%i) - %i log(- %i) + (- 2 - %i)log(- 1)
@@ -259,7 +259,7 @@ $$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 65
 aa:=integrate(x/(x^4+a^4),x)
 --R 
 --R
@@ -274,7 +274,7 @@ aa:=integrate(x/(x^4+a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 65
 bb:=1/(2*a^2)*atan(x^2/a^2)
 --R
 --R              2
@@ -288,7 +288,7 @@ bb:=1/(2*a^2)*atan(x^2/a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:312 Schaums and Axiom agree
+--S 12 of 65     14:312 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -306,7 +306,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 65
 aa:=integrate(x^2/(x^4+a^4),x)
 --R 
 --R
@@ -340,7 +340,7 @@ aa:=integrate(x^2/(x^4+a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 65
 bb:=1/(4*a*sqrt(2))*log((x^2-a*x*sqrt(2)+a^2)/(x^2+a*x*sqrt(2)+a^2))-1/(2*a*sqrt(2))*atan((a*x*sqrt(2))/(x^2-a^2))
 --R
 --R                      +-+    2    2                  +-+
@@ -353,7 +353,7 @@ bb:=1/(4*a*sqrt(2))*log((x^2-a*x*sqrt(2)+a^2)/(x^2+a*x*sqrt(2)+a^2))-1/(2*a*sqrt
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 65
 cc:=aa-bb
 --R
 --R   (3)
@@ -404,7 +404,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 65
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -415,7 +415,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 17
+--S 17 of 65
 dd:=atanrule cc
 --R
 --R   (5)
@@ -466,7 +466,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 18
+--S 18 of 65
 ee:=expandLog dd
 --R
 --R   (6)
@@ -519,7 +519,7 @@ ee:=expandLog dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 19
+--S 19 of 65
 ff:=rootSimp ee
 --R
 --R   (7)
@@ -537,7 +537,7 @@ ff:=rootSimp ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 20     14:313 Schaums and Axiom differ by a constant
+--S 20 of 65     14:313 Schaums and Axiom differ by a constant
 gg:=complexNormalize ff
 --R
 --R        %i log(2) - %i log(- 1) - %i log(- 2)
@@ -556,7 +556,7 @@ $$
 <<*>>=
 )clear all
 
---S 21
+--S 21 of 65
 aa:=integrate(x^3/(x^4+a^4),x)
 --R 
 --R
@@ -567,7 +567,7 @@ aa:=integrate(x^3/(x^4+a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 22
+--S 22 of 65
 bb:=1/4*log(x^4+a^4)
 --R
 --R             4    4
@@ -577,7 +577,7 @@ bb:=1/4*log(x^4+a^4)
 --R                                                     Type: Expression Integer
 --E 
 
---S 23     14:314 Schaums and Axiom agree
+--S 23 of 65     14:314 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -593,7 +593,7 @@ $$
 <<*>>=
 )clear all
 
---S 24
+--S 24 of 65
 aa:=integrate(1/(x*(x^4+a^4)),x)
 --R 
 --R
@@ -605,7 +605,7 @@ aa:=integrate(1/(x*(x^4+a^4)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 25
+--S 25 of 65
 bb:=1/(4*a^4)*log(x^4/(x^4+a^4))
 --R
 --R                4
@@ -619,7 +619,7 @@ bb:=1/(4*a^4)*log(x^4/(x^4+a^4))
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 65
 cc:=aa-bb
 --R
 --R                                           4
@@ -633,7 +633,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:315 Schaums and Axiom agree
+--S 27 of 65     14:315 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -651,7 +651,7 @@ $$
 <<*>>=
 )clear all
 
---S 28
+--S 28 of 65
 aa:=integrate(1/(x^2*(x^4+a^4)),x)
 --R 
 --R
@@ -697,7 +697,7 @@ aa:=integrate(1/(x^2*(x^4+a^4)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 29
+--S 29 of 65
 bb:=-1/(a^4*x)-1/(4*a^5*sqrt(2))*log((x^2-a*x*sqrt(2)+a^2)/(x^2+a*x*sqrt(2)+a^2))+1/(2*a^5*sqrt(2))*atan((a*x*sqrt(2))/(x^2-a^2))
 --R
 --R                         +-+    2    2                   +-+
@@ -711,7 +711,7 @@ bb:=-1/(a^4*x)-1/(4*a^5*sqrt(2))*log((x^2-a*x*sqrt(2)+a^2)/(x^2+a*x*sqrt(2)+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 65
 cc:=aa-bb
 --R
 --R   (3)
@@ -762,7 +762,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 65
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -773,7 +773,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 32
+--S 32 of 65
 dd:=atanrule cc
 --R
 --R   (5)
@@ -824,7 +824,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 33
+--S 33 of 65
 ee:=expandLog dd
 --R
 --R   (6)
@@ -881,7 +881,7 @@ ee:=expandLog dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 34
+--S 34 of 65
 ff:=rootSimp ee
 --R
 --R   (7)
@@ -901,7 +901,7 @@ ff:=rootSimp ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 35     14:316 Schaums and Axiom differ by a constant
+--S 35 of 65     14:316 Schaums and Axiom differ by a constant
 gg:=complexNormalize ff
 --R
 --R        - %i log(2) + %i log(- 1) + %i log(- 2)
@@ -920,7 +920,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 65
 aa:=integrate(1/(x^3*(x^4+a^4)),x)
 --R 
 --R
@@ -935,7 +935,7 @@ aa:=integrate(1/(x^3*(x^4+a^4)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 37
+--S 37 of 65
 bb:=-1/(2*a^4*x^2)-1/(2*a^6)*atan(x^2/a^2)
 --R
 --R                  2
@@ -949,7 +949,7 @@ bb:=-1/(2*a^4*x^2)-1/(2*a^6)*atan(x^2/a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 38     14:317 Schaums and Axiom agree
+--S 38 of 65     14:317 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -966,7 +966,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 65
 aa:=integrate(1/(x^4-a^4),x)
 --R 
 --R
@@ -979,7 +979,7 @@ aa:=integrate(1/(x^4-a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 40
+--S 40 of 65
 bb:=1/(4*a^3)*log((x-a)/(x+a))-1/(2*a^3)*atan(x/a)
 --R
 --R            x - a          x
@@ -991,7 +991,7 @@ bb:=1/(4*a^3)*log((x-a)/(x+a))-1/(2*a^3)*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 65
 cc:=aa-bb
 --R
 --R                                        x - a
@@ -1003,7 +1003,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 42     14:318 Schaums and Axiom agree
+--S 42 of 65     14:318 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1019,7 +1019,7 @@ $$
 <<*>>=
 )clear all
 
---S 43
+--S 43 of 65
 aa:=integrate(x/(x^4-a^4),x)
 --R 
 --R
@@ -1031,7 +1031,7 @@ aa:=integrate(x/(x^4-a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 44
+--S 44 of 65
 bb:=1/(4*a^2)*log((x^2-a^2)/(x^2+a^2))
 --R
 --R             2    2
@@ -1045,7 +1045,7 @@ bb:=1/(4*a^2)*log((x^2-a^2)/(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 65
 cc:=aa-bb
 --R
 --R                                             2    2
@@ -1059,7 +1059,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 46     14:319 Schaums and Axiom agree
+--S 46 of 65     14:319 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1076,7 +1076,7 @@ $$
 <<*>>=
 )clear all
 
---S 47
+--S 47 of 65
 aa:=integrate(x^2/(x^4-a^4),x)
 --R 
 --R
@@ -1088,7 +1088,7 @@ aa:=integrate(x^2/(x^4-a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 48
+--S 48 of 65
 bb:=1/(4*a)*log((x-a)/(x+a))+1/(2*a)*atan(x/a)
 --R
 --R            x - a          x
@@ -1099,7 +1099,7 @@ bb:=1/(4*a)*log((x-a)/(x+a))+1/(2*a)*atan(x/a)
 --R                                                     Type: Expression Integer
 --E 
 
---S 49
+--S 49 of 65
 cc:=aa-bb
 --R
 --R                                        x - a
@@ -1110,7 +1110,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 50     14:320 Schaums and Axiom agree
+--S 50 of 65     14:320 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1126,7 +1126,7 @@ $$
 <<*>>=
 )clear all
 
---S 51
+--S 51 of 65
 aa:=integrate(x^3/(x^4-a^4),x)
 --R 
 --R
@@ -1137,7 +1137,7 @@ aa:=integrate(x^3/(x^4-a^4),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 52
+--S 52 of 65
 bb:=1/4*log(x^4-a^4)
 --R
 --R             4    4
@@ -1147,7 +1147,7 @@ bb:=1/4*log(x^4-a^4)
 --R                                                     Type: Expression Integer
 --E
 
---S 53     14:321 Schaums and Axiom agree
+--S 53 of 65     14:321 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1163,7 +1163,7 @@ $$
 <<*>>=
 )clear all
 
---S 54
+--S 54 of 65
 aa:=integrate(1/(x*(x^4-a^4)),x)
 --R 
 --R
@@ -1175,7 +1175,7 @@ aa:=integrate(1/(x*(x^4-a^4)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 55
+--S 55 of 65
 bb:=1/(4*a^4)*log((x^4-a^4)/x^4)
 --R
 --R             4    4
@@ -1189,7 +1189,7 @@ bb:=1/(4*a^4)*log((x^4-a^4)/x^4)
 --R                                                     Type: Expression Integer
 --E 
 
---S 56
+--S 56 of 65
 cc:=aa-bb
 --R
 --R                                      4    4
@@ -1203,7 +1203,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 57     14:322 Schaums and Axiom agree
+--S 57 of 65     14:322 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1220,7 +1220,7 @@ $$
 <<*>>=
 )clear all
 
---S 58
+--S 58 of 65
 aa:=integrate(1/(x^2*(x^4-a^4)),x)
 --R 
 --R
@@ -1233,7 +1233,7 @@ aa:=integrate(1/(x^2*(x^4-a^4)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 59
+--S 59 of 65
 bb:=1/(a^4*x)+1/(4*a^5)*log((x-a)/(x+a))+1/(2*a^5)*atan(x/a)
 --R
 --R              x - a            x
@@ -1245,7 +1245,7 @@ bb:=1/(a^4*x)+1/(4*a^5)*log((x-a)/(x+a))+1/(2*a^5)*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 60
+--S 60 of 65
 cc:=aa-bb
 --R
 --R                                        x - a
@@ -1257,7 +1257,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 61     14:323 Schaums and Axiom agree
+--S 61 of 65     14:323 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1273,7 +1273,7 @@ $$
 <<*>>=
 )clear all
 
---S 62
+--S 62 of 65
 aa:=integrate(1/(x^3*(x^4-a^4)),x)
 --R 
 --R
@@ -1285,7 +1285,7 @@ aa:=integrate(1/(x^3*(x^4-a^4)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 63
+--S 63 of 65
 bb:=1/(2*a^4*x^2)+1/(4*a^6)*log((x^2-a^2)/(x^2+a^2))
 --R
 --R               2    2
@@ -1299,7 +1299,7 @@ bb:=1/(2*a^4*x^2)+1/(4*a^6)*log((x^2-a^2)/(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 64
+--S 64 of 65
 cc:=aa-bb
 --R
 --R                                             2    2
@@ -1313,7 +1313,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 65     14:324 Schaums and Axiom agree
+--S 65 of 65     14:324 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
diff --git a/src/input/schaum16.input.pamphlet b/src/input/schaum16.input.pamphlet
index caf8bfd..4288115 100644
--- a/src/input/schaum16.input.pamphlet
+++ b/src/input/schaum16.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 45
 aa:=integrate(1/(x*(x^n+a^n)),x)
 --R
 --R                n log(x)    n
@@ -29,7 +29,7 @@ aa:=integrate(1/(x*(x^n+a^n)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 45
 bb:=1/(n*a^n)*log(x^n/(x^n+a^n))
 --R
 --R                n
@@ -43,7 +43,7 @@ bb:=1/(n*a^n)*log(x^n/(x^n+a^n))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 45
 cc:=aa-bb
 --R
 --R                                         n
@@ -57,7 +57,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 45
 dd:=expandLog cc
 --R
 --R                n log(x)    n         n    n         n
@@ -68,7 +68,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 5      14:325 Schaums and Axiom agree
+--S 5 of 45      14:325 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (5)  0
@@ -84,7 +84,7 @@ $$
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 45
 aa:=integrate(x^(n-1)/(x^n+a^n),x)
 --R 
 --R
@@ -95,7 +95,7 @@ aa:=integrate(x^(n-1)/(x^n+a^n),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 45
 bb:=1/n*log(x^n+a^n)
 --R
 --R             n    n
@@ -105,7 +105,7 @@ bb:=1/n*log(x^n+a^n)
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 45
 cc:=aa-bb
 --R
 --R              n log(x)    n         n    n
@@ -115,7 +115,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 45
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -123,7 +123,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 12     14:326 Schaums and Axiom agree
+--S 12 of 45     14:326 Schaums and Axiom agree
 dd:=explog cc
 --R
 --R   (5)  0
@@ -140,7 +140,7 @@ $$
 <<*>>=
 )clear all
 
---S 13     14:327 Axiom cannot compute this integral
+--S 13 of 45     14:327 Axiom cannot compute this integral
 aa:=integrate(x^m/(x^n+a^n)^r,x)
 --R 
 --R
@@ -162,7 +162,7 @@ $$
 <<*>>=
 )clear all
 
---S 14     14:328 Axiom cannot compute this integral
+--S 14 of 45     14:328 Axiom cannot compute this integral
 aa:=integrate(1/(x^m*(x^n+a^n)^r),x)
 --R 
 --R
@@ -184,7 +184,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 45
 aa:=integrate(1/(x*sqrt(x^n+a^n)),x)
 --R 
 --R
@@ -212,7 +212,7 @@ aa:=integrate(1/(x*sqrt(x^n+a^n)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 16
+--S 16 of 45
 bb:=1/(n*sqrt(a^n))*log((sqrt(x^n+a^n)-sqrt(a^n))/(sqrt(x^n+a^n)+sqrt(a^n)))
 --R
 --R             +-------+    +--+
@@ -229,7 +229,7 @@ bb:=1/(n*sqrt(a^n))*log((sqrt(x^n+a^n)-sqrt(a^n))/(sqrt(x^n+a^n)+sqrt(a^n)))
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 45
 cc1:=aa.1-bb
 --R
 --R   (3)
@@ -254,7 +254,7 @@ cc1:=aa.1-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 45
 dd1:=expandLog cc1
 --R
 --R   (4)
@@ -272,7 +272,7 @@ dd1:=expandLog cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 45
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -280,7 +280,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 20
+--S 20 of 45
 ee1:=explog dd1
 --R
 --R   (6)
@@ -298,7 +298,7 @@ ee1:=explog dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 21
+--S 21 of 45
 ff1:=complexNormalize ee1
 --R
 --R        n log(a) + 4log(- 1)
@@ -309,7 +309,7 @@ ff1:=complexNormalize ee1
 --R                                                     Type: Expression Integer
 --E
 
---S 22     14:329 Schaums and Axiom differ by a constant
+--S 22 of 45     14:329 Schaums and Axiom differ by a constant
 gg1:=explog ff1
 --R
 --R        n log(a) + 4log(- 1)
@@ -329,7 +329,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 45
 aa:=integrate(1/(x*(x^n-a^n)),x)
 --R 
 --R
@@ -341,7 +341,7 @@ aa:=integrate(1/(x*(x^n-a^n)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 45
 bb:=1/(n*a^n)*log((x^n-a^n)/x^n)
 --R
 --R             n    n
@@ -355,7 +355,7 @@ bb:=1/(n*a^n)*log((x^n-a^n)/x^n)
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 45
 cc:=aa-bb
 --R
 --R                                    n    n
@@ -369,7 +369,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 45
 dd:=expandLog cc
 --R
 --R              n log(x)    n         n         n    n
@@ -380,7 +380,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 45
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -388,7 +388,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 28
+--S 28 of 45
 ee:=explog dd
 --R
 --R             n
@@ -399,7 +399,7 @@ ee:=explog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 29
+--S 29 of 45
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -407,7 +407,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 30     14:330 Schaums and Axiom agree
+--S 30 of 45     14:330 Schaums and Axiom agree
 ff:=logpow ee
 --R
 --R   (8)  0
@@ -423,7 +423,7 @@ $$
 <<*>>=
 )clear all
 
---S 31
+--S 31 of 45
 aa:=integrate(x^(n-1)/(x^n-a^n),x)
 --R 
 --R
@@ -434,7 +434,7 @@ aa:=integrate(x^(n-1)/(x^n-a^n),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 32
+--S 32 of 45
 bb:=1/n*log(x^n-a^n)
 --R
 --R             n    n
@@ -444,7 +444,7 @@ bb:=1/n*log(x^n-a^n)
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 45
 cc:=aa-bb
 --R
 --R              n log(x)    n         n    n
@@ -454,7 +454,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 45
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -462,7 +462,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 35     14:331 Schaums and Axiom agree
+--S 35 of 45     14:331 Schaums and Axiom agree
 dd:=explog cc
 --R
 --R   (5)  0
@@ -480,7 +480,7 @@ $$
 <<*>>=
 )clear all
 
---S 36     14:332 Axiom cannot compute this integral
+--S 36 of 45     14:332 Axiom cannot compute this integral
 aa:=integrate(x^m/(x^n-a^n)^r,x)
 --R 
 --R
@@ -502,7 +502,7 @@ $$
 <<*>>=
 )clear all
 
---S 37     14:333 Axiom cannot compute this integral
+--S 37 of 45     14:333 Axiom cannot compute this integral
 aa:=integrate(1/(x^m*(x^n-a^n)^r),x)
 --R 
 --R
@@ -523,7 +523,7 @@ $$
 <<*>>=
 )clear all
 
---S 38
+--S 38 of 45
 aa:=integrate(1/(x*sqrt(x^n-a^n)),x)
 --R 
 --R
@@ -551,7 +551,7 @@ aa:=integrate(1/(x*sqrt(x^n-a^n)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 39
+--S 39 of 45
 bb:=2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n))
 --R
 --R               +--+
@@ -567,7 +567,7 @@ bb:=2/(n*sqrt(a^n))*acos(sqrt(a^n/x^n))
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 45
 cc1:=aa.1-bb
 --R
 --R   (3)
@@ -591,7 +591,7 @@ cc1:=aa.1-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 41     14:334 Axiom cannot simplify this expression
+--S 41 of 45     14:334 Axiom cannot simplify this expression
 cc2:=aa.2-bb
 --R
 --R               +--+ +---------------+           +--+
@@ -623,7 +623,7 @@ $$
 <<*>>=
 )clear all
 
---S 42     14:335 Axiom cannot compute this integral
+--S 42 of 45     14:335 Axiom cannot compute this integral
 aa:=integrate(x^(p-1)/(x^(2*m)+a^(2*m)),x)
 --R 
 --R
@@ -653,7 +653,7 @@ $$
 <<*>>=
 )clear all
 
---S 43     14:336 Axiom cannot compute this integral
+--S 43 of 45     14:336 Axiom cannot compute this integral
 aa:=integrate(x^(p-1)/(x^(2*m)-a^(2*m)),x)
 --R 
 --R
@@ -687,7 +687,7 @@ $$
 <<*>>=
 )clear all
 
---S 44     14:337 Axiom cannot compute this integral
+--S 44 of 45     14:337 Axiom cannot compute this integral
 aa:=integrate(x^(p-1)/(x^(2*m+1)+a^(2*m+1)),x)
 --R 
 --R
@@ -723,7 +723,7 @@ $$
 <<*>>=
 )clear all
 
---S 45     14:338 Axiom cannot compute this integral
+--S 45 of 45     14:338 Axiom cannot compute this integral
 aa:=integrate(x^(p-1)/(x^(2*m+1)-a^(2*m+1)),x)
 --R 
 --R
diff --git a/src/input/schaum17.input.pamphlet b/src/input/schaum17.input.pamphlet
index 6939c30..d9d7ac1 100644
--- a/src/input/schaum17.input.pamphlet
+++ b/src/input/schaum17.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 136
 aa:=integrate(sin(a*x),x)
 --R 
 --R
@@ -28,7 +28,7 @@ aa:=integrate(sin(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 136
 bb:=-cos(a*x)/a
 --R
 --R          cos(a x)
@@ -37,7 +37,7 @@ bb:=-cos(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:339 Schaums and Axiom agree
+--S 3 of 136      14:339 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -53,7 +53,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 136
 aa:=integrate(x*sin(a*x),x)
 --R 
 --R
@@ -64,7 +64,7 @@ aa:=integrate(x*sin(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 136
 bb:=sin(a*x)/a^2-(x*cos(a*x))/a
 --R
 --R        sin(a x) - a x cos(a x)
@@ -74,7 +74,7 @@ bb:=sin(a*x)/a^2-(x*cos(a*x))/a
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:340 Schaums and Axiom agree
+--S 6 of 136      14:340 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -90,7 +90,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 136
 aa:=integrate(x^2*sin(a*x),x)
 --R 
 --R
@@ -102,7 +102,7 @@ aa:=integrate(x^2*sin(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 136
 bb:=(2*x)/a^2*sin(a*x)+(2/a^3-x^2/a)*cos(a*x)
 --R
 --R                            2 2
@@ -113,7 +113,7 @@ bb:=(2*x)/a^2*sin(a*x)+(2/a^3-x^2/a)*cos(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:341 Schaums and Axiom agree
+--S 9 of 136      14:341 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -130,7 +130,7 @@ $$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 136
 aa:=integrate(x^3*sin(a*x),x)
 --R 
 --R
@@ -142,7 +142,7 @@ aa:=integrate(x^3*sin(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 136
 bb:=((3*x^2)/a^2-6/a^4)*sin(a*x)+(6*x/a^3-x^3/a)*cos(a*x)
 --R
 --R           2 2                    3 3
@@ -153,7 +153,7 @@ bb:=((3*x^2)/a^2-6/a^4)*sin(a*x)+(6*x/a^3-x^3/a)*cos(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:342 Schaums and Axiom agree
+--S 12 of 136     14:342 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -169,7 +169,7 @@ $$
 <<*>>=
 )clear all
 
---S 13     14:343 Schaums and Axiom agree by definition
+--S 13 of 136     14:343 Schaums and Axiom agree by definition
 aa:=integrate(sin(x)/x,x)
 --R 
 --R
@@ -186,7 +186,7 @@ $$
 <<*>>=
 )clear all
 
---S 14     14:344 Axiom cannot compute this integral
+--S 14 of 136     14:344 Axiom cannot compute this integral
 aa:=integrate(sin(a*x)/x^2,x)
 --R 
 --R
@@ -208,7 +208,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 136
 aa:=integrate(1/sin(a*x),x)
 --R 
 --R
@@ -220,7 +220,7 @@ aa:=integrate(1/sin(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 16
+--S 16 of 136
 bb:=1/a*log(tan((a*x)/2))
 --R
 --R                a x
@@ -231,7 +231,7 @@ bb:=1/a*log(tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 136
 cc:=aa-bb
 --R
 --R                  a x           sin(a x)
@@ -242,7 +242,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 18     14:345 Schaums and Axiom agree
+--S 18 of 136     14:345 Schaums and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -260,7 +260,7 @@ $$
 <<*>>=
 )clear all
 
---S 19     14:346 Axiom cannot compute this integral
+--S 19 of 136     14:346 Axiom cannot compute this integral
 aa:=integrate(x/sin(a*x),x)
 --R 
 --R
@@ -280,7 +280,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 136
 aa:=integrate(sin(a*x)^2,x)
 --R 
 --R
@@ -290,7 +290,7 @@ aa:=integrate(sin(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 21
+--S 21 of 136
 bb:=x/2-sin(2*a*x)/(4*a)
 --R
 --R        - sin(2a x) + 2a x
@@ -299,7 +299,7 @@ bb:=x/2-sin(2*a*x)/(4*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 136
 cc:=aa-bb
 --R
 --R        sin(2a x) - 2cos(a x)sin(a x)
@@ -308,7 +308,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 23     14:347 Schaums and Axiom agreee
+--S 23 of 136     14:347 Schaums and Axiom agreee
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -324,7 +324,7 @@ $$
 <<*>>=
 )clear all
 
---S 24
+--S 24 of 136
 aa:=integrate(x*sin(a*x)^2,x)
 --R 
 --R
@@ -336,7 +336,7 @@ aa:=integrate(x*sin(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 25
+--S 25 of 136
 bb:=x^2/4-(x*sin(2*a*x))/(4*a)-cos(2*a*x)/(8*a^2)
 --R
 --R                                         2 2
@@ -347,7 +347,7 @@ bb:=x^2/4-(x*sin(2*a*x))/(4*a)-cos(2*a*x)/(8*a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 136
 cc:=aa-bb
 --R
 --R                                                                      2
@@ -358,7 +358,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:348 Schaums and Axiom differ by a constant
+--S 27 of 136     14:348 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R           1
@@ -377,7 +377,7 @@ $$
 <<*>>=
 )clear all
 
---S 28
+--S 28 of 136
 aa:=integrate(sin(a*x)^3,x)
 --R 
 --R
@@ -388,7 +388,7 @@ aa:=integrate(sin(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 29
+--S 29 of 136
 bb:=-cos(a*x)/a+cos(a*x)^3/(3*a)
 --R
 --R                3
@@ -398,7 +398,7 @@ bb:=-cos(a*x)/a+cos(a*x)^3/(3*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 30     14:349 Schaums and Axiom agree
+--S 30 of 136     14:349 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -414,7 +414,7 @@ $$
 <<*>>=
 )clear all
 
---S 31
+--S 31 of 136
 aa:=integrate(sin(a*x)^4,x)
 --R 
 --R
@@ -425,7 +425,7 @@ aa:=integrate(sin(a*x)^4,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 32
+--S 32 of 136
 bb:=(3*x)/8-sin(2*a*x)/(4*a)+sin(4*a*x)/(32*a)
 --R
 --R        sin(4a x) - 8sin(2a x) + 12a x
@@ -434,7 +434,7 @@ bb:=(3*x)/8-sin(2*a*x)/(4*a)+sin(4*a*x)/(32*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 136
 cc:=aa-bb
 --R
 --R                                             3
@@ -444,7 +444,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 34     14:350 Schaums and Axiom agree
+--S 34 of 136     14:350 Schaums and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -460,7 +460,7 @@ $$
 <<*>>=
 )clear all
 
---S 35
+--S 35 of 136
 aa:=integrate(1/sin(a*x)^2,x)
 --R 
 --R
@@ -470,7 +470,7 @@ aa:=integrate(1/sin(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 36
+--S 36 of 136
 bb:=-1/a*cot(a*x)
 --R
 --R          cot(a x)
@@ -479,7 +479,7 @@ bb:=-1/a*cot(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 136
 cc:=aa-bb
 --R
 --R        cot(a x)sin(a x) - cos(a x)
@@ -488,7 +488,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 38     14:351 Schaums and Axiom agree
+--S 38 of 136     14:351 Schaums and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -504,7 +504,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 136
 aa:=integrate(1/sin(a*x)^3,x)
 --R 
 --R
@@ -517,7 +517,7 @@ aa:=integrate(1/sin(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 40
+--S 40 of 136
 bb:=-cos(a*x)/(2*a*sin(a*x)^2)+1/(2*a)*log(tan((a*x)/2))
 --R
 --R                2        a x
@@ -529,7 +529,7 @@ bb:=-cos(a*x)/(2*a*sin(a*x)^2)+1/(2*a)*log(tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 136
 cc:=aa-bb
 --R
 --R   (3)
@@ -548,7 +548,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 136
 dd:=expandLog cc
 --R
 --R   (4)
@@ -570,7 +570,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 43     14:352 Schaums and Axiom agree
+--S 43 of 136     14:352 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (5)  0
@@ -586,7 +586,7 @@ $$
 <<*>>=
 )clear all
 
---S 44
+--S 44 of 136
 aa:=integrate(sin(p*x)*sin(q*x),x)
 --R 
 --R
@@ -597,7 +597,7 @@ aa:=integrate(sin(p*x)*sin(q*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 45
+--S 45 of 136
 bb:=sin((p-q)*x)/(2*(p-q))-sin((p+q)*x)/(2*(p+q))
 --R
 --R        (- q + p)sin((q + p)x) + (q + p)sin((q - p)x)
@@ -607,7 +607,7 @@ bb:=sin((p-q)*x)/(2*(p-q))-sin((p+q)*x)/(2*(p+q))
 --R                                                     Type: Expression Integer
 --E 
 
---S 46
+--S 46 of 136
 cc:=aa-bb
 --R
 --R   (3)
@@ -620,7 +620,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 47     14:353 Schams and Axiom agree
+--S 47 of 136     14:353 Schams and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -636,7 +636,7 @@ $$
 <<*>>=
 )clear all
 
---S 48
+--S 48 of 136
 aa:=integrate(1/(1-sin(a*x)),x)
 --R 
 --R
@@ -646,7 +646,7 @@ aa:=integrate(1/(1-sin(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 49
+--S 49 of 136
 bb:=1/a*tan(%pi/4+(a*x)/2)
 --R
 --R            2a x + %pi
@@ -657,7 +657,7 @@ bb:=1/a*tan(%pi/4+(a*x)/2)
 --R                                                     Type: Expression Integer
 --E 
 
---S 50
+--S 50 of 136
 cc:=aa-bb
 --R
 --R                                       2a x + %pi
@@ -668,7 +668,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:354 Schaums and Axiom differ by a constant
+--S 51 of 136     14:354 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R        1
@@ -687,7 +687,7 @@ $$
 <<*>>=
 )clear all
 
---S 52
+--S 52 of 136
 aa:=integrate(x/(1-sin(ax)),x)
 --R 
 --R
@@ -698,7 +698,7 @@ aa:=integrate(x/(1-sin(ax)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 53
+--S 53 of 136
 bb:=x/a*tan(%pi/4+(a*x)/2)+2/a^2*log(sin(%pi/4-(a*x)/2))
 --R
 --R                   2a x - %pi             2a x + %pi
@@ -710,7 +710,7 @@ bb:=x/a*tan(%pi/4+(a*x)/2)+2/a^2*log(sin(%pi/4-(a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 54     14:355 Axiom cannot simplify this expression
+--S 54 of 136     14:355 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -736,7 +736,7 @@ $$
 <<*>>=
 )clear all
 
---S 55
+--S 55 of 136
 aa:=integrate(1/(1+sin(ax)),x)
 --R 
 --R
@@ -746,7 +746,7 @@ aa:=integrate(1/(1+sin(ax)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 56
+--S 56 of 136
 bb:=-1/a*tan(%pi/4-(a*x)/2)
 --R
 --R            2a x - %pi
@@ -757,7 +757,7 @@ bb:=-1/a*tan(%pi/4-(a*x)/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 136
 cc:=aa-bb
 --R
 --R                           2a x - %pi
@@ -768,7 +768,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 58
+--S 58 of 136
 tanrule:=rule(tan(a/b) == sin(a)/cos(b))
 --R
 --R            a     sin(a)
@@ -777,7 +777,7 @@ tanrule:=rule(tan(a/b) == sin(a)/cos(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 59     14:356 Axiom cannot simplify this expression
+--S 59 of 136     14:356 Axiom cannot simplify this expression
 dd:=tanrule cc
 --R
 --R        (- sin(ax) - 1)sin(2a x - %pi) + a x cos(4)
@@ -796,7 +796,7 @@ $$
 <<*>>=
 )clear all
 
---S 60
+--S 60 of 136
 aa:=integrate(x/(1+sin(a*x)),x)
 --R 
 --R
@@ -816,7 +816,7 @@ aa:=integrate(x/(1+sin(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 61
+--S 61 of 136
 bb:=-x/a*tan(%pi/4-(a*x)/2)+2/a^2*log(sin(%pi/4+(a*x)/2))
 --R
 --R                 2a x + %pi             2a x - %pi
@@ -828,7 +828,7 @@ bb:=-x/a*tan(%pi/4-(a*x)/2)+2/a^2*log(sin(%pi/4+(a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 62     14:257 Axiom cannot simplify this expression
+--S 62 of 136     14:257 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -866,7 +866,7 @@ $$
 <<*>>=
 )clear all
 
---S 63
+--S 63 of 136
 aa:=integrate(1/(1-sin(a*x))^2,x)
 --R
 --R                                               2
@@ -877,7 +877,7 @@ aa:=integrate(1/(1-sin(a*x))^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 64
+--S 64 of 136
 bb:=1/(2*a)*tan(%pi/4+(a*x)/2)+1/(6*a)*tan(%pi/4+(a*x)/2)^3
 --R
 --R            2a x + %pi 3        2a x + %pi
@@ -888,7 +888,7 @@ bb:=1/(2*a)*tan(%pi/4+(a*x)/2)+1/(6*a)*tan(%pi/4+(a*x)/2)^3
 --R                                                     Type: Expression Integer
 --E 
 
---S 65
+--S 65 of 136
 cc:=aa-bb
 --R
 --R   (3)
@@ -908,7 +908,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 66
+--S 66 of 136
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -917,7 +917,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 67
+--S 67 of 136
 dd:=tanrule cc
 --R
 --R   (5)
@@ -969,7 +969,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 68
+--S 68 of 136
 sindiffrule2:=rule(sin((a-b)/4) == sin(a/4)*cos(b/4)-cos(a/4)*sin(b/4))
 --R
 --R                 b - a              a     b           b     a
@@ -978,7 +978,7 @@ sindiffrule2:=rule(sin((a-b)/4) == sin(a/4)*cos(b/4)-cos(a/4)*sin(b/4))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 69
+--S 69 of 136
 ee:=sindiffrule2 dd
 --R
 --R   (7)
@@ -1030,7 +1030,7 @@ ee:=sindiffrule2 dd
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 136
 sincuberule:=rule(sin(a)^3 == 3/4*sin(a)-1/4*sin(3*a))
 --R
 --R              3    - sin(3a) + 3sin(a)
@@ -1039,7 +1039,7 @@ sincuberule:=rule(sin(a)^3 == 3/4*sin(a)-1/4*sin(3*a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 71
+--S 71 of 136
 ff:=sincuberule ee
 --R
 --R   (9)
@@ -1095,7 +1095,7 @@ ff:=sincuberule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 72     14:358 Schaums and Axiom differ by a constant
+--S 72 of 136     14:358 Schaums and Axiom differ by a constant
 complexNormalize %
 --R
 --R          2
@@ -1114,7 +1114,7 @@ $$
 <<*>>=
 )clear all
 
---S 73
+--S 73 of 136
 aa:=integrate(1/(1+sin(a*x))^2,x)
 --R
 --R                                                2
@@ -1125,7 +1125,7 @@ aa:=integrate(1/(1+sin(a*x))^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 74
+--S 74 of 136
 bb:=-1/(2*a)*tan(%pi/4-(a*x)/2)-1/(6*a)*tan(%pi/4-(a*x)/2)^3
 --R
 --R            2a x - %pi 3        2a x - %pi
@@ -1136,7 +1136,7 @@ bb:=-1/(2*a)*tan(%pi/4-(a*x)/2)-1/(6*a)*tan(%pi/4-(a*x)/2)^3
 --R                                                     Type: Expression Integer
 --E 
 
---S 75
+--S 75 of 136
 cc:=aa-bb
 --R
 --R   (3)
@@ -1156,7 +1156,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 76
+--S 76 of 136
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -1165,7 +1165,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 77
+--S 77 of 136
 dd:=tanrule cc
 --R
 --R   (5)
@@ -1217,7 +1217,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 78
+--S 78 of 136
 sindiffrule2:=rule(sin((a-b)/4) == sin(a/4)*cos(b/4)-cos(a/4)*sin(b/4))
 --R 
 --R
@@ -1227,7 +1227,7 @@ sindiffrule2:=rule(sin((a-b)/4) == sin(a/4)*cos(b/4)-cos(a/4)*sin(b/4))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 79
+--S 79 of 136
 ee:=sindiffrule2 dd
 --R
 --R   (7)
@@ -1283,7 +1283,7 @@ ee:=sindiffrule2 dd
 --R                                                     Type: Expression Integer
 --E
 
---S 80
+--S 80 of 136
 sincuberule:=rule(sin(a)^3 == 3/4*sin(a)-1/4*sin(3*a))
 --R
 --R              3    - sin(3a) + 3sin(a)
@@ -1292,7 +1292,7 @@ sincuberule:=rule(sin(a)^3 == 3/4*sin(a)-1/4*sin(3*a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 81
+--S 81 of 136
 ff:=sincuberule ee
 --R
 --R   (9)
@@ -1352,7 +1352,7 @@ ff:=sincuberule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 82     14:359 Schaums and Axiom differ by a constant
+--S 82 of 136     14:359 Schaums and Axiom differ by a constant
 complexNormalize %
 --R
 --R            2
@@ -1380,7 +1380,7 @@ $$
 <<*>>=
 )clear all
 
---S 83
+--S 83 of 136
 aa:=integrate(1/(p+q*sin(a*x)),x)
 --R
 --R   (1)
@@ -1412,7 +1412,7 @@ aa:=integrate(1/(p+q*sin(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 84
+--S 84 of 136
 bb1:=2/(a*sqrt(p^2-q^2))*atan((p*tan(a*x/2)+q)/sqrt(p^2-q^2))
 --R
 --R                    a x
@@ -1429,7 +1429,7 @@ bb1:=2/(a*sqrt(p^2-q^2))*atan((p*tan(a*x/2)+q)/sqrt(p^2-q^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 85
+--S 85 of 136
 bb2:=1/(a*sqrt(q^2-p^2))*log((p*tan((a*x)/2)+q-sqrt(q^2-p^2))/(p*tan((a*x)/2)+q+sqrt(q^2-p^2)))
 --R
 --R               +-------+
@@ -1448,7 +1448,7 @@ bb2:=1/(a*sqrt(q^2-p^2))*log((p*tan((a*x)/2)+q-sqrt(q^2-p^2))/(p*tan((a*x)/2)+q+
 --R                                                     Type: Expression Integer
 --E
 
---S 86
+--S 86 of 136
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -1480,7 +1480,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 136
 cc2:=aa.2-bb1
 --R
 --R   (5)
@@ -1498,7 +1498,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 88
+--S 88 of 136
 cc3:=aa.1-bb2
 --R
 --R   (6)
@@ -1528,7 +1528,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 89
+--S 89 of 136
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -1555,7 +1555,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 90
+--S 90 of 136
 dd2:=ratDenom cc2
 --R
 --R   (8)
@@ -1579,7 +1579,7 @@ dd2:=ratDenom cc2
 --R                                                     Type: Expression Integer
 --E
 
---S 91
+--S 91 of 136
 atanrule2:=rule(atan(x) == 1/2*%i*(log(1-%i*x)-log(1+%i*x)))
 --R
 --R                     1                    1
@@ -1588,7 +1588,7 @@ atanrule2:=rule(atan(x) == 1/2*%i*(log(1-%i*x)-log(1+%i*x)))
 --RType: RewriteRule(Integer,Complex Fraction Integer,Expression Complex Fraction Integer)
 --E
 
---S 92
+--S 92 of 136
 ee2:=atanrule2 dd2
 --R
 --R   (10)
@@ -1644,7 +1644,7 @@ ee2:=atanrule2 dd2
 --R                                    Type: Expression Complex Fraction Integer
 --E
 
---S 93
+--S 93 of 136
 ff2:=expandLog ee2
 --R
 --R   (11)
@@ -1688,7 +1688,7 @@ ff2:=expandLog ee2
 --R                                    Type: Expression Complex Fraction Integer
 --E
 
---S 94
+--S 94 of 136
 gg2:=numer(ff2)/denom(ff2)
 --R
 --R   (12)
@@ -1732,7 +1732,7 @@ gg2:=numer(ff2)/denom(ff2)
 --RType: Fraction SparseMultivariatePolynomial(Complex Fraction Integer,Kernel Expression Complex Fraction Integer)
 --E
 
---S 95
+--S 95 of 136
 hh2:=gg2::Expression Complex Fraction Integer
 --R
 --R   (13)
@@ -1776,7 +1776,7 @@ hh2:=gg2::Expression Complex Fraction Integer
 --R                                    Type: Expression Complex Fraction Integer
 --E
 
---S 96     14:360 Schaums and Axiom agree
+--S 96 of 136     14:360 Schaums and Axiom agree
 complexNormalize hh2
 --R
 --R   (14)  0
@@ -1793,7 +1793,7 @@ $$
 <<*>>=
 )clear all
 
---S 97
+--S 97 of 136
 aa:=integrate(1/(p+q*sin(a*x))^2,x)
 --R 
 --R
@@ -1839,7 +1839,7 @@ aa:=integrate(1/(p+q*sin(a*x))^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 98
+--S 98 of 136
 t1:=integrate(1/(p+q*sin(a*x)),x)
 --R
 --R   (2)
@@ -1871,7 +1871,7 @@ t1:=integrate(1/(p+q*sin(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 99
+--S 99 of 136
 bb1:=(q*cos(a*x))/(a*(p^2-q^2)*(p+q*sin(a*x)))+p/(p^2-q^2)*t1.1
 --R
 --R   (3)
@@ -1898,7 +1898,7 @@ bb1:=(q*cos(a*x))/(a*(p^2-q^2)*(p+q*sin(a*x)))+p/(p^2-q^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 100
+--S 100 of 136
 bb2:=(q*cos(a*x))/(a*(p^2-q^2)*(p+q*sin(a*x)))+p/(p^2-q^2)*t1.2
 --R
 --R   (4)
@@ -1919,7 +1919,7 @@ bb2:=(q*cos(a*x))/(a*(p^2-q^2)*(p+q*sin(a*x)))+p/(p^2-q^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 101
+--S 101 of 136
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -1959,7 +1959,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 102
+--S 102 of 136
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -1994,7 +1994,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 103
+--S 103 of 136
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -2029,7 +2029,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 104    14:361 Schaums and Axiom differ by a constant
+--S 104 of 136    14:361 Schaums and Axiom differ by a constant
 cc4:=aa.2-bb2
 --R
 --R                q
@@ -2048,7 +2048,7 @@ $$
 <<*>>=
 )clear all
 
---S 105
+--S 105 of 136
 aa:=integrate(1/(p^2+q^2*sin(a*x)^2),x)
 --R
 --R   (1)
@@ -2072,7 +2072,7 @@ aa:=integrate(1/(p^2+q^2*sin(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 106
+--S 106 of 136
 bb:=1/(a*p*sqrt(p^2+q^2))*atan((sqrt(p^2+q^2)*tan(a*x))/p)
 --R
 --R                      +-------+
@@ -2087,7 +2087,7 @@ bb:=1/(a*p*sqrt(p^2+q^2))*atan((sqrt(p^2+q^2)*tan(a*x))/p)
 --R                                                     Type: Expression Integer
 --E
 
---S 107
+--S 107 of 136
 cc:=aa-bb
 --R
 --R   (3)
@@ -2111,7 +2111,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 108
+--S 108 of 136
 dd:=ratDenom cc
 --R
 --R   (4)
@@ -2140,7 +2140,7 @@ dd:=ratDenom cc
 --R                                                     Type: Expression Integer
 --E
 
---S 109
+--S 109 of 136
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -2151,7 +2151,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 110
+--S 110 of 136
 ee:=atanrule dd
 --R
 --R   (6)
@@ -2214,7 +2214,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 111
+--S 111 of 136
 ff:=expandLog ee
 --R
 --R   (7)
@@ -2287,7 +2287,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 112
+--S 112 of 136
 tanrule2:RewriteRule(INT,COMPLEX(INT),EXPR(COMPLEX(INT))):=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -2296,7 +2296,7 @@ tanrule2:RewriteRule(INT,COMPLEX(INT),EXPR(COMPLEX(INT))):=rule(tan(a) == sin(a)
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 113
+--S 113 of 136
 gg:=tanrule2 ff
 --R
 --R   (9)
@@ -2369,7 +2369,7 @@ gg:=tanrule2 ff
 --R                                             Type: Expression Complex Integer
 --E
 
---S 114
+--S 114 of 136
 hh:=expandLog gg
 --R
 --R   (10)
@@ -2438,7 +2438,7 @@ hh:=expandLog gg
 --R                                             Type: Expression Complex Integer
 --E
 
---S 115    14:362 Schaums and Axiom differ by a constant
+--S 115 of 136    14:362 Schaums and Axiom differ by a constant
 ii:=complexNormalize hh
 --R
 --R                                                   +-------+
@@ -2468,7 +2468,7 @@ $$
 <<*>>=
 )clear all
 
---S 116
+--S 116 of 136
 aa:=integrate(1/(p^2-q^2*sin(a*x)^2),x)
 --R
 --R   (1)
@@ -2510,7 +2510,7 @@ aa:=integrate(1/(p^2-q^2*sin(a*x)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 117
+--S 117 of 136
 bb1:=1/(a*p*sqrt(p^2-q^2))*atan((sqrt(p^2-q^2)*tan(a*x))/p)
 --R
 --R                      +---------+
@@ -2525,7 +2525,7 @@ bb1:=1/(a*p*sqrt(p^2-q^2))*atan((sqrt(p^2-q^2)*tan(a*x))/p)
 --R                                                     Type: Expression Integer
 --E
 
---S 118
+--S 118 of 136
 bb2:=1/(2*a*p*sqrt(q^2-p^2))*log((sqrt(q^2-p^2)*tan(a*x)+p)/(sqrt(q^2-p^2)*tan(a*x)-p))
 --R
 --R                     +-------+
@@ -2542,7 +2542,7 @@ bb2:=1/(2*a*p*sqrt(q^2-p^2))*log((sqrt(q^2-p^2)*tan(a*x)+p)/(sqrt(q^2-p^2)*tan(a
 --R                                                     Type: Expression Integer
 --E
 
---S 119
+--S 119 of 136
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -2573,7 +2573,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 120
+--S 120 of 136
 cc2:=aa.2-bb1
 --R
 --R   (5)
@@ -2597,7 +2597,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 121
+--S 121 of 136
 cc3:=aa.1-bb2
 --R
 --R   (6)
@@ -2626,7 +2626,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 122
+--S 122 of 136
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -2658,7 +2658,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 123
+--S 123 of 136
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -2667,7 +2667,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 124
+--S 124 of 136
 dd2:=tanrule cc2
 --R
 --R   (9)
@@ -2691,7 +2691,7 @@ dd2:=tanrule cc2
 --R                                                     Type: Expression Integer
 --E
 
---S 125
+--S 125 of 136
 ee2:=ratDenom dd2
 --R
 --R   (10)
@@ -2725,7 +2725,7 @@ ee2:=ratDenom dd2
 --R                                                     Type: Expression Integer
 --E
 
---S 126
+--S 126 of 136
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                             - x + %i
@@ -2736,7 +2736,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 127
+--S 127 of 136
 ff2:=atanrule ee2
 --R
 --R   (12)
@@ -2798,7 +2798,7 @@ ff2:=atanrule ee2
 --R                                             Type: Expression Complex Integer
 --E
 
---S 128
+--S 128 of 136
 gg2:=expandLog ff2
 --R
 --R   (13)
@@ -2871,7 +2871,7 @@ gg2:=expandLog ff2
 --R                                             Type: Expression Complex Integer
 --E
 
---S 129
+--S 129 of 136
 rootrule4a:RewriteRule(INT,COMPLEX(INT),EXPR(COMPLEX(INT))):=rule(sqrt(p^2-q^2)==sqrt(p-q)*sqrt(q+p))
 --R
 --R          +---------+
@@ -2880,7 +2880,7 @@ rootrule4a:RewriteRule(INT,COMPLEX(INT),EXPR(COMPLEX(INT))):=rule(sqrt(p^2-q^2)=
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 130
+--S 130 of 136
 hh2:=rootrule4a gg2
 --R
 --R   (15)
@@ -2946,7 +2946,7 @@ hh2:=rootrule4a gg2
 --R                                             Type: Expression Complex Integer
 --E
 
---S 131    14:363 Schaums and Axiom differ by a constant
+--S 131 of 136    14:363 Schaums and Axiom differ by a constant
 ii2:=complexNormalize hh2
 --R
 --R                                                   +-------+ +-----+
@@ -2967,7 +2967,7 @@ $$
 <<*>>=
 )clear all
 
---S 132    14:364 Axiom cannot compute this integral
+--S 132 of 136    14:364 Axiom cannot compute this integral
 aa:=integrate(x^m*sin(a*x),x)
 --R 
 --R
@@ -2987,7 +2987,7 @@ $$
 <<*>>=
 )clear all
 
---S 133    14:365 Axiom cannot compute this integral
+--S 133 of 136    14:365 Axiom cannot compute this integral
 aa:=integrate(sin(a*x)/x^n,x)
 --R 
 --R
@@ -3008,7 +3008,7 @@ $$
 <<*>>=
 )clear all
 
---S 134    14:366 Axiom cannot compute this integral
+--S 134 of 136    14:366 Axiom cannot compute this integral
 aa:=integrate(sin(a*x)^n,x)
 --R 
 --R
@@ -3029,7 +3029,7 @@ $$
 <<*>>=
 )clear all
 
---S 135    14:367 Axiom cannot compute this integral
+--S 135 of 136    14:367 Axiom cannot compute this integral
 aa:=integrate(1/(sin(a*x))^n,x)
 --R 
 --R
@@ -3052,7 +3052,7 @@ $$
 <<*>>=
 )clear all
 
---S 136    14:368 Axiom cannot compute this integral
+--S 136 of 136    14:368 Axiom cannot compute this integral
 aa:=integrate(x/sin(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum18.input.pamphlet b/src/input/schaum18.input.pamphlet
index 62de8d7..2626bfb 100644
--- a/src/input/schaum18.input.pamphlet
+++ b/src/input/schaum18.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 127
 aa:=integrate(cos(a*x),x)
 --R 
 --R
@@ -28,7 +28,7 @@ aa:=integrate(cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 127
 bb:=sin(a*x)/a
 --R
 --R        sin(a x)
@@ -37,7 +37,7 @@ bb:=sin(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:369 Schaums and Axiom agree
+--S 3 of 127      14:369 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -53,7 +53,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 127
 aa:=integrate(x*cos(a*x),x)
 --R 
 --R
@@ -64,7 +64,7 @@ aa:=integrate(x*cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 127
 bb:=cos(a*x)/a^2+(x*sin(a*x))/a
 --R
 --R        a x sin(a x) + cos(a x)
@@ -74,7 +74,7 @@ bb:=cos(a*x)/a^2+(x*sin(a*x))/a
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:370 Schaums and Axiom agree
+--S 6 of 127      14:370 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -90,7 +90,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 127
 aa:=integrate(x^2*cos(a*x),x)
 --R 
 --R
@@ -102,7 +102,7 @@ aa:=integrate(x^2*cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 127
 bb:=(2*x)/a^2*cos(a*x)+(x^2/a-2/a^3)*sin(a*x)
 --R
 --R          2 2
@@ -113,7 +113,7 @@ bb:=(2*x)/a^2*cos(a*x)+(x^2/a-2/a^3)*sin(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:371 Schaums and Axiom agree
+--S 9 of 127      14:371 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -130,7 +130,7 @@ $$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 127
 aa:=integrate(x^3*cos(a*x),x)
 --R 
 --R
@@ -142,7 +142,7 @@ aa:=integrate(x^3*cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 127
 bb:=((3*x^2)/a^2-6/a^4)*cos(a*x)+(x^3/a-(6*x)/a^3)*sin(a*x)
 --R
 --R          3 3                      2 2
@@ -153,7 +153,7 @@ bb:=((3*x^2)/a^2-6/a^4)*cos(a*x)+(x^3/a-(6*x)/a^3)*sin(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:372 Schaums and Axiom agree
+--S 12 of 127     14:372 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -170,7 +170,7 @@ $$
 <<*>>=
 )clear all
 
---S 13     14:373 Schaums and Axiom agree by definition
+--S 13 of 127     14:373 Schaums and Axiom agree by definition
 aa:=integrate(cos(x)/x,x)
 --R 
 --R
@@ -187,7 +187,7 @@ $$
 <<*>>=
 )clear all
 
---S 14     14:374 Axiom cannot compute this integral
+--S 14 of 127     14:374 Axiom cannot compute this integral
 aa:=integrate(cos(a*x)/x^2,x)
 --R 
 --R
@@ -209,7 +209,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 127
 aa:=integrate(1/cos(a*x),x)
 --R 
 --R
@@ -221,7 +221,7 @@ aa:=integrate(1/cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 16
+--S 16 of 127
 bb1:=1/a*log(sec(a*x)+tan(a*x))
 --R
 --R        log(tan(a x) + sec(a x))
@@ -230,7 +230,7 @@ bb1:=1/a*log(sec(a*x)+tan(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 127
 bb2:=1/a*log(tan(%pi/4+(a*x)/2))
 --R
 --R                2a x + %pi
@@ -241,7 +241,7 @@ bb2:=1/a*log(tan(%pi/4+(a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 127
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -257,7 +257,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 127
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -273,7 +273,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 20     14:375 Schaums and Axiom differ by a constant
+--S 20 of 127     14:375 Schaums and Axiom differ by a constant
 complexNormalize cc1
 --R
 --R        log(- 1)
@@ -295,7 +295,7 @@ $$
 <<*>>=
 )clear all
 
---S 21     14:376 Axiom cannot compute this integral
+--S 21 of 127     14:376 Axiom cannot compute this integral
 aa:=integrate(x/cos(a*x),x)
 --R 
 --R
@@ -315,7 +315,7 @@ $$
 <<*>>=
 )clear all
 
---S 22
+--S 22 of 127
 aa:=integrate(cos(a*x)^2,x)
 --R 
 --R
@@ -325,7 +325,7 @@ aa:=integrate(cos(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 23
+--S 23 of 127
 bb:=x/2+sin(2*a*x)/(4*a)
 --R
 --R        sin(2a x) + 2a x
@@ -334,7 +334,7 @@ bb:=x/2+sin(2*a*x)/(4*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 127
 cc:=aa-bb
 --R
 --R        - sin(2a x) + 2cos(a x)sin(a x)
@@ -343,7 +343,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 127
 cossinrule:=rule(cos(b)*sin(a) == 1/2*(sin(a-b)+sin(a+b)))
 --R 
 --R
@@ -353,7 +353,7 @@ cossinrule:=rule(cos(b)*sin(a) == 1/2*(sin(a-b)+sin(a+b)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 26     14:377 Schaums and Axiom agree
+--S 26 of 127     14:377 Schaums and Axiom agree
 dd:=cossinrule cc
 --R
 --R   (5)  0
@@ -369,7 +369,7 @@ $$
 <<*>>=
 )clear all
 
---S 27
+--S 27 of 127
 aa:=integrate(x*cos(a*x)^2,x)
 --R 
 --R
@@ -381,7 +381,7 @@ aa:=integrate(x*cos(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 28
+--S 28 of 127
 bb:=x^2/4+(x*sin(2*a*x))/(4*a)+cos(2*a*x)/(8*a^2)
 --R
 --R                                       2 2
@@ -392,7 +392,7 @@ bb:=x^2/4+(x*sin(2*a*x))/(4*a)+cos(2*a*x)/(8*a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 29
+--S 29 of 127
 cc:=aa-bb
 --R
 --R                                                                        2
@@ -403,7 +403,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 127
 cossinrule:=rule(cos(b)*sin(a) == 1/2*(sin(a-b)+sin(a+b)))
 --R 
 --R
@@ -413,7 +413,7 @@ cossinrule:=rule(cos(b)*sin(a) == 1/2*(sin(a-b)+sin(a+b)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 31
+--S 31 of 127
 dd:=cossinrule cc
 --R
 --R                               2
@@ -424,7 +424,7 @@ dd:=cossinrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 127
 coscosrule:=rule(cos(a)*cos(b) == 1/2*(cos(a-b)+cos(a+b)))
 --R 
 --R
@@ -434,7 +434,7 @@ coscosrule:=rule(cos(a)*cos(b) == 1/2*(cos(a-b)+cos(a+b)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 33
+--S 33 of 127
 ee:=coscosrule dd
 --R
 --R                               2
@@ -445,7 +445,7 @@ ee:=coscosrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 127
 cossqrrule1:=rule(cos(a)^2 == 1/2+1/2*cos(2*a))
 --R
 --R              2    cos(2a) + 1
@@ -454,7 +454,7 @@ cossqrrule1:=rule(cos(a)^2 == 1/2+1/2*cos(2*a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 35     14:378 Schaums and Axiom differ by a constant
+--S 35 of 127     14:378 Schaums and Axiom differ by a constant
 ff:=cossqrrule1 ee
 --R
 --R         1
@@ -473,7 +473,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 127
 aa:=integrate(cos(a*x)^3,x)
 --R 
 --R
@@ -484,7 +484,7 @@ aa:=integrate(cos(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 37
+--S 37 of 127
 bb:=sin(a*x)/a-sin(a*x)^3/(3*a)
 --R
 --R                  3
@@ -494,7 +494,7 @@ bb:=sin(a*x)/a-sin(a*x)^3/(3*a)
 --R                                                     Type: Expression Integer
 --E 
 
---S 38
+--S 38 of 127
 cc:=aa-bb
 --R
 --R                3            2
@@ -504,7 +504,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 39
+--S 39 of 127
 cossqrrule:=rule(cos(a)^2 == 1-sin(a)^2)
 --R
 --R              2            2
@@ -512,7 +512,7 @@ cossqrrule:=rule(cos(a)^2 == 1-sin(a)^2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 40     14:379 Schaums and Axiom agree
+--S 40 of 127     14:379 Schaums and Axiom agree
 dd:=cossqrrule cc
 --R
 --R   (5)  0
@@ -528,7 +528,7 @@ $$
 <<*>>=
 )clear all
 
---S 41
+--S 41 of 127
 aa:=integrate(cos(a*x)^4,x)
 --R 
 --R
@@ -539,7 +539,7 @@ aa:=integrate(cos(a*x)^4,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 42
+--S 42 of 127
 bb:=(3*x)/8+sin(2*a*x)/(4*a)+sin(4*a*x)/(32*a)
 --R
 --R        sin(4a x) + 8sin(2a x) + 12a x
@@ -548,7 +548,7 @@ bb:=(3*x)/8+sin(2*a*x)/(4*a)+sin(4*a*x)/(32*a)
 --R                                                     Type: Expression Integer
 --E 
 
---S 43
+--S 43 of 127
 cc:=aa-bb
 --R
 --R                                             3
@@ -558,7 +558,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 44     14:380 Schaums and Axiom agree
+--S 44 of 127     14:380 Schaums and Axiom agree
 complexNormalize cc
 --R
 --R   (4)  0
@@ -574,7 +574,7 @@ $$
 <<*>>=
 )clear all
 
---S 45
+--S 45 of 127
 aa:=integrate(1/cos(a*x)^2,x)
 --R 
 --R
@@ -584,7 +584,7 @@ aa:=integrate(1/cos(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 46
+--S 46 of 127
 bb:=tan(a*x)/a
 --R
 --R        tan(a x)
@@ -593,7 +593,7 @@ bb:=tan(a*x)/a
 --R                                                     Type: Expression Integer
 --E 
 
---S 47
+--S 47 of 127
 cc:=aa-bb
 --R
 --R        - cos(a x)tan(a x) + sin(a x)
@@ -602,7 +602,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 127
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -611,7 +611,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 49     14:381 Schaums and Axiom agree
+--S 49 of 127     14:381 Schaums and Axiom agree
 dd:=tanrule cc
 --R
 --R   (5)  0
@@ -628,7 +628,7 @@ $$
 <<*>>=
 )clear all
 
---S 50
+--S 50 of 127
 aa:=integrate(1/cos(a*x)^3,x)
 --R 
 --R
@@ -646,7 +646,7 @@ aa:=integrate(1/cos(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 51
+--S 51 of 127
 bb:=sin(a*x)/(2*a*cos(a*x)^2)+1/(2*a)*log(tan(%pi/4+(a*x)/2))
 --R
 --R                2        2a x + %pi
@@ -658,7 +658,7 @@ bb:=sin(a*x)/(2*a*cos(a*x)^2)+1/(2*a)*log(tan(%pi/4+(a*x)/2))
 --R                                                     Type: Expression Integer
 --E 
 
---S 52
+--S 52 of 127
 cc:=aa-bb
 --R
 --R   (3)
@@ -674,7 +674,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 53     14:382 Schaums and Axiom differ by a constant
+--S 53 of 127     14:382 Schaums and Axiom differ by a constant
 complexNormalize cc
 --R
 --R        log(- 1)
@@ -692,7 +692,7 @@ $$
 <<*>>=
 )clear all
 
---S 54
+--S 54 of 127
 aa:=integrate(cos(a*x)*cos(p*x),x)
 --R
 --R        p cos(a x)sin(p x) - a cos(p x)sin(a x)
@@ -702,7 +702,7 @@ aa:=integrate(cos(a*x)*cos(p*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 55
+--S 55 of 127
 bb:=(sin((a-p)*x))/(2*(a-p))+(sin((a+p)*x))/(2*(a+p))
 --R
 --R        (p - a)sin((p + a)x) + (p + a)sin((p - a)x)
@@ -712,7 +712,7 @@ bb:=(sin((a-p)*x))/(2*(a-p))+(sin((a+p)*x))/(2*(a+p))
 --R                                                     Type: Expression Integer
 --E 
 
---S 56
+--S 56 of 127
 cc:=aa-bb
 --R
 --R   (3)
@@ -725,7 +725,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 57     14:383 Schaums and Axiom agree
+--S 57 of 127     14:383 Schaums and Axiom agree
 complexNormalize cc
 --R
 --R   (4)  0
@@ -741,7 +741,7 @@ $$
 <<*>>=
 )clear all
 
---S 58
+--S 58 of 127
 aa:=integrate(1/(1-cos(a*x)),x)
 --R 
 --R
@@ -751,7 +751,7 @@ aa:=integrate(1/(1-cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 59
+--S 59 of 127
 bb:=-1/a*cot((a*x)/2)
 --R
 --R              a x
@@ -762,7 +762,7 @@ bb:=-1/a*cot((a*x)/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 60
+--S 60 of 127
 cc:=aa-bb
 --R
 --R            a x
@@ -773,7 +773,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 61     14:384 Schaums and Axiom agree
+--S 61 of 127     14:384 Schaums and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -790,7 +790,7 @@ $$
 <<*>>=
 )clear all
 
---S 62
+--S 62 of 127
 aa:=integrate(x/(1-cos(a*x)),x)
 --R
 --R   (1)
@@ -803,7 +803,7 @@ aa:=integrate(x/(1-cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 63
+--S 63 of 127
 bb:=-x/a*cot((a*x)/2)+2/a^2*log(sin((a*x)/2))
 --R
 --R                 a x             a x
@@ -815,7 +815,7 @@ bb:=-x/a*cot((a*x)/2)+2/a^2*log(sin((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 64
+--S 64 of 127
 cc:=aa-bb
 --R
 --R   (3)
@@ -832,7 +832,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 65
+--S 65 of 127
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -841,7 +841,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 66
+--S 66 of 127
 dd:=cotrule cc
 --R
 --R   (5)
@@ -863,7 +863,7 @@ dd:=cotrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 67
+--S 67 of 127
 ee:=expandLog dd
 --R
 --R   (6)
@@ -885,7 +885,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 68     14:385 Schaums and Axiom agree
+--S 68 of 127     14:385 Schaums and Axiom agree
 complexNormalize ee
 --R
 --R   (7)  0
@@ -901,7 +901,7 @@ $$
 <<*>>=
 )clear all
 
---S 69
+--S 69 of 127
 aa:=integrate(1/(1+cos(a*x)),x)
 --R
 --R           sin(a x)
@@ -910,7 +910,7 @@ aa:=integrate(1/(1+cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 70
+--S 70 of 127
 bb:=1/a*tan((a*x)/2)
 --R
 --R            a x
@@ -921,7 +921,7 @@ bb:=1/a*tan((a*x)/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 71
+--S 71 of 127
 cc:=aa-bb
 --R
 --R                            a x
@@ -932,7 +932,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 72     14:386 Schaums and Axiom agree
+--S 72 of 127     14:386 Schaums and Axiom agree
 complexNormalize cc
 --R
 --R   (4)  0
@@ -949,7 +949,7 @@ $$
 <<*>>=
 )clear all
 
---S 73
+--S 73 of 127
 aa:=integrate(x/(1+cos(a*x)),x)
 --R 
 --R
@@ -962,7 +962,7 @@ aa:=integrate(x/(1+cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 74
+--S 74 of 127
 bb:=x/a*tan((a*x)/2)+2/a^2*log(cos((a*x)/2))
 --R
 --R                 a x             a x
@@ -974,7 +974,7 @@ bb:=x/a*tan((a*x)/2)+2/a^2*log(cos((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 75
+--S 75 of 127
 cc:=aa-bb
 --R
 --R   (3)
@@ -991,7 +991,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 76
+--S 76 of 127
 dd:=expandLog cc
 --R
 --R   (4)
@@ -1008,7 +1008,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 77     14:387 Schaums and Axiom agree
+--S 77 of 127     14:387 Schaums and Axiom agree
 complexNormalize dd
 --R
 --R   (5)  0
@@ -1025,7 +1025,7 @@ $$
 <<*>>=
 )clear all
 
---S 78
+--S 78 of 127
 aa:=integrate(1/(1-cos(a*x))^2,x)
 --R 
 --R
@@ -1036,7 +1036,7 @@ aa:=integrate(1/(1-cos(a*x))^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 79
+--S 79 of 127
 bb:=-1/(2*a)*cot((a*x)/2)-1/(6*a)*cot((a*x)/2)^3
 --R
 --R              a x 3        a x
@@ -1047,7 +1047,7 @@ bb:=-1/(2*a)*cot((a*x)/2)-1/(6*a)*cot((a*x)/2)^3
 --R                                                     Type: Expression Integer
 --E 
 
---S 80
+--S 80 of 127
 cc:=aa-bb
 --R
 --R   (3)
@@ -1061,7 +1061,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 81     14:388 Schaums and Axiom agree
+--S 81 of 127     14:388 Schaums and Axiom agree
 complexNormalize cc
 --R
 --R   (4)  0
@@ -1078,7 +1078,7 @@ $$
 <<*>>=
 )clear all
 
---S 82
+--S 82 of 127
 aa:=integrate(1/(1+cos(a*x))^2,x)
 --R 
 --R
@@ -1089,7 +1089,7 @@ aa:=integrate(1/(1+cos(a*x))^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 83
+--S 83 of 127
 bb:=1/(2*a)*tan((a*x)/2)+1/(6*a)*tan((a*x)/2)^3
 --R
 --R            a x 3        a x
@@ -1100,7 +1100,7 @@ bb:=1/(2*a)*tan((a*x)/2)+1/(6*a)*tan((a*x)/2)^3
 --R                                                     Type: Expression Integer
 --E
 
---S 84
+--S 84 of 127
 cc:=aa-bb
 --R
 --R   (3)
@@ -1117,7 +1117,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 85     14:389 Schaums and Axiom agree
+--S 85 of 127     14:389 Schaums and Axiom agree
 complexNormalize cc
 --R
 --R   (4)  0
@@ -1144,7 +1144,7 @@ $$
 <<*>>=
 )clear all
 
---S 86
+--S 86 of 127
 aa:=integrate(1/(p+q*cos(a*x)),x)
 --R
 --R   (1)
@@ -1169,7 +1169,7 @@ aa:=integrate(1/(p+q*cos(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 87
+--S 87 of 127
 bb1:=2/(a*sqrt(p^2-q^2))*atan(sqrt((p-q)/(p+q))*tan(1/2*a*x))
 --R 
 --R
@@ -1184,7 +1184,7 @@ bb1:=2/(a*sqrt(p^2-q^2))*atan(sqrt((p-q)/(p+q))*tan(1/2*a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 88
+--S 88 of 127
 bb2:=1/(a*sqrt(q^2-p^2))*log((tan(1/2*a*x)+sqrt((q+p)/(q-p)))/(tan(1/2*a*x)-sqrt((q+p)/(q-p))))
 --R
 --R               +-----+
@@ -1203,7 +1203,7 @@ bb2:=1/(a*sqrt(q^2-p^2))*log((tan(1/2*a*x)+sqrt((q+p)/(q-p)))/(tan(1/2*a*x)-sqrt
 --R                                                     Type: Expression Integer
 --E
 
---S 89
+--S 89 of 127
 cc1:=aa.1-bb1
 --R 
 --R
@@ -1225,7 +1225,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 90
+--S 90 of 127
 cc2:=aa.2-bb1
 --R 
 --R
@@ -1241,7 +1241,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 91
+--S 91 of 127
 cc3:=aa.1-bb2
 --R
 --R   (6)
@@ -1267,7 +1267,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 92     14:390 Axiom cannot simplify these expressions
+--S 92 of 127     14:390 Axiom cannot simplify these expressions
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -1304,7 +1304,7 @@ $$
 <<*>>=
 )clear all
 
---S 93
+--S 93 of 127
 aa:=integrate(1/(p+q*cos(a*x))^2,x)
 --R 
 --R
@@ -1345,7 +1345,7 @@ aa:=integrate(1/(p+q*cos(a*x))^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 94
+--S 94 of 127
 t1:=integrate(1/(p+q*cos(a*x)),x)
 --R
 --R   (2)
@@ -1370,7 +1370,7 @@ t1:=integrate(1/(p+q*cos(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 95
+--S 95 of 127
 bb1:=(q*sin(a*x))/(a*(q^2-p^2)*(p+q*cos(a*x)))-p/(q^2-p^2)*t1.1
 --R
 --R   (3)
@@ -1393,7 +1393,7 @@ bb1:=(q*sin(a*x))/(a*(q^2-p^2)*(p+q*cos(a*x)))-p/(q^2-p^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 96
+--S 96 of 127
 bb2:=(q*sin(a*x))/(a*(q^2-p^2)*(p+q*cos(a*x)))-p/(q^2-p^2)*t1.2
 --R
 --R   (4)
@@ -1409,7 +1409,7 @@ bb2:=(q*sin(a*x))/(a*(q^2-p^2)*(p+q*cos(a*x)))-p/(q^2-p^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 97
+--S 97 of 127
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -1431,7 +1431,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 98
+--S 98 of 127
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -1453,7 +1453,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 99
+--S 99 of 127
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -1475,7 +1475,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 100    14:391 Schaums and Axiom agree
+--S 100 of 127    14:391 Schaums and Axiom agree
 cc4:=aa.2-bb2
 --R
 --R   (8)  0
@@ -1491,7 +1491,7 @@ $$
 <<*>>=
 )clear all
 
---S 101
+--S 101 of 127
 aa:=integrate(1/(p^2+q^2*cos(a*x)^2),x)
 --R 
 --R
@@ -1510,7 +1510,7 @@ aa:=integrate(1/(p^2+q^2*cos(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 102
+--S 102 of 127
 bb:=1/(a*p*sqrt(p^2+q^2))*atan((p*tan(a*x))/sqrt(p^2+q^2))
 --R
 --R             p tan(a x)
@@ -1525,7 +1525,7 @@ bb:=1/(a*p*sqrt(p^2+q^2))*atan((p*tan(a*x))/sqrt(p^2+q^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 103
+--S 103 of 127
 cc:=aa-bb
 --R
 --R   (3)
@@ -1550,7 +1550,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 104
+--S 104 of 127
 dd:=ratDenom cc
 --R
 --R   (4)
@@ -1584,7 +1584,7 @@ dd:=ratDenom cc
 --R                                                     Type: Expression Integer
 --E
 
---S 105
+--S 105 of 127
 atanrule2:=rule(atan(x) == 1/2*%i*(log(1-%i*x)-log(1+%i*x)))
 --R
 --R                     1                    1
@@ -1593,7 +1593,7 @@ atanrule2:=rule(atan(x) == 1/2*%i*(log(1-%i*x)-log(1+%i*x)))
 --RType: RewriteRule(Integer,Complex Fraction Integer,Expression Complex Fraction Integer)
 --E
 
---S 106
+--S 106 of 127
 ee:=atanrule2 dd
 --R
 --R   (6)
@@ -1663,7 +1663,7 @@ ee:=atanrule2 dd
 --R                                    Type: Expression Complex Fraction Integer
 --E
 
---S 107
+--S 107 of 127
 ff:=expandLog ee
 --R
 --R   (7)
@@ -1730,7 +1730,7 @@ ff:=expandLog ee
 --R                                    Type: Expression Complex Fraction Integer
 --E
 
---S 108    14:392 Schaums and Axiom differ by a constant
+--S 108 of 127    14:392 Schaums and Axiom differ by a constant
 complexNormalize ff
 --R
 --R   (8)
@@ -1770,7 +1770,7 @@ $$
 <<*>>=
 )clear all
 
---S 109
+--S 109 of 127
 aa:=integrate(1/(p^2-q^2*cos(a*x)^2),x)
 --R 
 --R
@@ -1806,7 +1806,7 @@ aa:=integrate(1/(p^2-q^2*cos(a*x)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 110
+--S 110 of 127
 bb1:=1/(a*p*sqrt(p^2-q^2))*atan((p*tan(a*x))/sqrt(p^2-q^2))
 --R
 --R              p tan(a x)
@@ -1821,7 +1821,7 @@ bb1:=1/(a*p*sqrt(p^2-q^2))*atan((p*tan(a*x))/sqrt(p^2-q^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 111
+--S 111 of 127
 bb2:=1/(2*a*p*sqrt(q^2-p^2))*log((p*tan(a*x)-sqrt(q^2-p^2))/(p*tan(a*x)+sqrt(q^2-p^2)))
 --R
 --R               +-------+
@@ -1838,7 +1838,7 @@ bb2:=1/(2*a*p*sqrt(q^2-p^2))*log((p*tan(a*x)-sqrt(q^2-p^2))/(p*tan(a*x)+sqrt(q^2
 --R                                                     Type: Expression Integer
 --E
 
---S 112
+--S 112 of 127
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -1870,7 +1870,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 113
+--S 113 of 127
 cc2:=aa.2-bb1
 --R
 --R   (5)
@@ -1895,7 +1895,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 114
+--S 114 of 127
 cc3:=aa.1-bb2
 --R
 --R   (6)
@@ -1921,7 +1921,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 115
+--S 115 of 127
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -1952,7 +1952,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 116
+--S 116 of 127
 dd2:=ratDenom cc2
 --R
 --R   (8)
@@ -1985,7 +1985,7 @@ dd2:=ratDenom cc2
 --R                                                     Type: Expression Integer
 --E
 
---S 117
+--S 117 of 127
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -1994,7 +1994,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 118
+--S 118 of 127
 ee2:=tanrule dd2
 --R
 --R   (10)
@@ -2027,7 +2027,7 @@ ee2:=tanrule dd2
 --R                                                     Type: Expression Integer
 --E
 
---S 119
+--S 119 of 127
 atanrule2:=rule(atan(x) == 1/2*%i*(log(1-%i*x)-log(1+%i*x)))
 --R
 --R                      1                    1
@@ -2036,7 +2036,7 @@ atanrule2:=rule(atan(x) == 1/2*%i*(log(1-%i*x)-log(1+%i*x)))
 --RType: RewriteRule(Integer,Complex Fraction Integer,Expression Complex Fraction Integer)
 --E
 
---S 120
+--S 120 of 127
 ff2:=atanrule2 ee2
 --R
 --R   (12)
@@ -2106,7 +2106,7 @@ ff2:=atanrule2 ee2
 --R                                    Type: Expression Complex Fraction Integer
 --E
 
---S 121
+--S 121 of 127
 gg2:=expandLog ff2
 --R
 --R   (13)
@@ -2173,7 +2173,7 @@ gg2:=expandLog ff2
 --R                                    Type: Expression Complex Fraction Integer
 --E
 
---S 122    14:393 Schaums and Axiom differ by a constant
+--S 122 of 127    14:393 Schaums and Axiom differ by a constant
 hh2:=complexNormalize gg2
 --R
 --R   (14)
@@ -2200,7 +2200,7 @@ $$
 <<*>>=
 )clear all
 
---S 123    14:394 Axiom cannot compute this integral
+--S 123 of 127    14:394 Axiom cannot compute this integral
 aa:=integrate(x^m*cos(a*x),x)
 --R 
 --R
@@ -2220,7 +2220,7 @@ $$
 <<*>>=
 )clear all
 
---S 124    14:395 Axiom cannot compute this integral
+--S 124 of 127    14:395 Axiom cannot compute this integral
 aa:=integrate(cos(a*x)/x^n,x)
 --R 
 --R
@@ -2241,7 +2241,7 @@ $$
 <<*>>=
 )clear all
 
---S 125    14:396 Axiom cannot compute this integral
+--S 125 of 127    14:396 Axiom cannot compute this integral
 aa:=integrate(cos(a*x)^n,x)
 --R 
 --R
@@ -2262,7 +2262,7 @@ $$
 <<*>>=
 )clear all
 
---S 126    14:397 Axiom cannot compute this integral
+--S 126 of 127    14:397 Axiom cannot compute this integral
 aa:=integrate(1/(cos(a*x))^n,x)
 --R 
 --R
@@ -2285,7 +2285,7 @@ $$
 <<*>>=
 )clear all
 
---S 127    14:398 Axiom cannot compute this integral
+--S 127 of 127    14:398 Axiom cannot compute this integral
 aa:=integrate(x/cos(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum19.input.pamphlet b/src/input/schaum19.input.pamphlet
index eeb4d9d..9d2e474 100644
--- a/src/input/schaum19.input.pamphlet
+++ b/src/input/schaum19.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 185
 aa:=integrate(sin(a*x)*cos(a*x),x)
 --R 
 --R
@@ -29,7 +29,7 @@ aa:=integrate(sin(a*x)*cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 185
 bb:=sin(a*x)^2/(2*a)
 --R
 --R                2
@@ -39,7 +39,7 @@ bb:=sin(a*x)^2/(2*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 185
 cc:=aa-bb
 --R
 --R                  2           2
@@ -49,7 +49,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 185
 cossqrrule:=rule(cos(a)^2 == 1-sin(a)^2)
 --R
 --R              2            2
@@ -57,7 +57,7 @@ cossqrrule:=rule(cos(a)^2 == 1-sin(a)^2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 5      14:399 Schaums and Axiom differ by a constant
+--S 5 of 185      14:399 Schaums and Axiom differ by a constant
 dd:=cossqrrule cc
 --R
 --R           1
@@ -75,7 +75,7 @@ $$
 <<*>>=
 )clear all
 
---S 6
+--S 6 of 185
 aa:=integrate(sin(p*x)*cos(q*x),x)
 --R 
 --R
@@ -86,7 +86,7 @@ aa:=integrate(sin(p*x)*cos(q*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 7
+--S 7 of 185
 bb:=-cos((p-q)*x)/(2*(p-q))-cos((p+q)*x)/(2*(p+q))
 --R
 --R        (- q + p)cos((q + p)x) + (q + p)cos((q - p)x)
@@ -96,7 +96,7 @@ bb:=-cos((p-q)*x)/(2*(p-q))-cos((p+q)*x)/(2*(p+q))
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -109,7 +109,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:400 Schaums and Axiom agree
+--S 9 of 185      14:400 Schaums and Axiom agree
 complexNormalize cc
 --R
 --R   (4)  0
@@ -125,7 +125,7 @@ $$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 185
 aa:=integrate(sin(a*x)^n*cos(a*x),x)
 --R 
 --R
@@ -136,7 +136,7 @@ aa:=integrate(sin(a*x)^n*cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 185
 bb:=sin(a*x)^(n+1)/((n+1)*a)
 --R
 --R                n + 1
@@ -146,7 +146,7 @@ bb:=sin(a*x)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 12
+--S 12 of 185
 cc:=aa-bb
 --R
 --R                  n log(sin(a x))           n + 1
@@ -156,7 +156,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 13
+--S 13 of 185
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -164,7 +164,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 14
+--S 14 of 185
 dd:=explog cc
 --R
 --R                  n + 1                   n
@@ -174,7 +174,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 15     14:401 Schaums and Axiom agree
+--S 15 of 185     14:401 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -190,7 +190,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 185
 aa:=integrate(cos(a*x)^n*sin(a*x),x)
 --R 
 --R
@@ -201,7 +201,7 @@ aa:=integrate(cos(a*x)^n*sin(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 17
+--S 17 of 185
 bb:=-cos(a*x)^(n+1)/((n+1)*a)
 --R
 --R                  n + 1
@@ -211,7 +211,7 @@ bb:=-cos(a*x)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E 
 
---S 18
+--S 18 of 185
 cc:=aa-bb
 --R
 --R                    n log(cos(a x))           n + 1
@@ -221,7 +221,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 185
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -229,7 +229,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 20
+--S 20 of 185
 dd:=explog cc
 --R
 --R                n + 1                   n
@@ -239,7 +239,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 21     14:402 Schaums and Axiom agree
+--S 21 of 185     14:402 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -255,7 +255,7 @@ $$
 <<*>>=
 )clear all
 
---S 22
+--S 22 of 185
 aa:=integrate(sin(a*x)^2*cos(a*x)^2,x)
 --R 
 --R
@@ -266,7 +266,7 @@ aa:=integrate(sin(a*x)^2*cos(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 23
+--S 23 of 185
 bb:=x/8-sin(4*a*x)/(32*a)
 --R
 --R        - sin(4a x) + 4a x
@@ -275,7 +275,7 @@ bb:=x/8-sin(4*a*x)/(32*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 185
 cc:=aa-bb
 --R
 --R                                3
@@ -285,7 +285,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 25     14:403 Schaums and Axiom agree
+--S 25 of 185     14:403 Schaums and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -301,7 +301,7 @@ $$
 <<*>>=
 )clear all
 
---S 26
+--S 26 of 185
 aa:=integrate(1/(sin(a*x)*cos(a*x)),x)
 --R 
 --R
@@ -313,7 +313,7 @@ aa:=integrate(1/(sin(a*x)*cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 27
+--S 27 of 185
 bb:=1/a*log(tan(a*x))
 --R
 --R        log(tan(a x))
@@ -322,7 +322,7 @@ bb:=1/a*log(tan(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 28
+--S 28 of 185
 cc:=aa-bb
 --R
 --R                                sin(a x)              2cos(a x)
@@ -333,7 +333,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 29
+--S 29 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -342,7 +342,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 30
+--S 30 of 185
 dd:=tanrule cc
 --R
 --R              sin(a x)          sin(a x)              2cos(a x)
@@ -353,7 +353,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 31     14:404 Schaums and Axiom differ by a constant
+--S 31 of 185     14:404 Schaums and Axiom differ by a constant
 ee:=expandLog dd
 --R
 --R          log(- 2)
@@ -371,7 +371,7 @@ $$
 <<*>>=
 )clear all
 
---S 32
+--S 32 of 185
 aa:=integrate(1/(sin(a*x)^2*cos(a*x)),x)
 --R 
 --R
@@ -388,7 +388,7 @@ aa:=integrate(1/(sin(a*x)^2*cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 33
+--S 33 of 185
 bb:=1/a*log(tan(%pi/4+(a*x)/2))-1/(a*sin(a*x))
 --R
 --R                        2a x + %pi
@@ -399,7 +399,7 @@ bb:=1/a*log(tan(%pi/4+(a*x)/2))-1/(a*sin(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -415,7 +415,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -424,7 +424,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 36
+--S 36 of 185
 dd:=tanrule cc
 --R
 --R   (5)
@@ -444,7 +444,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 185
 ee:=expandLog dd
 --R
 --R   (6)
@@ -458,7 +458,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 38     14:405 Schaums and Axiom differ by a constant
+--S 38 of 185     14:405 Schaums and Axiom differ by a constant
 ff:=complexNormalize %
 --R
 --R        log(- 1)
@@ -476,7 +476,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 185
 aa:=integrate(1/(sin(a*x)*cos(a*x)^2),x)
 --R 
 --R
@@ -488,7 +488,7 @@ aa:=integrate(1/(sin(a*x)*cos(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 40
+--S 40 of 185
 bb:=1/a*log(tan((a*x)/2))+1/(a*cos(a*x))
 --R
 --R                        a x
@@ -499,7 +499,7 @@ bb:=1/a*log(tan((a*x)/2))+1/(a*cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 185
 cc:=aa-bb
 --R
 --R                  a x           sin(a x)
@@ -510,7 +510,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -519,7 +519,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 43
+--S 43 of 185
 dd:=tanrule cc
 --R
 --R                                    a x
@@ -534,7 +534,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 185
 ee:=expandLog dd
 --R
 --R                                a x                                 a x
@@ -545,7 +545,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 45     14:406 Schaums and Axiom differ by a constant
+--S 45 of 185     14:406 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R        1
@@ -563,7 +563,7 @@ $$
 <<*>>=
 )clear all
 
---S 46
+--S 46 of 185
 aa:=integrate(1/(sin(a*x)^2*cos(a*x)^2),x)
 --R 
 --R
@@ -574,7 +574,7 @@ aa:=integrate(1/(sin(a*x)^2*cos(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 47
+--S 47 of 185
 bb:=-(2*cot(2*a*x))/a
 --R
 --R          2cot(2a x)
@@ -583,7 +583,7 @@ bb:=-(2*cot(2*a*x))/a
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 185
 cc:=aa-bb
 --R
 --R                                              2
@@ -593,7 +593,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 49
+--S 49 of 185
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -602,7 +602,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 50
+--S 50 of 185
 dd:=cotrule cc
 --R
 --R                    2
@@ -612,7 +612,7 @@ dd:=cotrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:407 Schaums and Axiom agree
+--S 51 of 185     14:407 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -628,7 +628,7 @@ $$
 <<*>>=
 )clear all
 
---S 52
+--S 52 of 185
 aa:=integrate(sin(a*x)^2/cos(a*x),x)
 --R 
 --R
@@ -640,7 +640,7 @@ aa:=integrate(sin(a*x)^2/cos(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 53
+--S 53 of 185
 bb:=-sin(a*x)/a+1/a*log(tan((a*x)/2+%pi/4))
 --R
 --R                2a x + %pi
@@ -651,7 +651,7 @@ bb:=-sin(a*x)/a+1/a*log(tan((a*x)/2+%pi/4))
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -667,7 +667,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 55
+--S 55 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -676,7 +676,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 56
+--S 56 of 185
 dd:=tanrule cc
 --R
 --R   (5)
@@ -696,7 +696,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 185
 ee:=expandLog dd
 --R
 --R   (6)
@@ -710,7 +710,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 58     14:408 Schaums and Axiom differ by a constant
+--S 58 of 185     14:408 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R        log(- 1)
@@ -728,7 +728,7 @@ $$
 <<*>>=
 )clear all
 
---S 59
+--S 59 of 185
 aa:=integrate(cos(a*x)^2/sin(a*x),x)
 --R 
 --R
@@ -740,7 +740,7 @@ aa:=integrate(cos(a*x)^2/sin(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 60
+--S 60 of 185
 bb:=cos(a*x)/a+1/a*log(tan((a*x)/2))
 --R
 --R                a x
@@ -751,7 +751,7 @@ bb:=cos(a*x)/a+1/a*log(tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 61
+--S 61 of 185
 cc:=aa-bb
 --R
 --R                  a x           sin(a x)
@@ -762,7 +762,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 62
+--S 62 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -771,7 +771,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 63
+--S 63 of 185
 dd:=tanrule cc
 --R
 --R                                    a x
@@ -786,7 +786,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 64
+--S 64 of 185
 ee:=expandLog dd
 --R
 --R                                a x                                 a x
@@ -797,7 +797,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 65     14:409 Schaums and Axiom agree
+--S 65 of 185     14:409 Schaums and Axiom agree
 ff:=complexNormalize ee
 --R
 --R   (7)  0
@@ -814,7 +814,7 @@ $$
 <<*>>=
 )clear all
 
---S 66
+--S 66 of 185
 aa:=integrate(1/(cos(a*x)*(1+sin(a*x))),x)
 --R 
 --R
@@ -831,7 +831,7 @@ aa:=integrate(1/(cos(a*x)*(1+sin(a*x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 67
+--S 67 of 185
 bb:=-1/(2*a*(1+sin(a*x)))+1/(2*a)*log(tan((a*x)/2+%pi/4))
 --R
 --R                              2a x + %pi
@@ -842,7 +842,7 @@ bb:=-1/(2*a*(1+sin(a*x)))+1/(2*a)*log(tan((a*x)/2+%pi/4))
 --R                                                     Type: Expression Integer
 --E
 
---S 68
+--S 68 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -858,7 +858,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -867,7 +867,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 70
+--S 70 of 185
 dd:=tanrule cc
 --R
 --R   (5)
@@ -887,7 +887,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 71
+--S 71 of 185
 ee:=expandLog dd
 --R
 --R   (6)
@@ -901,7 +901,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 72
+--S 72 of 185
 ff:=complexNormalize ee
 --R
 --R        log(- 1) + 1
@@ -912,7 +912,7 @@ ff:=complexNormalize ee
 
 )clear all 
 
---S 73
+--S 73 of 185
 aa:=integrate(1/(cos(a*x)*(1-sin(a*x))),x)
 --R 
 --R
@@ -929,7 +929,7 @@ aa:=integrate(1/(cos(a*x)*(1-sin(a*x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 74
+--S 74 of 185
 bb:=1/(2*a*(1-sin(a*x)))+1/(2*a)*log(tan((a*x)/2+%pi/4))
 --R
 --R                              2a x + %pi
@@ -940,7 +940,7 @@ bb:=1/(2*a*(1-sin(a*x)))+1/(2*a)*log(tan((a*x)/2+%pi/4))
 --R                                                     Type: Expression Integer
 --E
 
---S 75
+--S 75 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -956,7 +956,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 76
+--S 76 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -965,7 +965,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 77
+--S 77 of 185
 dd:=tanrule cc
 --R
 --R   (5)
@@ -985,7 +985,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 78
+--S 78 of 185
 ee:=expandLog dd
 --R
 --R   (6)
@@ -999,7 +999,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 79     14:410 Schaums and Axiom differ by a constant
+--S 79 of 185     14:410 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R        log(- 1) - 1
@@ -1018,7 +1018,7 @@ $$
 <<*>>=
 )clear all
 
---S 80
+--S 80 of 185
 aa:=integrate(1/(sin(a*x)*(1+cos(a*x))),x)
 --R 
 --R
@@ -1030,7 +1030,7 @@ aa:=integrate(1/(sin(a*x)*(1+cos(a*x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 81
+--S 81 of 185
 bb:=1/(2*a*(1+cos(a*x)))+1/(2*a)*log(tan((a*x)/2))
 --R
 --R                              a x
@@ -1041,7 +1041,7 @@ bb:=1/(2*a*(1+cos(a*x)))+1/(2*a)*log(tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 82
+--S 82 of 185
 cc:=aa-bb
 --R
 --R                   a x            sin(a x)
@@ -1052,7 +1052,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 83
+--S 83 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -1061,7 +1061,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 84
+--S 84 of 185
 dd:=tanrule cc
 --R
 --R                                      a x
@@ -1076,7 +1076,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 85
+--S 85 of 185
 ee:=expandLog dd
 --R
 --R   (6)
@@ -1088,7 +1088,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 86
+--S 86 of 185
 ff:=complexNormalize ee
 --R
 --R           1
@@ -1099,7 +1099,7 @@ ff:=complexNormalize ee
 
 )clear all
 
---S 87
+--S 87 of 185
 aa:=integrate(1/(sin(a*x)*(1-cos(a*x))),x)
 --R 
 --R
@@ -1111,7 +1111,7 @@ aa:=integrate(1/(sin(a*x)*(1-cos(a*x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 88
+--S 88 of 185
 bb:=-1/(2*a*(1-cos(a*x)))+1/(2*a)*log(tan((a*x)/2))
 --R
 --R                              a x
@@ -1122,7 +1122,7 @@ bb:=-1/(2*a*(1-cos(a*x)))+1/(2*a)*log(tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 89
+--S 89 of 185
 cc:=aa-bb
 --R
 --R                   a x            sin(a x)
@@ -1133,7 +1133,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 90
+--S 90 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -1142,7 +1142,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 91
+--S 91 of 185
 dd:=tanrule cc
 --R
 --R                                      a x
@@ -1157,7 +1157,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 92
+--S 92 of 185
 ee:=expandLog dd
 --R
 --R   (6)
@@ -1169,7 +1169,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 93     14:411 Schaums and Axiom differ by a constant
+--S 93 of 185     14:411 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R         1
@@ -1187,7 +1187,7 @@ $$
 <<*>>=
 )clear all
 
---S 94
+--S 94 of 185
 aa:=integrate(1/(sin(a*x)+cos(a*x)),x)
 --R 
 --R
@@ -1200,7 +1200,7 @@ aa:=integrate(1/(sin(a*x)+cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 95
+--S 95 of 185
 bb:=1/(a*sqrt(2))*log(tan((a*x)/2+%pi/8))
 --R
 --R         +-+        4a x + %pi
@@ -1211,7 +1211,7 @@ bb:=1/(a*sqrt(2))*log(tan((a*x)/2+%pi/8))
 --R                                                     Type: Expression Integer
 --E
 
---S 96
+--S 96 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -1228,7 +1228,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 97
+--S 97 of 185
 complexNormalize cc
 --R
 --R                 +-+
@@ -1243,7 +1243,7 @@ complexNormalize cc
 
 )clear all
 
---S 98
+--S 98 of 185
 aa:=integrate(1/(sin(a*x)-cos(a*x)),x)
 --R 
 --R
@@ -1256,7 +1256,7 @@ aa:=integrate(1/(sin(a*x)-cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 99
+--S 99 of 185
 bb:=1/(a*sqrt(2))*log(tan((a*x)/2-%pi/8))
 --R
 --R         +-+        4a x - %pi
@@ -1267,7 +1267,7 @@ bb:=1/(a*sqrt(2))*log(tan((a*x)/2-%pi/8))
 --R                                                     Type: Expression Integer
 --E
 
---S 100
+--S 100 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -1284,7 +1284,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 101    14:412 Schaums and Axiom differ by a constant
+--S 101 of 185    14:412 Schaums and Axiom differ by a constant
 complexNormalize cc
 --R
 --R         +-+     +-+
@@ -1303,7 +1303,7 @@ $$
 <<*>>=
 )clear all
 
---S 102
+--S 102 of 185
 aa:=integrate(sin(a*x)/(sin(a*x)+cos(a*x)),x)
 --R 
 --R
@@ -1315,7 +1315,7 @@ aa:=integrate(sin(a*x)/(sin(a*x)+cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 103
+--S 103 of 185
 bb:=x/2-1/(2*a)*log(sin(a*x)+cos(a*x))
 --R
 --R        - log(sin(a x) + cos(a x)) + a x
@@ -1324,7 +1324,7 @@ bb:=x/2-1/(2*a)*log(sin(a*x)+cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 104
+--S 104 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -1336,7 +1336,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 105
+--S 105 of 185
 dd:=expandLog cc
 --R
 --R        log(sin(a x) + cos(a x)) - log(- sin(a x) - cos(a x))
@@ -1345,7 +1345,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 106
+--S 106 of 185
 ee:=complexNormalize dd
 --R
 --R        log(- 1)
@@ -1356,7 +1356,7 @@ ee:=complexNormalize dd
 
 )clear all 
 
---S 107
+--S 107 of 185
 aa:=integrate(sin(a*x)/(sin(a*x)-cos(a*x)),x)
 --R 
 --R
@@ -1368,7 +1368,7 @@ aa:=integrate(sin(a*x)/(sin(a*x)-cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 108
+--S 108 of 185
 bb:=x/2+1/(2*a)*log(sin(a*x)-cos(a*x))
 --R
 --R        log(sin(a x) - cos(a x)) + a x
@@ -1377,7 +1377,7 @@ bb:=x/2+1/(2*a)*log(sin(a*x)-cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 109
+--S 109 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -1389,7 +1389,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 110    14:413 Schaums and Axiom agree
+--S 110 of 185    14:413 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1405,7 +1405,7 @@ $$
 <<*>>=
 )clear all
 
---S 111
+--S 111 of 185
 aa:=integrate(cos(a*x)/(sin(a*x)+cos(a*x)),x)
 --R 
 --R
@@ -1417,7 +1417,7 @@ aa:=integrate(cos(a*x)/(sin(a*x)+cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 112
+--S 112 of 185
 bb:=x/2+1/(2*a)*log(sin(a*x)+cos(a*x))
 --R
 --R        log(sin(a x) + cos(a x)) + a x
@@ -1426,7 +1426,7 @@ bb:=x/2+1/(2*a)*log(sin(a*x)+cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 113
+--S 113 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -1438,7 +1438,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 114
+--S 114 of 185
 dd:=expandLog cc
 --R
 --R        - log(sin(a x) + cos(a x)) + log(- sin(a x) - cos(a x))
@@ -1447,7 +1447,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 115
+--S 115 of 185
 ee:=complexNormalize dd
 --R
 --R          log(- 1)
@@ -1458,7 +1458,7 @@ ee:=complexNormalize dd
 
 )clear all
 
---S 116
+--S 116 of 185
 aa:=integrate(cos(a*x)/(sin(a*x)-cos(a*x)),x)
 --R 
 --R
@@ -1470,7 +1470,7 @@ aa:=integrate(cos(a*x)/(sin(a*x)-cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 117
+--S 117 of 185
 bb:=-x/2+1/(2*a)*log(sin(a*x)-cos(a*x))
 --R
 --R        log(sin(a x) - cos(a x)) - a x
@@ -1479,7 +1479,7 @@ bb:=-x/2+1/(2*a)*log(sin(a*x)-cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 118
+--S 118 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -1491,7 +1491,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 119    14:414 Schaums and Axiom agree
+--S 119 of 185    14:414 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1507,7 +1507,7 @@ $$
 <<*>>=
 )clear all
 
---S 120
+--S 120 of 185
 aa:=integrate(sin(a*x)/(p+q*cos(a*x)),x)
 --R 
 --R
@@ -1519,7 +1519,7 @@ aa:=integrate(sin(a*x)/(p+q*cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 121
+--S 121 of 185
 bb:=-1/(a*q)*log(p+q*cos(a*x))
 --R
 --R          log(q cos(a x) + p)
@@ -1528,7 +1528,7 @@ bb:=-1/(a*q)*log(p+q*cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 122
+--S 122 of 185
 cc:=aa-bb
 --R
 --R                                        2             - 2q cos(a x) - 2p
@@ -1539,7 +1539,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 123
+--S 123 of 185
 dd:=expandLog cc
 --R
 --R        log(q cos(a x) + p) - log(- q cos(a x) - p)
@@ -1548,7 +1548,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 124    14:415 Schaums and Axiom differ by a constant
+--S 124 of 185    14:415 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        log(- 1)
@@ -1566,7 +1566,7 @@ $$
 <<*>>=
 )clear all
 
---S 125
+--S 125 of 185
 aa:=integrate(cos(a*x)/(p+q*sin(a*x)),x)
 --R 
 --R
@@ -1578,7 +1578,7 @@ aa:=integrate(cos(a*x)/(p+q*sin(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 126
+--S 126 of 185
 bb:=1/(a*q)*log(p+q*sin(a*x))
 --R
 --R        log(q sin(a x) + p)
@@ -1587,7 +1587,7 @@ bb:=1/(a*q)*log(p+q*sin(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 127
+--S 127 of 185
 cc:=aa-bb
 --R
 --R                                    2q sin(a x) + 2p              2
@@ -1598,7 +1598,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 128    14:416 Schaums and Axiom agree
+--S 128 of 185    14:416 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -1614,7 +1614,7 @@ $$
 <<*>>=
 )clear all
 
---S 129
+--S 129 of 185
 aa:=integrate(sin(a*x)/(p+q*cos(a*x))^n,x)
 --R 
 --R
@@ -1625,7 +1625,7 @@ aa:=integrate(sin(a*x)/(p+q*cos(a*x))^n,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 130
+--S 130 of 185
 bb:=1/(a*q*(n-1)*(p+q*cos(a*x))^(n-1))
 --R
 --R                        1
@@ -1635,7 +1635,7 @@ bb:=1/(a*q*(n-1)*(p+q*cos(a*x))^(n-1))
 --R                                                     Type: Expression Integer
 --E
 
---S 131
+--S 131 of 185
 cc:=aa-bb
 --R
 --R            n log(q cos(a x) + p)                                   n - 1
@@ -1646,7 +1646,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 132
+--S 132 of 185
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1654,7 +1654,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 133
+--S 133 of 185
 dd:=explog cc
 --R
 --R                          n                                   n - 1
@@ -1665,7 +1665,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 134    14:417 Schaums and Axiom agree
+--S 134 of 185    14:417 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1681,7 +1681,7 @@ $$
 <<*>>=
 )clear all
 
---S 135
+--S 135 of 185
 aa:=integrate(cos(a*x)/(p+q*sin(a*x))^n,x)
 --R 
 --R
@@ -1692,7 +1692,7 @@ aa:=integrate(cos(a*x)/(p+q*sin(a*x))^n,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 136
+--S 136 of 185
 bb:=-1/(a*q*(n-1)*(p+q*sin(a*x))^(n-1))
 --R
 --R                          1
@@ -1702,7 +1702,7 @@ bb:=-1/(a*q*(n-1)*(p+q*sin(a*x))^(n-1))
 --R                                                     Type: Expression Integer
 --E
 
---S 137
+--S 137 of 185
 cc:=aa-bb
 --R
 --R          n log(q sin(a x) + p)                                     n - 1
@@ -1713,7 +1713,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 138
+--S 138 of 185
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1721,7 +1721,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 139
+--S 139 of 185
 dd:=explog cc
 --R
 --R                        n                                     n - 1
@@ -1732,7 +1732,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 140    14:418 Schaums and Axiom agree
+--S 140 of 185    14:418 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1748,7 +1748,7 @@ $$
 <<*>>=
 )clear all
 
---S 141
+--S 141 of 185
 aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)),x)
 --R 
 --R
@@ -1769,7 +1769,7 @@ aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 142
+--S 142 of 185
 bb:=1/(a*sqrt(p^2+q^2))*log(tan((a*x+atan(q/p))/2))
 --R
 --R                     q
@@ -1784,7 +1784,7 @@ bb:=1/(a*sqrt(p^2+q^2))*log(tan((a*x+atan(q/p))/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 143
+--S 143 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -1810,7 +1810,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 144
+--S 144 of 185
 dd:=normalize cc
 --R
 --R                            +-------+
@@ -1827,7 +1827,7 @@ dd:=normalize cc
 --R                                                     Type: Expression Integer
 --E
 
---S 145    14:419 Schaums and Axiom differ by a constant
+--S 145 of 185    14:419 Schaums and Axiom differ by a constant
 ee:=ratDenom dd
 --R
 --R                            +-------+
@@ -1862,7 +1862,7 @@ $$
 <<*>>=
 )clear all
 
---S 146
+--S 146 of 185
 aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)+r),x)
 --R 
 --R
@@ -1904,7 +1904,7 @@ aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)+r),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 147
+--S 147 of 185
 bb1:=2/(a*sqrt(r^2-p^2-q^2))*atan((p+(r-q)*tan((a*x)/2))/sqrt(r^2-p^2-q^2))
 --R
 --R                         a x
@@ -1921,7 +1921,7 @@ bb1:=2/(a*sqrt(r^2-p^2-q^2))*atan((p+(r-q)*tan((a*x)/2))/sqrt(r^2-p^2-q^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 148
+--S 148 of 185
 bb2:=1/(a*sqrt(p^2+q^2-r^2))*log((p-sqrt(p^2+q^2-r^2)+(r-q)*tan((a*x)/2))/(p+sqrt(p^2+q^2-r^2)+(r-q)*tan((a*x)/2)))
 --R
 --R               +--------------+
@@ -1940,7 +1940,7 @@ bb2:=1/(a*sqrt(p^2+q^2-r^2))*log((p-sqrt(p^2+q^2-r^2)+(r-q)*tan((a*x)/2))/(p+sqr
 --R                                                     Type: Expression Integer
 --E
 
---S 149
+--S 149 of 185
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -1981,7 +1981,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 150
+--S 150 of 185
 cc2:=aa.2-bb1
 --R
 --R   (5)
@@ -2006,7 +2006,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 151
+--S 151 of 185
 cc3:=aa.1-bb2
 --R
 --R   (6)
@@ -2045,7 +2045,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 152
+--S 152 of 185
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -2072,7 +2072,7 @@ cc4:=aa.2-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 153    14:420 Schaums and Axiom agree
+--S 153 of 185    14:420 Schaums and Axiom agree
 dd2:=normalize cc2
 --R
 --R   (8)  0
@@ -2088,7 +2088,7 @@ $$
 <<*>>=
 )clear all
 
---S 154
+--S 154 of 185
 aa:=integrate(1/(p*sin(a*x)+q*(1+cos(a*x))),x)
 --R 
 --R
@@ -2100,7 +2100,7 @@ aa:=integrate(1/(p*sin(a*x)+q*(1+cos(a*x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 155
+--S 155 of 185
 bb:=1/(a*p)*log(q+p*tan((a*x)/2))
 --R
 --R                  a x
@@ -2111,7 +2111,7 @@ bb:=1/(a*p)*log(q+p*tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E 
 
---S 156
+--S 156 of 185
 cc:=aa-bb
 --R
 --R                    a x             p sin(a x) + q cos(a x) + q
@@ -2122,7 +2122,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 157
+--S 157 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -2131,7 +2131,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 158
+--S 158 of 185
 dd:=tanrule cc
 --R
 --R                                                     a x          a x
@@ -2146,7 +2146,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 159
+--S 159 of 185
 ee:=expandLog dd
 --R
 --R   (6)
@@ -2162,7 +2162,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 160    14:421 Schaums and Axiom agree
+--S 160 of 185    14:421 Schaums and Axiom agree
 ff:=complexNormalize ee
 --R
 --R   (7)  0
@@ -2179,7 +2179,7 @@ $$
 <<*>>=
 )clear all
 
---S 161
+--S 161 of 185
 aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)+sqrt(p^2+q^2)),x)
 --R 
 --R
@@ -2212,7 +2212,7 @@ aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)+sqrt(p^2+q^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 162
+--S 162 of 185
 bb:=-1/(a*sqrt(p^2+q^2))*tan(%pi/4-(a*x+atan(q/p))/2)
 --R
 --R                  q
@@ -2227,7 +2227,7 @@ bb:=-1/(a*sqrt(p^2+q^2))*tan(%pi/4-(a*x+atan(q/p))/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 163
+--S 163 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -2290,7 +2290,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 164
+--S 164 of 185
 dd:=normalize cc
 --R
 --R   (4)
@@ -2319,7 +2319,7 @@ dd:=normalize cc
 --R                                                     Type: Expression Integer
 --E
 
---S 165
+--S 165 of 185
 ee:=ratDenom dd
 --R
 --R            +-------+
@@ -2333,7 +2333,7 @@ ee:=ratDenom dd
 
 )clear all
 
---S 166
+--S 166 of 185
 aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)-sqrt(p^2+q^2)),x)
 --R 
 --R
@@ -2366,7 +2366,7 @@ aa:=integrate(1/(p*sin(a*x)+q*cos(a*x)-sqrt(p^2+q^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 167
+--S 167 of 185
 bb:=-1/(a*sqrt(p^2+q^2))*tan(%pi/4+(a*x+atan(q/p))/2)
 --R
 --R                    q
@@ -2381,7 +2381,7 @@ bb:=-1/(a*sqrt(p^2+q^2))*tan(%pi/4+(a*x+atan(q/p))/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 168
+--S 168 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -2444,7 +2444,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 169
+--S 169 of 185
 dd:=normalize cc
 --R
 --R   (4)
@@ -2473,7 +2473,7 @@ dd:=normalize cc
 --R                                                     Type: Expression Integer
 --E
 
---S 170    14:422 Schaums and Axiom differ by a constant
+--S 170 of 185    14:422 Schaums and Axiom differ by a constant
 ee:=ratDenom dd
 --R
 --R          +-------+
@@ -2494,7 +2494,7 @@ $$
 <<*>>=
 )clear all
 
---S 171
+--S 171 of 185
 aa:=integrate(1/(p^2*sin(a*x)^2+q^2*cos(a*x)^2),x)
 --R 
 --R
@@ -2508,7 +2508,7 @@ aa:=integrate(1/(p^2*sin(a*x)^2+q^2*cos(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 172
+--S 172 of 185
 bb:=1/(a*p*q)*atan((p*tan(a*x))/q)
 --R
 --R             p tan(a x)
@@ -2519,7 +2519,7 @@ bb:=1/(a*p*q)*atan((p*tan(a*x))/q)
 --R                                                     Type: Expression Integer
 --E
 
---S 173
+--S 173 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -2537,7 +2537,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 174    14:423 Schaums and Axiom agree
+--S 174 of 185    14:423 Schaums and Axiom agree
 dd:=normalize cc
 --R
 --R   (4)  0
@@ -2555,7 +2555,7 @@ $$
 <<*>>=
 )clear all
 
---S 175
+--S 175 of 185
 aa:=integrate(1/(p^2*sin(a*x)^2-q^2*cos(a*x)^2),x)
 --R 
 --R
@@ -2567,7 +2567,7 @@ aa:=integrate(1/(p^2*sin(a*x)^2-q^2*cos(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 176
+--S 176 of 185
 bb:=1/(2*a*p*q)*log((p*tan(a*x)-q)/(p*tan(a*x)+q))
 --R
 --R            p tan(a x) - q
@@ -2578,7 +2578,7 @@ bb:=1/(2*a*p*q)*log((p*tan(a*x)-q)/(p*tan(a*x)+q))
 --R                                                     Type: Expression Integer
 --E 
 
---S 177
+--S 177 of 185
 cc:=aa-bb
 --R
 --R   (3)
@@ -2594,7 +2594,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 178
+--S 178 of 185
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -2603,7 +2603,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 179
+--S 179 of 185
 dd:=tanrule cc
 --R
 --R   (5)
@@ -2619,7 +2619,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 180
+--S 180 of 185
 ee:=expandLog dd
 --R
 --R        log(p sin(a x) + q cos(a x)) - log(- p sin(a x) - q cos(a x))
@@ -2628,7 +2628,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 181    14:424 Schaums and Axiom differ by a constant
+--S 181 of 185    14:424 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R        log(- 1)
@@ -2656,7 +2656,7 @@ $$
 <<*>>=
 )clear all
 
---S 182    14:425 Axiom cannot compute this integral
+--S 182 of 185    14:425 Axiom cannot compute this integral
 aa:=integrate(sin(a*x)^m*cos(a*x)^n,x)
 --R 
 --R
@@ -2690,7 +2690,7 @@ $$
 <<*>>=
 )clear all
 
---S 183    14:426 Axiom cannot compute this integral
+--S 183 of 185    14:426 Axiom cannot compute this integral
 aa:=integrate(sin(a*x)^m/cos(a*x)^n,x)
 --R 
 --R
@@ -2725,7 +2725,7 @@ $$
 <<*>>=
 )clear all
 
---S 184    14:427 Axiom cannot compute this integral
+--S 184 of 185    14:427 Axiom cannot compute this integral
 aa:=integrate(cos(a*x)^m/sin(a*x)^n,x)
 --R 
 --R
@@ -2756,7 +2756,7 @@ $$
 <<*>>=
 )clear all
 
---S 185    14:428 Axiom cannot compute this integral
+--S 185 of 185    14:428 Axiom cannot compute this integral
 aa:=integrate(1/(sin(a*x)^m*cos(a*x)^n),x)
 --R 
 --R
diff --git a/src/input/schaum2.input.pamphlet b/src/input/schaum2.input.pamphlet
index 7a4ef98..aab2406 100644
--- a/src/input/schaum2.input.pamphlet
+++ b/src/input/schaum2.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 98
 aa:=integrate(1/sqrt(a*x+b),x)
 --R 
 --R
@@ -29,7 +29,7 @@ aa:=integrate(1/sqrt(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 98
 bb:=(2*sqrt(a*x+b))/a
 --R 
 --R
@@ -40,7 +40,7 @@ bb:=(2*sqrt(a*x+b))/a
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:84 Schaums and Axiom agree
+--S 3 of 98      14:84 Schaums and Axiom agree
 cc:=aa-bb
 --R 
 --R
@@ -57,7 +57,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 98
 aa:=integrate(x/sqrt(a*x+b),x)
 --R 
 --R
@@ -69,7 +69,7 @@ aa:=integrate(x/sqrt(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 98
 bb:=(2*(a*x-2*b))/(3*a^2)*sqrt(a*x+b)
 --R 
 --R
@@ -81,7 +81,7 @@ bb:=(2*(a*x-2*b))/(3*a^2)*sqrt(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:85 Schaums and Axiom agree
+--S 6 of 98      14:85 Schaums and Axiom agree
 cc:=aa-bb
 --R 
 --R
@@ -98,7 +98,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 98
 aa:=integrate(x^2/sqrt(a*x+b),x)
 --R 
 --R
@@ -110,7 +110,7 @@ aa:=integrate(x^2/sqrt(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 98
 bb:=(2*(3*a^2*x^2-4*a*b*x+8*b^2))/(15*a^3)*sqrt(a*x+b)
 --R 
 --R
@@ -122,7 +122,7 @@ bb:=(2*(3*a^2*x^2-4*a*b*x+8*b^2))/(15*a^3)*sqrt(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:86 Schaums and Axiom agree
+--S 9 of 98      14:86 Schaums and Axiom agree
 cc:=aa-bb
 --R 
 --R
@@ -149,7 +149,7 @@ Note: the first answer assumes $b > 0$ and the second assumes $b < 0$.
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 98
 aa:=integrate(1/(x*sqrt(a*x+b)),x)
 --R 
 --R
@@ -165,7 +165,7 @@ aa:=integrate(1/(x*sqrt(a*x+b)),x)
 @
 Cleary Spiegel's first answer assumes $b > 0$:
 <<*>>=
---S 11
+--S 11 of 98
 bb1:=1/sqrt(b)*log((sqrt(a*x+b)-sqrt(b))/(sqrt(a*x+b)+sqrt(b)))
 --R 
 --R
@@ -182,7 +182,7 @@ bb1:=1/sqrt(b)*log((sqrt(a*x+b)-sqrt(b))/(sqrt(a*x+b)+sqrt(b)))
 @
 So we try the difference of the two results
 <<*>>=
---S 12
+--S 12 of 98
 cc11:=aa.1-bb1
 --R
 --R               +-------+    +-+             +-------+              +-+
@@ -201,7 +201,7 @@ But the results don't simplify to 0. So we try some other tricks.
 Since both functions are of the form log(f(x))/sqrt(b) we extract
 the f(x) from each. First we get the function from Axiom's first answer:
 <<*>>=
---S 13
+--S 13 of 98
 ff:=exp(aa.1*sqrt(b))
 --R
 --R             +-------+              +-+
@@ -213,7 +213,7 @@ ff:=exp(aa.1*sqrt(b))
 @
 and we get the same form from Spiegel's answer
 <<*>>=
---S 14
+--S 14 of 98
 gg:=exp(bb1*sqrt(b))
 --R
 --R         +-------+    +-+
@@ -230,7 +230,7 @@ denominator by $1 == (sqrt(a*x+b) - sqrt(b))/(sqrt(a*x+b) - sqrt(b))$.
 
 First we multiply the numerator by $(sqrt(a*x+b) - sqrt(b))$
 <<*>>=
---S 15
+--S 15 of 98
 gg1:=gg*(sqrt(a*x+b) - sqrt(b))
 --R
 --R            +-+ +-------+
@@ -243,7 +243,7 @@ gg1:=gg*(sqrt(a*x+b) - sqrt(b))
 @
 Now we multiply the denominator by $(sqrt(a*x+b) - sqrt(b))$
 <<*>>=
---S 16
+--S 16 of 98
 gg2:=gg1/(sqrt(a*x+b) - sqrt(b))
 --R
 --R            +-+ +-------+
@@ -255,7 +255,7 @@ gg2:=gg1/(sqrt(a*x+b) - sqrt(b))
 @
 and now we multiply by the integration constant $a*sqrt(b)$
 <<*>>=
---S 17
+--S 17 of 98
 gg3:=gg2*(a*sqrt(b))
 --R
 --R             +-------+              +-+
@@ -267,7 +267,7 @@ gg3:=gg2*(a*sqrt(b))
 @
 and when we difference this with ff, the Axiom answer we get:
 <<*>>=
---S 18     14:87a Schaums and Axiom differ by a constant
+--S 18 of 98     14:87a Schaums and Axiom differ by a constant
 ff-gg3
 --R
 --R   (9)  0
@@ -279,7 +279,7 @@ So the constant of integration difference is $a*sqrt(b)$
 Now we look at the second equations. We difference Axiom's second answer
 from Spiegel's answer:
 <<*>>=
---S 19
+--S 19 of 98
 t1:=aa.2-bb1
 --R
 --R                      +-------+    +-+               +---+ +-------+
@@ -296,7 +296,7 @@ t1:=aa.2-bb1
 and again they do not simplify to zero. But we can show that both answers
 differ by a constant because the derivative is zero:
 <<*>>=
---S 20
+--S 20 of 98
 D(t1,x)
 --R
 --R   (11)  0
@@ -307,7 +307,7 @@ D(t1,x)
 Rather than find the constant this time we will differentiate both
 answers and compare them with the original equation.
 <<*>>=
---S 21
+--S 21 of 98
 target:=1/(x*sqrt(a*x+b))
 --R
 --R              1
@@ -319,7 +319,7 @@ target:=1/(x*sqrt(a*x+b))
 @
 and we select the second Axiom solution
 <<*>>=
---S 22
+--S 22 of 98
 aa2:=aa.2
 --R
 --R                  +---+ +-------+
@@ -334,7 +334,7 @@ aa2:=aa.2
 @
 take its derivative
 <<*>>=
---S 23
+--S 23 of 98
 ad2:=D(aa2,x)
 --R
 --R              1
@@ -347,7 +347,7 @@ ad2:=D(aa2,x)
 When we take the difference of Axiom's input and the derivative of the
 output we see:
 <<*>>=
---S 24
+--S 24 of 98
 ad2-target
 --R
 --R   (15)  0
@@ -359,7 +359,7 @@ Thus the original equation and Axiom's derivative of the integral are equal.
 Now we do the same with Spiegel's answer. We take the derivative of his
 answer.
 <<*>>=
---S 25
+--S 25 of 98
 ab1:=D(bb1,x)
 --R
 --R                +-------+    +-+
@@ -372,7 +372,7 @@ ab1:=D(bb1,x)
 @
 and we difference it from the original equation
 <<*>>=
---S 26     14:87b Schaums and Axiom differ by a constant
+--S 26 of 98     14:87b Schaums and Axiom differ by a constant
 ab1-target
 --R
 --R   (17)  0
@@ -392,7 +392,7 @@ $$
 <<*>>=
 )clear all
 
---S 27
+--S 27 of 98
 aa:=integrate(1/(x^2*sqrt(a*x+b)),x)
 --R 
 --R
@@ -418,7 +418,7 @@ aa:=integrate(1/(x^2*sqrt(a*x+b)),x)
 In order to write down the book answer we need to first take the
 integral which has two results
 <<*>>=
---S 28
+--S 28 of 98
 dd:=integrate(1/(x*sqrt(a*x+b)),x)
 --R 
 --R
@@ -435,7 +435,7 @@ dd:=integrate(1/(x*sqrt(a*x+b)),x)
 and derive two results for the book answer. The first result assumes
 $b > 0$
 <<*>>=
---S 29
+--S 29 of 98
 bb1:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.1
 --R 
 --R
@@ -451,7 +451,7 @@ bb1:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.1
 @
 and the second result assumes $b < 0$.
 <<*>>=
---S 30
+--S 30 of 98
 bb2:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.2
 --R 
 --R
@@ -469,7 +469,7 @@ bb2:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.2
 So we compute the difference of Axiom's first result with Spiegel's
 first result
 <<*>>=
---S 31
+--S 31 of 98
 cc11:=bb1-aa.1
 --R
 --R   (5)
@@ -490,7 +490,7 @@ cc11:=bb1-aa.1
 @
 we compute its derivative
 <<*>>=
---S 32
+--S 32 of 98
 D(cc11,x)
 --R
 --R   (6)  0
@@ -501,7 +501,7 @@ and we can see that the answers differ by a constant, the constant of
 integration. So Axiom's first answer should differentiate back to the target
 equation.
 <<*>>=
---S 33
+--S 33 of 98
 target:=1/(x^2*sqrt(a*x+b))
 --R
 --R              1
@@ -513,7 +513,7 @@ target:=1/(x^2*sqrt(a*x+b))
 @
 We differentiate Axiom's first answer
 <<*>>=
---S 34
+--S 34 of 98
 ad1:=D(aa.1,x)
 --R
 --R                             +-+ +-------+              2
@@ -526,7 +526,7 @@ ad1:=D(aa.1,x)
 @
 and subtract it from the target equation
 <<*>>=
---S 35
+--S 35 of 98
 ad1-target
 --R
 --R   (9)  0
@@ -535,7 +535,7 @@ ad1-target
 @
 and now we do the same with first Spiegel's answer:
 <<*>>=
---S 36
+--S 36 of 98
 bd1:=D(bb1,x)
 --R
 --R                                +-+ +-------+              2
@@ -548,7 +548,7 @@ bd1:=D(bb1,x)
 @
 and we subtract it from the target
 <<*>>=
---S 37     
+--S 37 of 98
 bd1-target
 --R
 --R   (11)  0
@@ -561,7 +561,7 @@ integrals differ by a constant.
 Now we look at the second answers. We difference the answers and can
 see immediately that they are equal.
 <<*>>=
---S 38     14:88 Schaums and Axiom differ by a constant
+--S 38 of 98     14:88 Schaums and Axiom differ by a constant
 cc22:=bb2-aa.2
 --R 
 --R
@@ -578,7 +578,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 98
 aa:=integrate(sqrt(a*x+b),x)
 --R 
 --R
@@ -590,7 +590,7 @@ aa:=integrate(sqrt(a*x+b),x)
 --E 
 @
 <<*>>=
---S 40
+--S 40 of 98
 bb:=(2*sqrt((a*x+b)^3))/(3*a)
 --R 
 --R
@@ -603,7 +603,7 @@ bb:=(2*sqrt((a*x+b)^3))/(3*a)
 --E
 @
 <<*>>=
---S 41
+--S 41 of 98
 cc:=aa-bb
 --R
 --R            +----------------------------+
@@ -616,7 +616,7 @@ cc:=aa-bb
 @
 Since this didn't simplify we could check each answer using the derivative
 <<*>>=
---S 42
+--S 42 of 98
 target:=sqrt(a*x+b)
 --R
 --R         +-------+
@@ -626,7 +626,7 @@ target:=sqrt(a*x+b)
 @
 We take the derivative of Axiom's answer
 <<*>>=
---S 43
+--S 43 of 98
 t1:=D(aa,x)
 --R
 --R          a x + b
@@ -638,7 +638,7 @@ t1:=D(aa,x)
 @
 And we subtract the target from the derivative of Axiom's answer
 <<*>>=
---S 44
+--S 44 of 98
 t1-target
 --R
 --R   (6)  0
@@ -647,7 +647,7 @@ t1-target
 @
 So they are equal. Now we do the same with Spiegel's answer
 <<*>>=
---S 45
+--S 45 of 98
 t2:=D(bb,x)
 --R
 --R                2 2             2
@@ -661,7 +661,7 @@ t2:=D(bb,x)
 @
 The numerator is
 <<*>>=
---S 46
+--S 46 of 98
 nn:=(a*x+b)^2
 --R
 --R         2 2             2
@@ -670,7 +670,7 @@ nn:=(a*x+b)^2
 --E
 @
 <<*>>=
---S 47
+--S 47 of 98
 mm:=(a*x+b)^3
 --R
 --R         3 3     2   2       2     3
@@ -680,7 +680,7 @@ mm:=(a*x+b)^3
 @
 which expands to Spiegel's version.
 <<*>>=
---S 48     14:89 Schaums and Axiom differ by a constant
+--S 48 of 98     14:89 Schaums and Axiom differ by a constant
 result=nn/sqrt(mm)
 --R
 --R                         2 2             2
@@ -702,7 +702,7 @@ $$
 <<*>>=
 )clear all
 
---S 49
+--S 49 of 98
 aa:=integrate(x*sqrt(a*x+b),x)
 --R 
 --R
@@ -714,7 +714,7 @@ aa:=integrate(x*sqrt(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 50
+--S 50 of 98
 bb:=(2*(3*a*x-2*b))/(15*a^2)*sqrt((a*x+b)^3)
 --R 
 --R
@@ -727,7 +727,7 @@ bb:=(2*(3*a*x-2*b))/(15*a^2)*sqrt((a*x+b)^3)
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 98
 cc:=aa-bb
 --R
 --R   (3)
@@ -743,7 +743,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 52     14:90 Schaums and Axiom agree
+--S 52 of 98     14:90 Schaums and Axiom agree
 dd:=rootSimp cc
 --R
 --R   (4)  0
@@ -760,7 +760,7 @@ Note: the sqrt term is almost certainly $\sqrt{(ax+b)}$
 <<*>>=
 )clear all
 
---S 53
+--S 53 of 98
 aa:=integrate(x^2*sqrt(a*x+b),x)
 --R 
 --R
@@ -772,7 +772,7 @@ aa:=integrate(x^2*sqrt(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 54
+--S 54 of 98
 bb:=(2*(15*a^2*x^2-12*a*b*x+8*b^2))/(105*a^3)*sqrt((a+b*x)^3)
 --R 
 --R
@@ -785,7 +785,7 @@ bb:=(2*(15*a^2*x^2-12*a*b*x+8*b^2))/(105*a^3)*sqrt((a+b*x)^3)
 --R                                                     Type: Expression Integer
 --E
 
---S 55     14:91 Axiom cannot simplify this expression. Schaums typo?
+--S 55 of 98     14:91 Axiom cannot simplify this expression. Schaums typo?
 cc:=aa-bb
 --R
 --R   (3)
@@ -807,7 +807,7 @@ differs from schaums on by the order of the variables in the square root.
 (We can square the term (a*x+b) and drag it under the square root to get
 the cubic term). It appears that Schaums has a typo.
 <<*>>=
---S 56
+--S 56 of 98
 factor numer aa
 --R
 --R                      2 2               2  +-------+
@@ -824,7 +824,7 @@ $$
 <<*>>=
 )clear all
 
---S 57
+--S 57 of 98
 aa:=integrate(sqrt(a*x+b)/x,x)
 --R 
 --R
@@ -841,7 +841,7 @@ aa:=integrate(sqrt(a*x+b)/x,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 58
+--S 58 of 98
 dd:=integrate(1/(x*sqrt(a*x+b)),x)
 --R 
 --R
@@ -855,7 +855,7 @@ dd:=integrate(1/(x*sqrt(a*x+b)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 59
+--S 59 of 98
 bb1:=2*sqrt(a*x+b)+b*dd.1
 --R 
 --R
@@ -869,7 +869,7 @@ bb1:=2*sqrt(a*x+b)+b*dd.1
 --R                                                     Type: Expression Integer
 --E
 
---S 60
+--S 60 of 98
 bb2:=2*sqrt(a*x+b)+b*dd.2
 --R 
 --R
@@ -883,7 +883,7 @@ bb2:=2*sqrt(a*x+b)+b*dd.2
 --R                                                     Type: Expression Integer
 --E
 
---S 61
+--S 61 of 98
 cc11:=bb1-aa.1
 --R 
 --R
@@ -898,7 +898,7 @@ cc11:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 62
+--S 62 of 98
 cc12:=bb1-aa.2
 --R 
 --R
@@ -913,7 +913,7 @@ cc12:=bb1-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 63
+--S 63 of 98
 cc21:=bb2-aa.1
 --R 
 --R
@@ -928,7 +928,7 @@ cc21:=bb2-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 64
+--S 64 of 98
 cc22:=bb2-aa.2
 --R 
 --R
@@ -943,7 +943,7 @@ cc22:=bb2-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 65     14:92 Schaums and Axiom agree
+--S 65 of 98     14:92 Schaums and Axiom agree
 dd22:=ratDenom cc22
 --R
 --R   (9)  0
@@ -959,7 +959,7 @@ $$
 <<*>>=
 )clear all
 
---S 65
+--S 65 of 98
 aa:=integrate(sqrt(a*x+b)/x^2,x)
 --R 
 --R
@@ -981,7 +981,7 @@ aa:=integrate(sqrt(a*x+b)/x^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 66
+--S 66 of 98
 dd:=integrate(1/(x*sqrt(a*x+b)),x)
 --R 
 --R
@@ -995,7 +995,7 @@ dd:=integrate(1/(x*sqrt(a*x+b)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 67
+--S 67 of 98
 bb1:=-sqrt(a*x+b)/x+a/2*dd.1
 --R 
 --R
@@ -1009,7 +1009,7 @@ bb1:=-sqrt(a*x+b)/x+a/2*dd.1
 --R                                                     Type: Expression Integer
 --E
 
---S 68
+--S 68 of 98
 bb2:=-sqrt(a*x+b)/x+a/2*dd.2
 --R 
 --R
@@ -1023,7 +1023,7 @@ bb2:=-sqrt(a*x+b)/x+a/2*dd.2
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 98
 cc11:=bb1-aa.1
 --R 
 --R
@@ -1031,7 +1031,7 @@ cc11:=bb1-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 98
 cc21:=bb-aa.1
 --R 
 --R
@@ -1046,7 +1046,7 @@ cc21:=bb-aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 71
+--S 71 of 98
 cc12:=bb1-aa.2
 --R 
 --R
@@ -1061,7 +1061,7 @@ cc12:=bb1-aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 72     14:93 Schaums and Axiom agree
+--S 72 of 98     14:93 Schaums and Axiom agree
 cc22:=bb2-aa.2
 --R 
 --R
@@ -1079,7 +1079,7 @@ $$
 <<*>>=
 )clear all
 
---S 73     14:94 Axiom cannot do this integral
+--S 73 of 98     14:94 Axiom cannot do this integral
 aa:=integrate(x^m/sqrt(a*x+b),x)
 --R 
 --R
@@ -1101,7 +1101,7 @@ $$
 <<*>>=
 )clear all
 
---S 74     14:95 Axiom cannot do this integral
+--S 74 of 98     14:95 Axiom cannot do this integral
 aa:=integrate(1/(x^m*sqrt(a*x+b)),x)
 --R 
 --R
@@ -1123,7 +1123,7 @@ $$
 <<*>>=
 )clear all
 
---S 75     14:96 Axiom cannot do this integral
+--S 75 of 98     14:96 Axiom cannot do this integral
 aa:=integrate(x^m*sqrt(a*x+b),x)
 --R 
 --R
@@ -1144,7 +1144,7 @@ $$
 <<*>>=
 )clear all
 
---S 76     14:97 Axiom cannot do this integral
+--S 76 of 98     14:97 Axiom cannot do this integral
 aa:=integrate(sqrt(a*x+b)/x^m,x)
 --R 
 --R
@@ -1167,7 +1167,7 @@ Note: 14.98 is the same as 14.97
 <<*>>=
 )clear all
 
---S 77     14:98 Axiom cannot do this integral
+--S 77 of 98     14:98 Axiom cannot do this integral
 aa:=integrate(sqrt(a*x+b)/x^m,x)
 --R 
 --R
@@ -1188,7 +1188,7 @@ $$
 <<*>>=
 )clear all
 
---S 78
+--S 78 of 98
 aa:=integrate((a*x+b)^(m/2),x)
 --R 
 --R
@@ -1201,7 +1201,7 @@ aa:=integrate((a*x+b)^(m/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 79
+--S 79 of 98
 bb:=(2*(a*x+b)^((m+2)/2))/(a*(m+2))
 --R 
 --R
@@ -1214,7 +1214,7 @@ bb:=(2*(a*x+b)^((m+2)/2))/(a*(m+2))
 --R                                                     Type: Expression Integer
 --E
 
---S 80
+--S 80 of 98
 cc:=aa-bb
 --R 
 --R
@@ -1227,7 +1227,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 81
+--S 81 of 98
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1235,7 +1235,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 82
+--S 82 of 98
 dd:=explog cc
 --R
 --R                    m + 2                       m
@@ -1247,7 +1247,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 83     14:99 Schaums and Axiom agree
+--S 83 of 98     14:99 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1264,7 +1264,7 @@ $$
 <<*>>=
 )clear all
 
---S 84
+--S 84 of 98
 aa:=integrate(x*(a*x+b)^(m/2),x)
 --R 
 --R
@@ -1278,7 +1278,7 @@ aa:=integrate(x*(a*x+b)^(m/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 85
+--S 85 of 98
 bb:=(2*(a*x+b)^((m+4)/2))/(a^2*(m+4))-(2*b*(a*x+b)^((m+2)/2))/(a^2*(m+2))
 --R 
 --R
@@ -1292,7 +1292,7 @@ bb:=(2*(a*x+b)^((m+4)/2))/(a^2*(m+4))-(2*b*(a*x+b)^((m+2)/2))/(a^2*(m+2))
 --R                                                     Type: Expression Integer
 --E
 
---S 86
+--S 86 of 98
 cc:=aa-bb
 --R 
 --R
@@ -1312,7 +1312,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 98
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1320,7 +1320,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 88
+--S 88 of 98
 dd:=explog cc
 --R
 --R   (5)
@@ -1339,7 +1339,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 89     14:100 Schaums and Axiom agree
+--S 89 of 98     14:100 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1357,7 +1357,7 @@ $$
 <<*>>=
 )clear all
 
---S 90
+--S 90 of 98
 aa:=integrate(x^2*(a*x+b)^(m/2),x)
 --R 
 --R
@@ -1375,7 +1375,7 @@ aa:=integrate(x^2*(a*x+b)^(m/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 91
+--S 91 of 98
 bb:=(2*(a*x+b)^((m+6)/2))/(a^3*(m+6))-_
       (4*b*(a*x+b)^((m+4)/2))/(a^3*(m+4))+_
         (2*b^2*(a*x+b)^((m+2)/2))/(a^3*(m+2))
@@ -1397,7 +1397,7 @@ bb:=(2*(a*x+b)^((m+6)/2))/(a^3*(m+6))-_
 --R                                                     Type: Expression Integer
 --E
 
---S 92
+--S 92 of 98
 cc:=aa-bb
 --R 
 --R
@@ -1425,7 +1425,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 93
+--S 93 of 98
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1433,7 +1433,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 94
+--S 94 of 98
 dd:=explog cc
 --R
 --R   (5)
@@ -1460,7 +1460,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 95     14:101 Schaums and Axiom agree
+--S 95 of 98     14:101 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1477,7 +1477,7 @@ $$
 <<*>>=
 )clear all
 
---S 96     14:102 Axiom cannot do this integral
+--S 96 of 98     14:102 Axiom cannot do this integral
 aa:=integrate((a*x+b)^(m/2)/x,x)
 --R 
 --R
@@ -1499,7 +1499,7 @@ $$
 <<*>>=
 )clear all
 
---S 97     14:103 Axiom cannot do this integral
+--S 97 of 98     14:103 Axiom cannot do this integral
 aa:=integrate((a*x+b)^(m/2)/x^2,x)
 --R 
 --R
@@ -1522,7 +1522,7 @@ $$
 <<*>>=
 )clear all
 
---S 98     14:104 Axiom cannot do this integral
+--S 98 of 98     14:104 Axiom cannot do this integral
 aa:=integrate(1/(x*(a*x+b)^(m/2)),x)
 --R 
 --R
diff --git a/src/input/schaum20.input.pamphlet b/src/input/schaum20.input.pamphlet
index e6981a6..272f151 100644
--- a/src/input/schaum20.input.pamphlet
+++ b/src/input/schaum20.input.pamphlet
@@ -19,7 +19,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 56
 aa:=integrate(tan(a*x),x)
 --R 
 --R
@@ -30,7 +30,7 @@ aa:=integrate(tan(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 56
 bb1:=-1/a*log(cos(a*x))
 --R
 --R          log(cos(a x))
@@ -39,7 +39,7 @@ bb1:=-1/a*log(cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 56
 bb2:=1/a*log(sec(a*x))
 --R
 --R        log(sec(a x))
@@ -48,7 +48,7 @@ bb2:=1/a*log(sec(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 56
 cc1:=aa-bb1
 --R
 --R                    2
@@ -58,7 +58,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 5
+--S 5 of 56
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -67,7 +67,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 6
+--S 6 of 56
 dd1:=tanrule cc1
 --R
 --R                    2           2
@@ -80,7 +80,7 @@ dd1:=tanrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 56
 ee1:=expandLog dd1
 --R
 --R                    2           2
@@ -90,7 +90,7 @@ ee1:=expandLog dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 56
 sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R
 --R              2         2
@@ -98,7 +98,7 @@ sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 9      14:429 Schaums and Axiom agree
+--S 9 of 56      14:429 Schaums and Axiom agree
 ff1:=sincossqrrule ee1
 --R
 --R   (9)  0
@@ -114,7 +114,7 @@ $$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 56
 aa:=integrate(tan(a*x)^2,x)
 --R 
 --R
@@ -124,7 +124,7 @@ aa:=integrate(tan(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 56
 bb:=tan(a*x)/a-x
 --R
 --R        tan(a x) - a x
@@ -133,7 +133,7 @@ bb:=tan(a*x)/a-x
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:430 Schaums and Axiom agree
+--S 12 of 56     14:430 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -149,7 +149,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 56
 aa:=integrate(tan(a*x)^3,x)
 --R 
 --R
@@ -160,7 +160,7 @@ aa:=integrate(tan(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 56
 bb:=tan(a*x)^2/(2*a)+1/a*log(cos(a*x))
 --R
 --R                                 2
@@ -170,7 +170,7 @@ bb:=tan(a*x)^2/(2*a)+1/a*log(cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 56
 cc:=aa-bb
 --R
 --R                      2
@@ -180,7 +180,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 56
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -189,7 +189,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 17
+--S 17 of 56
 dd:=tanrule cc
 --R
 --R                      2           2
@@ -202,7 +202,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 56
 ee:=expandLog dd
 --R
 --R                      2           2
@@ -212,7 +212,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 56
 sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R
 --R              2         2
@@ -220,7 +220,7 @@ sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 20     14:431 Schaums and Axiom agree
+--S 20 of 56     14:431 Schaums and Axiom agree
 ff:=sincossqrrule ee
 --R
 --R   (8)  0
@@ -236,7 +236,7 @@ $$
 <<*>>=
 )clear all
 
---S 21
+--S 21 of 56
 aa:=integrate(tan(a*x)^n*sec(a*x)^2,x)
 --R 
 --R
@@ -249,7 +249,7 @@ aa:=integrate(tan(a*x)^n*sec(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 22
+--S 22 of 56
 bb:=tan(a*x)^(n+1)/((n+1)*a)
 --R
 --R                n + 1
@@ -259,7 +259,7 @@ bb:=tan(a*x)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 56
 cc:=aa-bb
 --R
 --R                        sin(a x)
@@ -271,7 +271,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 56
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -279,7 +279,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 25
+--S 25 of 56
 dd:=explog cc
 --R
 --R                          n + 1            sin(a x) n
@@ -290,7 +290,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 56
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -299,7 +299,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 27
+--S 27 of 56
 ee:=tanrule dd
 --R
 --R                   sin(a x) n + 1            sin(a x) n
@@ -310,7 +310,7 @@ ee:=tanrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 28     14:432 Schaums and Axiom agree
+--S 28 of 56     14:432 Schaums and Axiom agree
 ff:=complexNormalize ee
 --R
 --R   (8)  0
@@ -326,7 +326,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 56
 aa:=integrate(sec(a*x)^2/tan(a*x),x)
 --R 
 --R
@@ -338,7 +338,7 @@ aa:=integrate(sec(a*x)^2/tan(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 56
 bb:=1/a*log(tan(a*x))
 --R
 --R        log(tan(a x))
@@ -347,7 +347,7 @@ bb:=1/a*log(tan(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 56
 cc:=aa-bb
 --R
 --R                                sin(a x)              2cos(a x)
@@ -358,7 +358,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 56
 dd:=expandLog cc
 --R
 --R        - log(tan(a x)) + log(sin(a x)) - log(cos(a x)) - log(- 2)
@@ -367,7 +367,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 33     14:433 Schaums and Axiom differ by a constant
+--S 33 of 56     14:433 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R          log(- 2)
@@ -385,7 +385,7 @@ $$
 <<*>>=
 )clear all
 
---S 34
+--S 34 of 56
 aa:=integrate(1/tan(a*x),x)
 --R 
 --R
@@ -396,7 +396,7 @@ aa:=integrate(1/tan(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 35
+--S 35 of 56
 bb:=1/a*log(sin(a*x))
 --R
 --R        log(sin(a x))
@@ -405,7 +405,7 @@ bb:=1/a*log(sin(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 56
 cc:=aa-bb
 --R
 --R                      2
@@ -415,7 +415,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 56
 complexNormalize cc
 --R
 --R   (4)  0
@@ -432,7 +432,7 @@ $$
 <<*>>=
 )clear all
 
---S 38     14:435 Axiom cannot compute this integral
+--S 38 of 56     14:435 Axiom cannot compute this integral
 aa:=integrate(x*tan(a*x),x)
 --R 
 --R
@@ -453,7 +453,7 @@ $$
 <<*>>=
 )clear all
 
---S 39     14:436 Axiom cannot compute this integral
+--S 39 of 56     14:436 Axiom cannot compute this integral
 aa:=integrate(tan(a*x)/x,x)
 --R 
 --R
@@ -473,7 +473,7 @@ $$
 <<*>>=
 )clear all
 
---S 40
+--S 40 of 56
 aa:=integrate(x*tan(a*x)^2,x)
 --R 
 --R
@@ -485,7 +485,7 @@ aa:=integrate(x*tan(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 41
+--S 41 of 56
 bb:=(x*tan(a*x))/a+1/a^2*log(cos(a*x))-x^2/2
 --R
 --R                                          2 2
@@ -496,7 +496,7 @@ bb:=(x*tan(a*x))/a+1/a^2*log(cos(a*x))-x^2/2
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 56
 cc:=aa-bb
 --R
 --R                      2
@@ -507,7 +507,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 56
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -516,7 +516,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 44
+--S 44 of 56
 dd:=tanrule cc
 --R
 --R                      2           2
@@ -530,7 +530,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 56
 ee:=expandLog dd
 --R
 --R                      2           2
@@ -541,7 +541,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 46
+--S 46 of 56
 sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R
 --R              2         2
@@ -549,7 +549,7 @@ sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 47     14:437 Schaums and Axiom agree
+--S 47 of 56     14:437 Schaums and Axiom agree
 ff:=sincossqrrule ee
 --R
 --R   (8)  0
@@ -565,7 +565,7 @@ $$
 <<*>>=
 )clear all
 
---S 48
+--S 48 of 56
 aa:=integrate(1/(p+q*tan(a*x)),x)
 --R 
 --R
@@ -577,7 +577,7 @@ aa:=integrate(1/(p+q*tan(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 49
+--S 49 of 56
 bb:=(p*x)/(p^2+q^2)+q/(a*(p^2+q^2))*log(q*sin(a*x)+p*cos(a*x))
 --R
 --R        q log(q sin(a x) + p cos(a x)) + a p x
@@ -587,7 +587,7 @@ bb:=(p*x)/(p^2+q^2)+q/(a*(p^2+q^2))*log(q*sin(a*x)+p*cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 56
 cc:=aa-bb
 --R
 --R   (3)
@@ -601,7 +601,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 56
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -610,7 +610,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 52
+--S 52 of 56
 dd:=tanrule cc
 --R
 --R   (5)
@@ -629,7 +629,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 53
+--S 53 of 56
 ee:=expandLog dd
 --R
 --R                        2           2
@@ -640,7 +640,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 56
 sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R
 --R              2         2
@@ -648,7 +648,7 @@ sincossqrrule:=rule(sin(a)^2+cos(a)^2 == 1)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 55     14:438 Schaums and Axiom agree
+--S 55 of 56     14:438 Schaums and Axiom agree
 ff:=sincossqrrule ee
 --R
 --R   (8)  0
@@ -664,7 +664,7 @@ $$
 <<*>>=
 )clear all
 
---S 56     14:439 Axiom cannot compute this integral
+--S 56 of 56     14:439 Axiom cannot compute this integral
 aa:=integrate(tan(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum21.input.pamphlet b/src/input/schaum21.input.pamphlet
index 2c24de5..cc64923 100644
--- a/src/input/schaum21.input.pamphlet
+++ b/src/input/schaum21.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 53
 aa:=integrate(cot(a*x),x)
 --R 
 --R
@@ -30,7 +30,7 @@ aa:=integrate(cot(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 53
 bb:=1/a*log(sin(a*x))
 --R
 --R        log(sin(a x))
@@ -39,7 +39,7 @@ bb:=1/a*log(sin(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 53
 cc:=aa-bb
 --R
 --R               sin(2a x)                                 2
@@ -50,7 +50,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 53
 dd:=expandLog cc
 --R
 --R        2log(sin(2a x)) - 2log(sin(a x)) - log(cos(2a x) + 1) - log(2)
@@ -59,7 +59,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 5      14:440 Schaums and Axiom agree
+--S 5 of 53      14:440 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (5)  0
@@ -75,7 +75,7 @@ $$
 <<*>>=
 )clear all
 
---S 6
+--S 6 of 53
 aa:=integrate(cot(a*x)^2,x)
 --R 
 --R
@@ -85,7 +85,7 @@ aa:=integrate(cot(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 7
+--S 7 of 53
 bb:=-cot(a*x)/a-x
 --R
 --R        - cot(a x) - a x
@@ -94,7 +94,7 @@ bb:=-cot(a*x)/a-x
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 53
 cc:=aa-bb
 --R
 --R        cot(a x)sin(2a x) - cos(2a x) - 1
@@ -103,7 +103,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 53
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -112,7 +112,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 10
+--S 10 of 53
 dd:=cotrule cc
 --R
 --R        cos(a x)sin(2a x) + (- cos(2a x) - 1)sin(a x)
@@ -121,7 +121,7 @@ dd:=cotrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 11     14:441 Schaums and Axiom agree
+--S 11 of 53     14:441 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -137,7 +137,7 @@ $$
 <<*>>=
 )clear all
 
---S 12
+--S 12 of 53
 aa:=integrate(cot(a*x)^3,x)
 --R 
 --R
@@ -152,7 +152,7 @@ aa:=integrate(cot(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 13
+--S 13 of 53
 bb:=-cot(a*x)^2/(2*a)-1/a*log(sin(a*x))
 --R
 --R                                   2
@@ -162,7 +162,7 @@ bb:=-cot(a*x)^2/(2*a)-1/a*log(sin(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 14
+--S 14 of 53
 cc:=aa-bb
 --R
 --R   (3)
@@ -180,7 +180,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 53
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -189,7 +189,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 16
+--S 16 of 53
 dd:=cotrule cc
 --R
 --R   (5)
@@ -212,7 +212,7 @@ dd:=cotrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 53
 ee:=expandLog dd
 --R
 --R   (6)
@@ -236,7 +236,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 18     14:442 Schaums and Axiom agree
+--S 18 of 53     14:442 Schaums and Axiom agree
 ff:=complexNormalize ee
 --R
 --R   (7)  0
@@ -252,7 +252,7 @@ $$
 <<*>>=
 )clear all
 
---S 19
+--S 19 of 53
 aa:=integrate(cot(a*x)^n*csc(a*x)^2,x)
 --R 
 --R
@@ -265,7 +265,7 @@ aa:=integrate(cot(a*x)^n*csc(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 20
+--S 20 of 53
 bb:=-cot(a*x)^(n+1)/((n+1)*a)
 --R
 --R                  n + 1
@@ -275,7 +275,7 @@ bb:=-cot(a*x)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 21
+--S 21 of 53
 cc:=aa-bb
 --R
 --R                          cos(a x)
@@ -287,7 +287,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 53
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -295,7 +295,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 23
+--S 23 of 53
 dd:=explog cc
 --R
 --R                        n + 1            cos(a x) n
@@ -306,7 +306,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 53
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -315,7 +315,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 25
+--S 25 of 53
 ee:=cotrule dd
 --R
 --R                 cos(a x) n + 1            cos(a x) n
@@ -326,7 +326,7 @@ ee:=cotrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 26     14:443 Schaums and Axiom agree
+--S 26 of 53     14:443 Schaums and Axiom agree
 ff:=complexNormalize ee
 --R
 --R   (8)  0
@@ -342,7 +342,7 @@ $$
 <<*>>=
 )clear all
 
---S 27
+--S 27 of 53
 aa:=integrate(csc(a*x)^2/cot(a*x),x)
 --R 
 --R
@@ -354,7 +354,7 @@ aa:=integrate(csc(a*x)^2/cot(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 28
+--S 28 of 53
 bb:=-1/a*log(cot(a*x))
 --R
 --R          log(cot(a x))
@@ -363,7 +363,7 @@ bb:=-1/a*log(cot(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 29
+--S 29 of 53
 cc:=aa-bb
 --R
 --R              sin(a x)                              2cos(a x)
@@ -374,7 +374,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 53
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -383,7 +383,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 31
+--S 31 of 53
 dd:=cotrule cc
 --R
 --R              sin(a x)          cos(a x)            2cos(a x)
@@ -394,7 +394,7 @@ dd:=cotrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 32     14:444 Schaums and Axiom differ by a constant
+--S 32 of 53     14:444 Schaums and Axiom differ by a constant
 ee:=expandLog dd
 --R
 --R          log(- 2)
@@ -412,7 +412,7 @@ $$
 <<*>>=
 )clear all
 
---S 33
+--S 33 of 53
 aa:=integrate(1/cot(a*x),x)
 --R 
 --R
@@ -424,7 +424,7 @@ aa:=integrate(1/cot(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 34
+--S 34 of 53
 bb:=-1/a*log(cos(a*x))
 --R
 --R          log(cos(a x))
@@ -433,7 +433,7 @@ bb:=-1/a*log(cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 53
 cc:=aa-bb
 --R
 --R                                   2
@@ -444,7 +444,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 53
 dd:=expandLog cc
 --R
 --R        - log(cos(2a x) + 1) + 2log(cos(a x)) + log(2)
@@ -453,7 +453,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 37     14:445 Schaums and Axiom agree
+--S 37 of 53     14:445 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (5)  0
@@ -471,7 +471,7 @@ $$
 <<*>>=
 )clear all
 
---S 38     14:446 Axiom cannot compute this integral
+--S 38 of 53     14:446 Axiom cannot compute this integral
 aa:=integrate(x*cot(a*x),x)
 --R 
 --R
@@ -492,7 +492,7 @@ $$
 <<*>>=
 )clear all
 
---S 39     14:447 Axiom cannot compute this integral
+--S 39 of 53     14:447 Axiom cannot compute this integral
 aa:=integrate(cot(a*x)/x,x)
 --R 
 --R
@@ -512,7 +512,7 @@ $$
 <<*>>=
 )clear all
 
---S 40
+--S 40 of 53
 aa:=integrate(x*cot(a*x)^2,x)
 --R 
 --R
@@ -529,7 +529,7 @@ aa:=integrate(x*cot(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 41
+--S 41 of 53
 bb:=-(x*cot(a*x))/a+1/a^2*log(sin(a*x))-x^2/2
 --R
 --R                                          2 2
@@ -540,7 +540,7 @@ bb:=-(x*cot(a*x))/a+1/a^2*log(sin(a*x))-x^2/2
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 53
 cc:=aa-bb
 --R
 --R   (3)
@@ -559,7 +559,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 53
 dd:=expandLog cc
 --R
 --R   (4)
@@ -574,7 +574,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 44     14:448 Schaums and Axiom agree
+--S 44 of 53     14:448 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (5)  0
@@ -590,7 +590,7 @@ $$
 <<*>>=
 )clear all
 
---S 45
+--S 45 of 53
 aa:=integrate(1/(p+q*cot(a*x)),x)
 --R 
 --R
@@ -604,7 +604,7 @@ aa:=integrate(1/(p+q*cot(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 46
+--S 46 of 53
 bb:=(p*x)/(p^2+q^2)-q/(a*(p^2+q^2))*log(p*sin(a*x)+q*cos(a*x))
 --R
 --R        - q log(p sin(a x) + q cos(a x)) + a p x
@@ -614,7 +614,7 @@ bb:=(p*x)/(p^2+q^2)-q/(a*(p^2+q^2))*log(p*sin(a*x)+q*cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 53
 cc:=aa-bb
 --R
 --R   (3)
@@ -631,14 +631,14 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 53
 sindblrule:=rule(sin(2*a) == 2*sin(a)*cos(a))
 --R
 --R   (4)  sin(2a) == 2cos(a)sin(a)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 49
+--S 49 of 53
 dd:=sindblrule cc
 --R
 --R   (5)
@@ -653,7 +653,7 @@ dd:=sindblrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 53
 cosdblrule:=rule(cos(2*a) == 2*cos(a)^2-1)
 --R
 --R                          2
@@ -661,7 +661,7 @@ cosdblrule:=rule(cos(2*a) == 2*cos(a)^2-1)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 51
+--S 51 of 53
 ee:=cosdblrule dd
 --R
 --R   (7)
@@ -679,7 +679,7 @@ ee:=cosdblrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 52     14:449 Schaums and Axiom agree
+--S 52 of 53     14:449 Schaums and Axiom agree
 ff:=expandLog %
 --R
 --R   (8)  0
@@ -696,7 +696,7 @@ $$
 <<*>>=
 )clear all
 
---S 53     14:450 Axiom cannot compute this integral
+--S 53 of 53     14:450 Axiom cannot compute this integral
 aa:=integrate(cot(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum22.input.pamphlet b/src/input/schaum22.input.pamphlet
index 42fad96..bd4a575 100644
--- a/src/input/schaum22.input.pamphlet
+++ b/src/input/schaum22.input.pamphlet
@@ -19,7 +19,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 52
 aa:=integrate(sec(a*x),x)
 --R 
 --R
@@ -31,7 +31,7 @@ aa:=integrate(sec(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 52
 bb1:=1/a*log(sec(a*x)+tan(a*x))
 --R
 --R        log(tan(a x) + sec(a x))
@@ -40,7 +40,7 @@ bb1:=1/a*log(sec(a*x)+tan(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 52
 bb2:=1/a*log(tan((a*x)/2+%pi/4))
 --R
 --R                2a x + %pi
@@ -51,7 +51,7 @@ bb2:=1/a*log(tan((a*x)/2+%pi/4))
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 52
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -67,7 +67,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 5
+--S 5 of 52
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -76,7 +76,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 6
+--S 6 of 52
 dd1:=tanrule cc1
 --R
 --R   (6)
@@ -92,7 +92,7 @@ dd1:=tanrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 52
 secrule:=rule(sec(a) == 1/cos(a))
 --R
 --R                     1
@@ -101,7 +101,7 @@ secrule:=rule(sec(a) == 1/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 8
+--S 8 of 52
 ee1:=secrule dd1
 --R
 --R   (8)
@@ -117,7 +117,7 @@ ee1:=secrule dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 52
 ff1:=expandLog ee1
 --R
 --R   (9)
@@ -129,7 +129,7 @@ ff1:=expandLog ee1
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 52
 gg1:=complexNormalize ff1
 --R
 --R         log(- 1)
@@ -138,7 +138,7 @@ gg1:=complexNormalize ff1
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 52
 cc2:=aa-bb2
 --R
 --R   (11)
@@ -154,7 +154,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 12
+--S 12 of 52
 dd2:=tanrule cc2
 --R
 --R   (12)
@@ -174,7 +174,7 @@ dd2:=tanrule cc2
 --R                                                     Type: Expression Integer
 --E
 
---S 13
+--S 13 of 52
 ee2:=expandLog dd2
 --R
 --R   (13)
@@ -188,7 +188,7 @@ ee2:=expandLog dd2
 --R                                                     Type: Expression Integer
 --E
 
---S 14     14:451 Schaums and Axiom differ by a constant
+--S 14 of 52     14:451 Schaums and Axiom differ by a constant
 ff2:=complexNormalize ee2
 --R
 --R         log(- 1)
@@ -206,7 +206,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 52
 aa:=integrate(sec(a*x)^2,x)
 --R 
 --R
@@ -216,7 +216,7 @@ aa:=integrate(sec(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 16
+--S 16 of 52
 bb:=tan(a*x)/a
 --R
 --R        tan(a x)
@@ -225,7 +225,7 @@ bb:=tan(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 52
 cc:=aa-bb
 --R
 --R        - cos(a x)tan(a x) + sin(a x)
@@ -234,7 +234,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 52
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -243,7 +243,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 19     14:452 Schaums and Axiom agree
+--S 19 of 52     14:452 Schaums and Axiom agree
 dd:=tanrule cc
 --R
 --R   (5)  0
@@ -259,7 +259,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 52
 aa:=integrate(sec(a*x)^3,x)
 --R 
 --R
@@ -277,7 +277,7 @@ aa:=integrate(sec(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 21
+--S 21 of 52
 bb:=(sec(a*x)*tan(a*x))/(2*a)+1/(2*a)*log(sec(a*x)+tan(a*x))
 --R
 --R        log(tan(a x) + sec(a x)) + sec(a x)tan(a x)
@@ -286,7 +286,7 @@ bb:=(sec(a*x)*tan(a*x))/(2*a)+1/(2*a)*log(sec(a*x)+tan(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 52
 cc:=aa-bb
 --R
 --R   (3)
@@ -308,7 +308,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 52
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -317,7 +317,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 24
+--S 24 of 52
 dd:=tanrule cc
 --R
 --R   (5)
@@ -338,7 +338,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 52
 secrule:=rule(sec(a) == 1/cos(a))
 --R
 --R                     1
@@ -347,7 +347,7 @@ secrule:=rule(sec(a) == 1/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 26
+--S 26 of 52
 ee:=secrule dd
 --R
 --R   (7)
@@ -363,7 +363,7 @@ ee:=secrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 52
 ff:=expandLog ee
 --R
 --R   (8)
@@ -375,7 +375,7 @@ ff:=expandLog ee
 --R                                                     Type: Expression Integer
 --E
 
---S 28     14:453 Schaums and Axiom differ by a constant
+--S 28 of 52     14:453 Schaums and Axiom differ by a constant
 gg:=complexNormalize ff
 --R
 --R        log(- 1)
@@ -393,7 +393,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 52
 aa:=integrate(sec(a*x)^n*tan(a*x),x)
 --R
 --R                    1
@@ -408,7 +408,7 @@ aa:=integrate(sec(a*x)^n*tan(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 52
 bb:=sec(a*x)^n/(n*a)
 --R
 --R                n
@@ -418,7 +418,7 @@ bb:=sec(a*x)^n/(n*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 52
 cc:=aa-bb
 --R
 --R                    1
@@ -433,7 +433,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 32     14:454 Schaums and Axiom agree
+--S 32 of 52     14:454 Schaums and Axiom agree
 normalize cc
 --R
 --R   (4)  0
@@ -449,7 +449,7 @@ $$
 <<*>>=
 )clear all
 
---S 33
+--S 33 of 52
 aa:=integrate(1/sec(a*x),x)
 --R 
 --R
@@ -459,7 +459,7 @@ aa:=integrate(1/sec(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 34
+--S 34 of 52
 bb:=sin(a*x)/a
 --R
 --R        sin(a x)
@@ -468,7 +468,7 @@ bb:=sin(a*x)/a
 --R                                                     Type: Expression Integer
 --E 
 
---S 35     14:455 Schaums and Axiom agree
+--S 35 of 52     14:455 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -485,7 +485,7 @@ $$
 <<*>>=
 )clear all
 
---S 36     14:456 Axiom cannot compute this integral
+--S 36 of 52     14:456 Axiom cannot compute this integral
 aa:=integrate(x*sec(a*x),x)
 --R 
 --R
@@ -506,7 +506,7 @@ $$
 <<*>>=
 )clear all
 
---S 37     14:457 Axiom cannot compute this integral
+--S 37 of 52     14:457 Axiom cannot compute this integral
 aa:=integrate(sec(a*x)/x,x)
 --R 
 --R
@@ -526,7 +526,7 @@ $$
 <<*>>=
 )clear all
 
---S 38
+--S 38 of 52
 aa:=integrate(x*sec(a*x)^2,x)
 --R 
 --R
@@ -540,7 +540,7 @@ aa:=integrate(x*sec(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 39
+--S 39 of 52
 bb:=x/a*tan(a*x)+1/a^2*log(cos(a*x))
 --R
 --R        log(cos(a x)) + a x tan(a x)
@@ -550,7 +550,7 @@ bb:=x/a*tan(a*x)+1/a^2*log(cos(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 52
 cc:=aa-bb
 --R
 --R   (3)
@@ -567,7 +567,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 52
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -576,7 +576,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 42
+--S 42 of 52
 dd:=tanrule cc
 --R
 --R                                    2                 2cos(a x)
@@ -588,7 +588,7 @@ dd:=tanrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 43     14:458 Schaums and Axiom differ by a constant
+--S 43 of 52     14:458 Schaums and Axiom differ by a constant
 ee:=expandLog dd
 --R
 --R        - log(2) + log(- 2)
@@ -607,7 +607,7 @@ $$
 <<*>>=
 )clear all
 
---S 44
+--S 44 of 52
 aa:=integrate(1/(q+p*sec(a*x)),x)
 --R 
 --R
@@ -633,7 +633,7 @@ aa:=integrate(1/(q+p*sec(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 45
+--S 45 of 52
 t1:=integrate(1/(p+q*cos(a*x)),x)
 --R
 --R   (2)
@@ -658,7 +658,7 @@ t1:=integrate(1/(p+q*cos(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 46
+--S 46 of 52
 bb1:=x/q-p/q*t1.1
 --R
 --R   (3)
@@ -674,7 +674,7 @@ bb1:=x/q-p/q*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 52
 bb2:=x/q-p/q*t1.2
 --R
 --R                             +---------+
@@ -689,7 +689,7 @@ bb2:=x/q-p/q*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 52
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -711,7 +711,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 49
+--S 49 of 52
 cc2:=aa.1-bb2
 --R
 --R   (6)
@@ -733,7 +733,7 @@ cc2:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 52
 cc3:=aa.2-bb1
 --R
 --R   (7)
@@ -755,7 +755,7 @@ cc3:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:459 Schaums and Axiom agree
+--S 51 of 52     14:459 Schaums and Axiom agree
 cc4:=aa.2-bb2
 --R
 --R   (8)  0
@@ -772,7 +772,7 @@ $$
 <<*>>=
 )clear all
 
---S 52     14:460 Axiom cannot compute this integral
+--S 52 of 52     14:460 Axiom cannot compute this integral
 aa:=integrate(sec(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum23.input.pamphlet b/src/input/schaum23.input.pamphlet
index 96485e2..fdf5b12 100644
--- a/src/input/schaum23.input.pamphlet
+++ b/src/input/schaum23.input.pamphlet
@@ -19,7 +19,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 55
 aa:=integrate(csc(a*x),x)
 --R 
 --R
@@ -31,7 +31,7 @@ aa:=integrate(csc(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 55
 bb1:=1/a*log(csc(a*x)-cot(a*x))
 --R
 --R        log(csc(a x) - cot(a x))
@@ -40,7 +40,7 @@ bb1:=1/a*log(csc(a*x)-cot(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 55
 bb2:=1/a*log(tan((a*x)/2))
 --R
 --R                a x
@@ -51,7 +51,7 @@ bb2:=1/a*log(tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 55
 cc1:=aa-bb1
 --R
 --R              sin(a x)
@@ -62,7 +62,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 5
+--S 5 of 55
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -71,7 +71,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 6
+--S 6 of 55
 dd1:=cotrule cc1
 --R
 --R              sin(a x)          csc(a x)sin(a x) - cos(a x)
@@ -82,7 +82,7 @@ dd1:=cotrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 55
 cscrule:=rule(csc(a) == 1/sin(a))
 --R
 --R                     1
@@ -91,7 +91,7 @@ cscrule:=rule(csc(a) == 1/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 8
+--S 8 of 55
 ee1:=cscrule dd1
 --R
 --R              sin(a x)          - cos(a x) + 1
@@ -102,7 +102,7 @@ ee1:=cscrule dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 55
 ff1:=expandLog ee1
 --R
 --R        2log(sin(a x)) - log(cos(a x) + 1) - log(cos(a x) - 1) - log(- 1)
@@ -111,7 +111,7 @@ ff1:=expandLog ee1
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 55
 gg1:=complexNormalize ff1
 --R
 --R           2log(- 1)
@@ -120,7 +120,7 @@ gg1:=complexNormalize ff1
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 55
 cc2:=aa-bb2
 --R
 --R                   a x           sin(a x)
@@ -131,7 +131,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 12
+--S 12 of 55
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                   sin(a)
@@ -140,7 +140,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 13
+--S 13 of 55
 dd2:=tanrule cc2
 --R
 --R                                     a x
@@ -155,7 +155,7 @@ dd2:=tanrule cc2
 --R                                                     Type: Expression Integer
 --E
 
---S 14
+--S 14 of 55
 ee2:=expandLog dd2
 --R
 --R                                 a x                                 a x
@@ -166,7 +166,7 @@ ee2:=expandLog dd2
 --R                                                     Type: Expression Integer
 --E
 
---S 15     14:461 Schaums and Axiom agree
+--S 15 of 55     14:461 Schaums and Axiom agree
 ff2:=complexNormalize ee2
 --R
 --R   (15)  0
@@ -182,7 +182,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 55
 aa:=integrate(csc(a*x)^2,x)
 --R 
 --R
@@ -192,7 +192,7 @@ aa:=integrate(csc(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 17
+--S 17 of 55
 bb:=-cot(a*x)/a
 --R
 --R          cot(a x)
@@ -201,7 +201,7 @@ bb:=-cot(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 55
 cc:=aa-bb
 --R
 --R        cot(a x)sin(a x) - cos(a x)
@@ -210,7 +210,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 55
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -219,7 +219,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 20     14:462 Schaums and Axiom agree
+--S 20 of 55     14:462 Schaums and Axiom agree
 dd:=cotrule cc
 --R
 --R   (5)  0
@@ -235,7 +235,7 @@ $$
 <<*>>=
 )clear all
 
---S 21
+--S 21 of 55
 aa:=integrate(csc(a*x)^3,x)
 --R 
 --R
@@ -248,7 +248,7 @@ aa:=integrate(csc(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 22
+--S 22 of 55
 bb:=-(csc(a*x)*cot(a*x))/(2*a)+1/(2*a)*log(tan((a*x)/2))
 --R
 --R                a x
@@ -259,7 +259,7 @@ bb:=-(csc(a*x)*cot(a*x))/(2*a)+1/(2*a)*log(tan((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 55
 cc:=aa-bb
 --R
 --R   (3)
@@ -275,7 +275,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 55
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -284,7 +284,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 25
+--S 25 of 55
 dd:=cotrule cc
 --R
 --R   (5)
@@ -304,7 +304,7 @@ dd:=cotrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 55
 tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R
 --R                  sin(a)
@@ -313,7 +313,7 @@ tanrule:=rule(tan(a) == sin(a)/cos(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 27
+--S 27 of 55
 ee:=tanrule dd
 --R
 --R   (7)
@@ -337,7 +337,7 @@ ee:=tanrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 28
+--S 28 of 55
 cscrule:=rule(csc(a) == 1/sin(a))
 --R
 --R                     1
@@ -346,7 +346,7 @@ cscrule:=rule(csc(a) == 1/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 29
+--S 29 of 55
 ff:=cscrule ee
 --R
 --R   (9)
@@ -369,7 +369,7 @@ ff:=cscrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 55
 gg:=expandLog ff
 --R
 --R   (10)
@@ -394,7 +394,7 @@ gg:=expandLog ff
 --R                                                     Type: Expression Integer
 --E
 
---S 31     14:463 Schaums and Axiom agree
+--S 31 of 55     14:463 Schaums and Axiom agree
 hh:=complexNormalize gg
 --R
 --R   (11)  0
@@ -410,7 +410,7 @@ $$
 <<*>>=
 )clear all
 
---S 32
+--S 32 of 55
 aa:=integrate(csc(a*x)^n*cot(a*x),x)
 --R 
 --R
@@ -426,7 +426,7 @@ aa:=integrate(csc(a*x)^n*cot(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 33
+--S 33 of 55
 bb:=-csc(a*x)^n/(n*a)
 --R
 --R                  n
@@ -436,7 +436,7 @@ bb:=-csc(a*x)^n/(n*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 55
 cc:=aa-bb
 --R
 --R                          1
@@ -451,7 +451,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 35     14:464 Schaums and Axiom agree
+--S 35 of 55     14:464 Schaums and Axiom agree
 normalize cc
 --R
 --R   (4)  0
@@ -467,7 +467,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 55
 aa:=integrate(1/csc(a*x),x)
 --R 
 --R
@@ -477,7 +477,7 @@ aa:=integrate(1/csc(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 37
+--S 37 of 55
 bb:=-cos(a*x)/a
 --R
 --R          cos(a x)
@@ -486,7 +486,7 @@ bb:=-cos(a*x)/a
 --R                                                     Type: Expression Integer
 --E 
 
---S 38     14:465 Schaums and Axiom agree
+--S 38 of 55     14:465 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -503,7 +503,7 @@ $$
 <<*>>=
 )clear all
 
---S 39     14:466 Axiom cannot compute this integral
+--S 39 of 55     14:466 Axiom cannot compute this integral
 aa:=integrate(x*csc(a*x),x)
 --R 
 --R
@@ -524,7 +524,7 @@ $$
 <<*>>=
 )clear all
 
---S 40     14:467 Axiom cannot compute this integral
+--S 40 of 55     14:467 Axiom cannot compute this integral
 aa:=integrate(csc(a*x)/x,x)
 --R 
 --R
@@ -544,7 +544,7 @@ $$
 <<*>>=
 )clear all
 
---S 41
+--S 41 of 55
 aa:=integrate(x*csc(a*x)^2,x)
 --R 
 --R
@@ -557,7 +557,7 @@ aa:=integrate(x*csc(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 42
+--S 42 of 55
 bb:=-(x*cot(a*x))/a+1/a^2*log(sin(a*x))
 --R
 --R        log(sin(a x)) - a x cot(a x)
@@ -567,7 +567,7 @@ bb:=-(x*cot(a*x))/a+1/a^2*log(sin(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 55
 cc:=aa-bb
 --R
 --R   (3)
@@ -584,7 +584,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 55
 cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R
 --R                  cos(a)
@@ -593,7 +593,7 @@ cotrule:=rule(cot(a) == cos(a)/sin(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 45
+--S 45 of 55
 dd:=cotrule cc
 --R
 --R                                sin(a x)                2
@@ -605,7 +605,7 @@ dd:=cotrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 46     14:468 Schaums and Axiom differ by a constant
+--S 46 of 55     14:468 Schaums and Axiom differ by a constant
 ee:=expandLog dd
 --R
 --R          log(2)
@@ -624,7 +624,7 @@ $$
 <<*>>=
 )clear all
 
---S 47
+--S 47 of 55
 aa:=integrate(1/(q+p*csc(a*x)),x)
 --R 
 --R
@@ -663,7 +663,7 @@ aa:=integrate(1/(q+p*csc(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 48
+--S 48 of 55
 t1:=integrate(1/(p+q*sin(a*x)),x)
 --R
 --R   (2)
@@ -695,7 +695,7 @@ t1:=integrate(1/(p+q*sin(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 49
+--S 49 of 55
 bb1:=x/q-p/q*t1.1
 --R
 --R   (3)
@@ -722,7 +722,7 @@ bb1:=x/q-p/q*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 55
 bb2:=x/q-p/q*t1.2
 --R
 --R                                              +---------+
@@ -738,7 +738,7 @@ bb2:=x/q-p/q*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 55
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -772,7 +772,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 52
+--S 52 of 55
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -803,7 +803,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 53
+--S 53 of 55
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -834,7 +834,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 54     14:469 Schaums and Axiom agree
+--S 54 of 55     14:469 Schaums and Axiom agree
 cc4:=aa.2-bb2
 --R
 --R   (8)  0
@@ -851,7 +851,7 @@ $$
 <<*>>=
 )clear all
 
---S 55     14:470 Axiom cannot compute this integral
+--S 55 of 55     14:470 Axiom cannot compute this integral
 aa:=integrate(csc(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum24.input.pamphlet b/src/input/schaum24.input.pamphlet
index 71f28d5..7042d3a 100644
--- a/src/input/schaum24.input.pamphlet
+++ b/src/input/schaum24.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 146
 aa:=integrate(asin(x/a),x)
 --R 
 --R
@@ -33,7 +33,7 @@ aa:=integrate(asin(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 146
 bb:=s+asin(x/a)+sqrt(a^2-x^2)
 --R
 --R         +---------+
@@ -43,7 +43,7 @@ bb:=s+asin(x/a)+sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:471 Axiom cannot simplify this expression
+--S 3 of 146      14:471 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R                    +---------+
@@ -68,7 +68,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 146
 aa:=integrate(x*asin(x/a),x)
 --R 
 --R
@@ -83,7 +83,7 @@ aa:=integrate(x*asin(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 146
 bb:=(x^2/2-a^2/4)*asin(x/a)+(x*sqrt(a^2-x^2))/4
 --R
 --R          +---------+
@@ -95,7 +95,7 @@ bb:=(x^2/2-a^2/4)*asin(x/a)+(x*sqrt(a^2-x^2))/4
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 146
 cc:=aa-bb
 --R
 --R                            +---------+
@@ -119,7 +119,7 @@ point values and expect the same numeric results. So we try that here.
 @
 This is the initial integrand.
 <<*>>=
---S 7
+--S 7 of 146
 t1:=x*asin(x/a)
 --R
 --R               x
@@ -130,7 +130,7 @@ t1:=x*asin(x/a)
 @
 This is the integral result provided by Axiom.
 <<*>>=
---S 8
+--S 8 of 146
 t2:=integrate(t1,x)
 --R
 --R                            +---------+
@@ -146,7 +146,7 @@ t2:=integrate(t1,x)
 @
 This is the derivative of the integral computed by Axiom
 <<*>>=
---S 9
+--S 9 of 146
 t3:=D(t2,x)
 --R
 --R                    +---------+
@@ -162,7 +162,7 @@ t3:=D(t2,x)
 @
 This is the integral result provided by Schaums
 <<*>>=
---S 10
+--S 10 of 146
 t4:=(x^2/2-a^2/4)*asin(x/a)+(x*sqrt(a^2-x^2))/4
 --R
 --R          +---------+
@@ -177,7 +177,7 @@ t4:=(x^2/2-a^2/4)*asin(x/a)+(x*sqrt(a^2-x^2))/4
 This is the derivative of the integral of the original function
 according to Schaums.
 <<*>>=
---S 11
+--S 11 of 146
 t5:=D(t4,x)
 --R
 --R   (5)
@@ -199,7 +199,7 @@ t5:=D(t4,x)
 @
 Now we create a function for computing the integrand's values.
 <<*>>=
---S 12
+--S 12 of 146
 f:=makeFloatFunction(t1,x,a)
 --I   Compiling function %BF with type (DoubleFloat,DoubleFloat) -> 
 --R      DoubleFloat 
@@ -210,7 +210,7 @@ f:=makeFloatFunction(t1,x,a)
 @
 Now we create a function for computing Axiom's values for its integrand.
 <<*>>=
---S 13
+--S 13 of 146
 axiom:=makeFloatFunction(t3,x,a)
 --I   Compiling function %BJ with type (DoubleFloat,DoubleFloat) -> 
 --R      DoubleFloat 
@@ -221,7 +221,7 @@ axiom:=makeFloatFunction(t3,x,a)
 @
 Now we create a function for computing Schams values for its integrand.
 <<*>>=
---S 14
+--S 14 of 146
 schaums:=makeFloatFunction(t5,x,a)
 --I   Compiling function %BK with type (DoubleFloat,DoubleFloat) -> 
 --R      DoubleFloat 
@@ -237,7 +237,7 @@ functions are only equal within the branch cut range. This is a
 generic problem with all of the inverse functions that are
 multi-valued.
 <<*>>=
---S 15     14:472 Schaums and Axiom agree (modulo branch cuts)
+--S 15 of 146     14:472 Schaums and Axiom agree (modulo branch cuts)
 [ [f(i::Float,i::Float+1.0::Float)::Float,axiom(i::Float,i::Float+1.0::Float)::Float,schaums(i::Float,i::Float+1.0::Float)::Float] for i in 1..4]
 --R
 --R   (9)
@@ -257,7 +257,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 146
 aa:=integrate(x^2*asin(x/a),x)
 --R 
 --R
@@ -272,7 +272,7 @@ aa:=integrate(x^2*asin(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 17
+--S 17 of 146
 bb:=x^3/3*asin(x/a)+((x^2+2*a^2)*sqrt(a^2-x^2))/9
 --R
 --R                   +---------+
@@ -284,7 +284,7 @@ bb:=x^3/3*asin(x/a)+((x^2+2*a^2)*sqrt(a^2-x^2))/9
 --R                                                     Type: Expression Integer
 --E
 
---S 18     14:473 Axiom cannot simplify this expression
+--S 18 of 146     14:473 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R                    +---------+
@@ -309,7 +309,7 @@ $$
 <<*>>=
 )clear all
 
---S 19     14:474 Axiom cannot compute this integral
+--S 19 of 146     14:474 Axiom cannot compute this integral
 aa:=integrate(asin(x/a)/x,x)
 --R 
 --R
@@ -331,7 +331,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 146
 aa:=integrate(asin(x/a)/x^2,x)
 --R 
 --R
@@ -347,7 +347,7 @@ aa:=integrate(asin(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 21
+--S 21 of 146
 bb:=-asin(x/a)/x-1/a*log((a+sqrt(a^2-x^2))/x)
 --R
 --R                 +---------+
@@ -360,7 +360,7 @@ bb:=-asin(x/a)/x-1/a*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 22     14:475 Axiom cannot simplify this expression
+--S 22 of 146     14:475 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -388,7 +388,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 146
 aa:=integrate(asin(x/a)^2,x)
 --R 
 --R
@@ -403,7 +403,7 @@ aa:=integrate(asin(x/a)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 146
 bb:=x*asin(x/a)^2-2*x+2*sqrt(a^2-x^2)*asin(x/a)
 --R
 --R                 +---------+
@@ -413,7 +413,7 @@ bb:=x*asin(x/a)^2-2*x+2*sqrt(a^2-x^2)*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 25     14:476 Axiom cannot simplify this expression
+--S 25 of 146     14:476 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -442,7 +442,7 @@ $$
 <<*>>=
 )clear all
 
---S 26
+--S 26 of 146
 aa:=integrate(acos(x/a),x)
 --R 
 --R
@@ -457,7 +457,7 @@ aa:=integrate(acos(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 27
+--S 27 of 146
 bb:=x*acos(x/a)-sqrt(a^2-x^2)
 --R
 --R           +---------+
@@ -467,7 +467,7 @@ bb:=x*acos(x/a)-sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 28     14:477 Axiom cannot simplify this expression
+--S 28 of 146     14:477 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R                  +---------+
@@ -491,7 +491,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 146
 aa:=integrate(x*acos(x/a),x)
 --R 
 --R
@@ -506,7 +506,7 @@ aa:=integrate(x*acos(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 30
+--S 30 of 146
 bb:=(x^2/2-a^2/4)*acos(x/a)-(x*sqrt(a^2-x^2))/4
 --R
 --R            +---------+
@@ -518,7 +518,7 @@ bb:=(x^2/2-a^2/4)*acos(x/a)-(x*sqrt(a^2-x^2))/4
 --R                                                     Type: Expression Integer
 --E
 
---S 31     14:478 Axiom cannot simplify this expression
+--S 31 of 146     14:478 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R                          +---------+
@@ -541,7 +541,7 @@ $$
 <<*>>=
 )clear all
 
---S 32
+--S 32 of 146
 aa:=integrate(x^2*acos(x/a),x)
 --R 
 --R
@@ -556,7 +556,7 @@ aa:=integrate(x^2*acos(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 33
+--S 33 of 146
 bb:=x^3/3*acos(x/a)-((x^2+2*a^2)*sqrt(a^2-x^2))/9
 --R
 --R                     +---------+
@@ -568,7 +568,7 @@ bb:=x^3/3*acos(x/a)-((x^2+2*a^2)*sqrt(a^2-x^2))/9
 --R                                                     Type: Expression Integer
 --E
 
---S 34     14:479 Axiom cannot simplify this expression
+--S 34 of 146     14:479 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R                  +---------+
@@ -591,7 +591,7 @@ $$
 <<*>>=
 )clear all
 
---S 35     14:480 Axiom cannot compute this integral
+--S 35 of 146     14:480 Axiom cannot compute this integral
 aa:=integrate(acos(x/a)/x,x)
 --R 
 --R
@@ -612,7 +612,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 146
 aa:=integrate(acos(x/a)/x^2,x)
 --R 
 --R
@@ -628,7 +628,7 @@ aa:=integrate(acos(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 37
+--S 37 of 146
 bb:=-acos(x/a)/x+1/a*log((a+sqrt(a^2-x^2))/x)
 --R
 --R               +---------+
@@ -641,7 +641,7 @@ bb:=-acos(x/a)/x+1/a*log((a+sqrt(a^2-x^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 38     14:481 Axiom cannot simplify this expression
+--S 38 of 146     14:481 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -669,7 +669,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 146
 aa:=integrate(acos(x/a)^2,x)
 --R 
 --R
@@ -684,7 +684,7 @@ aa:=integrate(acos(x/a)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 40
+--S 40 of 146
 bb:=x*acos(x/a)^2-2*x-2*sqrt(a^2-x^2)*acos(x/a)
 --R
 --R                   +---------+
@@ -694,7 +694,7 @@ bb:=x*acos(x/a)^2-2*x-2*sqrt(a^2-x^2)*acos(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 41     14:482 Axiom cannot simplify this expression
+--S 41 of 146     14:482 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -723,7 +723,7 @@ $$
 <<*>>=
 )clear all
 
---S 42
+--S 42 of 146
 aa:=integrate(atan(x/a),x)
 --R 
 --R
@@ -736,7 +736,7 @@ aa:=integrate(atan(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 43
+--S 43 of 146
 bb:=x*atan(x/a)-a/2*log(x^2+a^2)
 --R
 --R                 2    2            x
@@ -747,7 +747,7 @@ bb:=x*atan(x/a)-a/2*log(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 146
 cc:=aa-bb
 --R
 --R                  x             2a x
@@ -759,7 +759,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 146
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -770,7 +770,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 46
+--S 46 of 146
 dd:=atanrule cc
 --R
 --R                  2              2
@@ -783,7 +783,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 47     14:483 SCHAUMS AND AXIOM DIFFER? (BRANCH CUTS?)
+--S 47 of 146     14:483 SCHAUMS AND AXIOM DIFFER? (BRANCH CUTS?)
 ee:=expandLog dd
 --R
 --R        %i x log(- 1)
@@ -801,7 +801,7 @@ $$
 <<*>>=
 )clear all
 
---S 48     14:484 Axiom cannot compute this integral
+--S 48 of 146     14:484 Axiom cannot compute this integral
 aa:=integrate(x*tan(x/a),x)
 --R 
 --R
@@ -821,7 +821,7 @@ $$
 <<*>>=
 )clear all
 
---S 49
+--S 49 of 146
 aa:=integrate(x^2*atan(x/a),x)
 --R 
 --R
@@ -834,7 +834,7 @@ aa:=integrate(x^2*atan(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 50
+--S 50 of 146
 bb:=x^3/2*atan(x/a)-(a*x^2)/6+a^3/6*log(x^2+a^2)
 --R
 --R         3     2    2      3     x       2
@@ -845,7 +845,7 @@ bb:=x^3/2*atan(x/a)-(a*x^2)/6+a^3/6*log(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:485 Axiom cannot simplify this expression
+--S 51 of 146     14:485 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R            3     x     3       2a x
@@ -866,7 +866,7 @@ $$
 <<*>>=
 )clear all
 
---S 52     14:486 Axiom cannot compute this integral
+--S 52 of 146     14:486 Axiom cannot compute this integral
 aa:=integrate(atan(x/a)/x,x)
 --R 
 --R
@@ -888,7 +888,7 @@ $$
 <<*>>=
 )clear all
 
---S 53
+--S 53 of 146
 aa:=integrate(atan(x/a)/x^2,x)
 --R 
 --R
@@ -901,7 +901,7 @@ aa:=integrate(atan(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 54
+--S 54 of 146
 bb:=-1/x*atan(x/a)-1/(2*a)*log((x^2+a^2)/x^2)
 --R
 --R                 2    2
@@ -914,7 +914,7 @@ bb:=-1/x*atan(x/a)-1/(2*a)*log((x^2+a^2)/x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 55
+--S 55 of 146
 cc:=aa-bb
 --R
 --R   (3)
@@ -928,7 +928,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 56
+--S 56 of 146
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -939,7 +939,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 57
+--S 57 of 146
 dd:=atanrule cc
 --R
 --R   (5)
@@ -959,7 +959,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 58     14:487 SCHAUMS AND AXIOM DIFFER? (branch cuts?)
+--S 58 of 146     14:487 SCHAUMS AND AXIOM DIFFER? (branch cuts?)
 ee:=expandLog dd
 --R
 --R          %i log(- 1)
@@ -977,7 +977,7 @@ $$
 <<*>>=
 )clear all
 
---S 59
+--S 59 of 146
 aa:=integrate(acot(x/a),x)
 --R 
 --R
@@ -990,7 +990,7 @@ aa:=integrate(acot(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 60
+--S 60 of 146
 bb:=x*acot(x/a)+a/2*log(x^2+a^2)
 --R
 --R               2    2            x
@@ -1001,7 +1001,7 @@ bb:=x*acot(x/a)+a/2*log(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E 
 
---S 61
+--S 61 of 146
 cc:=aa-bb
 --R
 --R                 2a x             x
@@ -1013,7 +1013,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 62
+--S 62 of 146
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1024,7 +1024,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 63
+--S 63 of 146
 dd:=atanrule cc
 --R
 --R                    2              2
@@ -1037,7 +1037,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 64
+--S 64 of 146
 acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R
 --R                            x + %i
@@ -1048,7 +1048,7 @@ acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 65
+--S 65 of 146
 ee:=acotrule dd
 --R
 --R                    2              2
@@ -1061,7 +1061,7 @@ ee:=acotrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 66     14:488 Axiom and Schaums agree
+--S 66 of 146     14:488 Axiom and Schaums agree
 ff:=expandLog %
 --R
 --R   (8)  0
@@ -1077,7 +1077,7 @@ $$
 <<*>>=
 )clear all
 
---S 67
+--S 67 of 146
 aa:=integrate(x*acot(x/a),x)
 --R 
 --R
@@ -1090,7 +1090,7 @@ aa:=integrate(x*acot(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 68
+--S 68 of 146
 bb:=1/2*(x^2+a^2)*acot(x/a)+(a*x)/2
 --R
 --R          2    2      x
@@ -1101,7 +1101,7 @@ bb:=1/2*(x^2+a^2)*acot(x/a)+(a*x)/2
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 146
 cc:=aa-bb
 --R
 --R          2    2        2a x          2     2      x
@@ -1113,7 +1113,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 146
 acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R
 --R                            x + %i
@@ -1124,7 +1124,7 @@ acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 71
+--S 71 of 146
 dd:=acotrule cc
 --R
 --R             2       2     x + %i a      2    2        2a x
@@ -1136,7 +1136,7 @@ dd:=acotrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 72
+--S 72 of 146
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1147,7 +1147,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 73
+--S 73 of 146
 ee:=atanrule dd
 --R
 --R   (7)
@@ -1161,7 +1161,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 74     14:489 Axiom and Schaums agree
+--S 74 of 146     14:489 Axiom and Schaums agree
 ff:=expandLog ee
 --R
 --R   (8)  0
@@ -1177,7 +1177,7 @@ $$
 <<*>>=
 )clear all
 
---S 75
+--S 75 of 146
 aa:=integrate(x^2*acot(x/a),x)
 --R 
 --R
@@ -1190,7 +1190,7 @@ aa:=integrate(x^2*acot(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 76
+--S 76 of 146
 bb:=x^3/3*acot(x/a)+(a*x^2)/6-a^3/6*log(x^2+a^2)
 --R
 --R           3     2    2      3     x       2
@@ -1201,7 +1201,7 @@ bb:=x^3/3*acot(x/a)+(a*x^2)/6-a^3/6*log(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E 
 
---S 77
+--S 77 of 146
 cc:=aa-bb
 --R
 --R         3       2a x       3     x
@@ -1213,7 +1213,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 78
+--S 78 of 146
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1224,7 +1224,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 79
+--S 79 of 146
 dd:=atanrule cc
 --R
 --R                    2              2
@@ -1237,7 +1237,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 80
+--S 80 of 146
 acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R
 --R                            x + %i
@@ -1248,7 +1248,7 @@ acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 81
+--S 81 of 146
 ee:=acotrule dd
 --R
 --R                    2              2
@@ -1261,7 +1261,7 @@ ee:=acotrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 82     14:490 Axiom and Schaums agree
+--S 82 of 146     14:490 Axiom and Schaums agree
 ff:=expandLog ee
 --R
 --R   (8)  0
@@ -1277,7 +1277,7 @@ $$
 <<*>>=
 )clear all
 
---S 83     14:491 Axiom cannot compute this integral
+--S 83 of 146     14:491 Axiom cannot compute this integral
 aa:=integrate(acot(x/a)/x,x)
 --R 
 --R
@@ -1298,7 +1298,7 @@ $$
 <<*>>=
 )clear all
 
---S 84
+--S 84 of 146
 aa:=integrate(acot(x/a)/x^2,x)
 --R 
 --R
@@ -1311,7 +1311,7 @@ aa:=integrate(acot(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 85
+--S 85 of 146
 bb:=-acot(x/a)/x+1/(2*a)*log((x^2+a^2)/x^2)
 --R
 --R               2    2
@@ -1324,7 +1324,7 @@ bb:=-acot(x/a)/x+1/(2*a)*log((x^2+a^2)/x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 86
+--S 86 of 146
 cc:=aa-bb
 --R
 --R   (3)
@@ -1338,7 +1338,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 146
 acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R
 --R                            x + %i
@@ -1349,7 +1349,7 @@ acotrule:=rule(acot(x) == -%i/2*log((%i*x-1)/(%i*x+1)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 88
+--S 88 of 146
 dd:=acotrule cc
 --R
 --R   (5)
@@ -1368,7 +1368,7 @@ dd:=acotrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 89
+--S 89 of 146
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -1379,7 +1379,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 90
+--S 90 of 146
 ee:=atanrule dd
 --R
 --R   (7)
@@ -1399,7 +1399,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 91     14:492 Schaums and Axiom agree
+--S 91 of 146     14:492 Schaums and Axiom agree
 ff:=expandLog ee
 --R
 --R   (8)  0
@@ -1425,7 +1425,7 @@ $$
 <<*>>=
 )clear all
 
---S 92
+--S 92 of 146
 aa:=integrate(asec(x/a),x)
 --R 
 --R
@@ -1447,7 +1447,7 @@ aa:=integrate(asec(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 93
+--S 93 of 146
 bb1:=x*asec(x/a)-a*log(x+sqrt(x^2-a^2))
 --R
 --R                 +-------+
@@ -1457,7 +1457,7 @@ bb1:=x*asec(x/a)-a*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 94
+--S 94 of 146
 bb2:=x*asec(x/a)+a*log(x+sqrt(x^2-a^2))
 --R
 --R               +-------+
@@ -1467,7 +1467,7 @@ bb2:=x*asec(x/a)+a*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 95
+--S 95 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -1490,7 +1490,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 96     14:493 Axiom cannot simplify these expressions
+--S 96 of 146     14:493 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -1532,7 +1532,7 @@ $$
 <<*>>=
 )clear all
 
---S 97
+--S 97 of 146
 aa:=integrate(x*asec(x/a),x)
 --R 
 --R
@@ -1547,7 +1547,7 @@ aa:=integrate(x*asec(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 98
+--S 98 of 146
 bb1:=x^2/2*asec(x/a)-(a*sqrt(x^2-a^2))/2
 --R
 --R            +-------+
@@ -1559,7 +1559,7 @@ bb1:=x^2/2*asec(x/a)-(a*sqrt(x^2-a^2))/2
 --R                                                     Type: Expression Integer
 --E
 
---S 99
+--S 99 of 146
 bb2:=x^2/2*asec(x/a)+(a*sqrt(x^2-a^2))/2
 --R
 --R          +-------+
@@ -1571,7 +1571,7 @@ bb2:=x^2/2*asec(x/a)+(a*sqrt(x^2-a^2))/2
 --R                                                     Type: Expression Integer
 --E
 
---S 100
+--S 100 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -1586,7 +1586,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 101    14:494 Axiom cannot simplify these expressions
+--S 101 of 146    14:494 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -1627,7 +1627,7 @@ $$
 <<*>>=
 )clear all
 
---S 102
+--S 102 of 146
 aa:=integrate(x^2*asec(x/a),x)
 --R 
 --R
@@ -1650,7 +1650,7 @@ aa:=integrate(x^2*asec(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 103
+--S 103 of 146
 bb1:=x^3/3*asec(x/a)-(a*x*sqrt(x^2-a^2))/6-a^3/6*log(x+sqrt(x^2-a^2))
 --R
 --R                 +-------+            +-------+
@@ -1662,7 +1662,7 @@ bb1:=x^3/3*asec(x/a)-(a*x*sqrt(x^2-a^2))/6-a^3/6*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 104
+--S 104 of 146
 bb2:=x^3/3*asec(x/a)+(a*x*sqrt(x^2-a^2))/6+a^3/6*log(x+sqrt(x^2-a^2))
 --R
 --R               +-------+            +-------+
@@ -1674,7 +1674,7 @@ bb2:=x^3/3*asec(x/a)+(a*x*sqrt(x^2-a^2))/6+a^3/6*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 105
+--S 105 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -1702,7 +1702,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 106     14:495 Axiom cannot simplify these expressions
+--S 106 of 146     14:495 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -1742,7 +1742,7 @@ $$
 <<*>>=
 )clear all
 
---S 107    14:496 Axiom cannot compute this integral
+--S 107 of 146    14:496 Axiom cannot compute this integral
 aa:=integrate(asec(x/a)/x,x)
 --R 
 --R
@@ -1773,7 +1773,7 @@ $$
 <<*>>=
 )clear all
 
---S 108
+--S 108 of 146
 aa:=integrate(asec(x/a)/x^2,x)
 --R 
 --R
@@ -1789,7 +1789,7 @@ aa:=integrate(asec(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 109
+--S 109 of 146
 bb1:=-asec(x/a)/x+sqrt(x^2-a^2)/(a*x)
 --R
 --R         +-------+
@@ -1801,7 +1801,7 @@ bb1:=-asec(x/a)/x+sqrt(x^2-a^2)/(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 110
+--S 110 of 146
 bb2:=-asec(x/a)/x-sqrt(x^2-a^2)/(a*x)
 --R
 --R           +-------+
@@ -1813,7 +1813,7 @@ bb2:=-asec(x/a)/x-sqrt(x^2-a^2)/(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 111
+--S 111 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -1833,7 +1833,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 112    14:497 Axiom cannot simplify these expressions
+--S 112 of 146    14:497 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -1872,7 +1872,7 @@ $$
 <<*>>=
 )clear all
 
---S 113
+--S 113 of 146
 aa:=integrate(acsc(x/a),x)
 --R 
 --R
@@ -1894,7 +1894,7 @@ aa:=integrate(acsc(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 114
+--S 114 of 146
 bb1:=x*acsc(x/a)+a*log(x+sqrt(x^2-a^2))
 --R
 --R               +-------+
@@ -1904,7 +1904,7 @@ bb1:=x*acsc(x/a)+a*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 115
+--S 115 of 146
 bb2:=x*acsc(x/a)-a*log(x+sqrt(x^2-a^2))
 --R
 --R                 +-------+
@@ -1914,7 +1914,7 @@ bb2:=x*acsc(x/a)-a*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 116
+--S 116 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -1937,7 +1937,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 117    14:498 Axiom cannot simplify these expressions
+--S 117 of 146    14:498 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -1980,7 +1980,7 @@ $$
 <<*>>=
 )clear all
 
---S 118
+--S 118 of 146
 aa:=integrate(x*acsc(x/a),x)
 --R 
 --R
@@ -1995,7 +1995,7 @@ aa:=integrate(x*acsc(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 119
+--S 119 of 146
 bb1:=x^2/2*acsc(x/a)+(a*sqrt(x^2-a^2))/2
 --R
 --R          +-------+
@@ -2007,7 +2007,7 @@ bb1:=x^2/2*acsc(x/a)+(a*sqrt(x^2-a^2))/2
 --R                                                     Type: Expression Integer
 --E
 
---S 120
+--S 120 of 146
 bb2:=x^2/2*acsc(x/a)-(a*sqrt(x^2-a^2))/2
 --R
 --R            +-------+
@@ -2019,7 +2019,7 @@ bb2:=x^2/2*acsc(x/a)-(a*sqrt(x^2-a^2))/2
 --R                                                     Type: Expression Integer
 --E
 
---S 121
+--S 121 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -2034,7 +2034,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 122    14:499 Axiom cannot simplify these expressions
+--S 122 of 146    14:499 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -2075,7 +2075,7 @@ $$
 <<*>>=
 )clear all
 
---S 123
+--S 123 of 146
 aa:=integrate(x^2*acsc(x/a),x)
 --R 
 --R
@@ -2098,7 +2098,7 @@ aa:=integrate(x^2*acsc(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 124
+--S 124 of 146
 bb1:=x^3/3*acsc(x/a)+(a*x*sqrt(x^2-a^2))/6+a^3/6*log(x+sqrt(x^2-a^2))
 --R
 --R               +-------+            +-------+
@@ -2110,7 +2110,7 @@ bb1:=x^3/3*acsc(x/a)+(a*x*sqrt(x^2-a^2))/6+a^3/6*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 125
+--S 125 of 146
 bb2:=x^3/3*acsc(x/a)-(a*x*sqrt(x^2-a^2))/6-a^3/6*log(x+sqrt(x^2-a^2))
 --R
 --R                 +-------+            +-------+
@@ -2122,7 +2122,7 @@ bb2:=x^3/3*acsc(x/a)-(a*x*sqrt(x^2-a^2))/6-a^3/6*log(x+sqrt(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 126
+--S 126 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -2150,7 +2150,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 127    14:500 Axiom cannot simplify this expression
+--S 127 of 146    14:500 Axiom cannot simplify this expression
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -2189,7 +2189,7 @@ $$
 <<*>>=
 )clear all
 
---S 128    14:501 Axiom cannot compute this integral
+--S 128 of 146    14:501 Axiom cannot compute this integral
 aa:=integrate(acsc(x/a)/x,x)
 --R 
 --R
@@ -2220,7 +2220,7 @@ $$
 <<*>>=
 )clear all
 
---S 129
+--S 129 of 146
 aa:=integrate(acsc(x/a)/x^2,x)
 --R 
 --R
@@ -2236,7 +2236,7 @@ aa:=integrate(acsc(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 130
+--S 130 of 146
 bb1:=-acsc(x/a)/x-sqrt(x^2-a^2)/(a*x)
 --R
 --R           +-------+
@@ -2248,7 +2248,7 @@ bb1:=-acsc(x/a)/x-sqrt(x^2-a^2)/(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 131
+--S 131 of 146
 bb2:=-acsc(x/a)/x+sqrt(x^2-a^2)/(a*x)
 --R
 --R         +-------+
@@ -2260,7 +2260,7 @@ bb2:=-acsc(x/a)/x+sqrt(x^2-a^2)/(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 132
+--S 132 of 146
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -2281,7 +2281,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 133    14:502 Axiom cannot simplify this expression
+--S 133 of 146    14:502 Axiom cannot simplify this expression
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -2311,7 +2311,7 @@ $$
 <<*>>=
 )clear all
 
---S 134    14:503 Axiom cannot compute this integral
+--S 134 of 146    14:503 Axiom cannot compute this integral
 aa:=integrate(x^m*asin(x/a),x)
 --R 
 --R
@@ -2331,7 +2331,7 @@ $$
 <<*>>=
 )clear all
 
---S 135    14:504 Axiom cannot compute this integral
+--S 135 of 146    14:504 Axiom cannot compute this integral
 aa:=integrate(x^m*acos(x/a),x)
 --R 
 --R
@@ -2357,7 +2357,7 @@ have the same form but are expressed in terms of asin, acos, and acot.
 <<*>>=
 )clear all
 
---S 136
+--S 136 of 146
 aa:=integrate(x*m*atan(x/a),x)
 --R 
 --R
@@ -2370,7 +2370,7 @@ aa:=integrate(x*m*atan(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 137
+--S 137 of 146
 t1:=integrate(x^(m+1)/(x^2+a^2),x)
 --E
 @
@@ -2382,7 +2382,7 @@ difference from the original formula.
 So first we generate the derivative:
 <<*>>=
 
---S 138
+--S 138 of 146
 bb:=D(aa,x)
 --R
 --R                     2a x
@@ -2396,7 +2396,7 @@ bb:=D(aa,x)
 @
 Then we input the original expression
 <<*>>=
---S 139
+--S 139 of 146
 aa1:=x*m*atan(x/a)
 --R
 --R                 x
@@ -2407,7 +2407,7 @@ aa1:=x*m*atan(x/a)
 @
 Now we take their difference
 <<*>>=
---S 140
+--S 140 of 146
 dd:=aa1-bb
 --R
 --R                  x               2a x
@@ -2421,7 +2421,7 @@ dd:=aa1-bb
 @
 Now we input the atan transformation
 <<*>>=
---S 141
+--S 141 of 146
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -2434,7 +2434,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 @
 And apply the transformation to the difference
 <<*>>=
---S 142
+--S 142 of 146
 ee:=atanrule dd
 --R
 --R                      2              2
@@ -2449,7 +2449,7 @@ ee:=atanrule dd
 @
 And now we simplify
 <<*>>=
---S 143    14:505 SCHAUMS AND AXIOM DISAGREE? (branch cuts?)
+--S 143 of 146    14:505 SCHAUMS AND AXIOM DISAGREE? (branch cuts?)
 ff:=expandLog ee
 --R
 --R          %i m x log(- 1)
@@ -2471,7 +2471,7 @@ $$
 <<*>>=
 )clear all
 
---S 144    14:506 Axiom cannot compute this integral
+--S 144 of 146    14:506 Axiom cannot compute this integral
 aa:=integrate(x^m*acot(x/a),x)
 --R 
 --R
@@ -2501,7 +2501,7 @@ $$
 <<*>>=
 )clear all
 
---S 145    14:507 Axiom cannot compute this integral
+--S 145 of 146    14:507 Axiom cannot compute this integral
 aa:=integrate(x^m*asec(x/a),x)
 --R 
 --R
@@ -2531,7 +2531,7 @@ $$
 <<*>>=
 )clear all
 
---S 146    14:508 Axiom cannot compute this integral
+--S 146 of 146    14:508 Axiom cannot compute this integral
 aa:=integrate(x^m*acsc(x/a),x)
 --R 
 --R
diff --git a/src/input/schaum25.input.pamphlet b/src/input/schaum25.input.pamphlet
index 0a55f34..75694f8 100644
--- a/src/input/schaum25.input.pamphlet
+++ b/src/input/schaum25.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 40
 aa:=integrate(%e^(a*x),x)
 --R
 --R          a x
@@ -28,7 +28,7 @@ aa:=integrate(%e^(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 40
 bb:=%e^(a*x)/a
 --R
 --R          a x
@@ -38,7 +38,7 @@ bb:=%e^(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:509 Schaums and Axiom agree
+--S 3 of 40      14:509 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -54,7 +54,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 40
 aa:=integrate(x*%e^(a*x),x)
 --R
 --R                   a x
@@ -65,7 +65,7 @@ aa:=integrate(x*%e^(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 40
 bb:=%e^(a*x)/a*(x-1/a)
 --R
 --R                   a x
@@ -76,7 +76,7 @@ bb:=%e^(a*x)/a*(x-1/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:510 Schaums and Axiom agree
+--S 6 of 40      14:510 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -92,7 +92,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 40
 aa:=integrate(x^2*%e^(a*x),x)
 --R
 --R          2 2              a x
@@ -103,7 +103,7 @@ aa:=integrate(x^2*%e^(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 40
 bb:=%e^(a*x)/a*(x^2-(2*x)/a+2/a^2)
 --R
 --R          2 2              a x
@@ -114,7 +114,7 @@ bb:=%e^(a*x)/a*(x^2-(2*x)/a+2/a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:511 Schaums and Axiom agree
+--S 9 of 40      14:511 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -139,7 +139,7 @@ $$
 <<*>>=
 )clear all
 
---S 10     14:512 Axiom cannot compute this integral
+--S 10 of 40     14:512 Axiom cannot compute this integral
 aa:=integrate(x^n*%e^(a*x),x)
 --R
 --R           x
@@ -160,7 +160,7 @@ $$
 <<*>>=
 )clear all
 
---S 11     14:513 Schaums and Axiom agree by definition
+--S 11 of 40     14:513 Schaums and Axiom agree by definition
 aa:=integrate(%e^(a*x)/x,x)
 --R
 --R   (1)  Ei(a x)
@@ -176,7 +176,7 @@ $$
 <<*>>=
 )clear all
 
---S 12     14:514 Axiom cannot compute this integral
+--S 12 of 40     14:514 Axiom cannot compute this integral
 aa:=integrate(%e^(a*x)/x^n,x)
 --R
 --I           x   %I a
@@ -196,7 +196,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 40
 aa:=integrate(1/(p+q*%e^(a*x)),x)
 --R
 --R                  a x
@@ -206,7 +206,7 @@ aa:=integrate(1/(p+q*%e^(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 40
 bb:=x/p-1/(a*p)*log(p+q*%e^(a*x))
 --R
 --R                  a x
@@ -216,7 +216,7 @@ bb:=x/p-1/(a*p)*log(p+q*%e^(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 15     14:515 Schaums and Axiom agree
+--S 15 of 40     14:515 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -232,7 +232,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 40
 aa:=integrate(1/(p+q*%e^(a*x))^2,x)
 --R
 --R               a x             a x                a x
@@ -243,7 +243,7 @@ aa:=integrate(1/(p+q*%e^(a*x))^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 17
+--S 17 of 40
 bb:=x/p^2+1/(a*p*(p+q*%e^(a*x)))-1/(a*p^2)*log(p+q*%e^(a*x))
 --R
 --R               a x             a x                a x
@@ -254,7 +254,7 @@ bb:=x/p^2+1/(a*p*(p+q*%e^(a*x)))-1/(a*p^2)*log(p+q*%e^(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 18     14:516 Schaums and Axiom agree
+--S 18 of 40     14:516 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -279,7 +279,7 @@ $$
 <<*>>=
 )clear all
 
---S 19
+--S 19 of 40
 aa:=integrate(1/(p*%e^(a*x)+q*%e^-(a*x)),x)
 --R
 --R                   a x 2      +-----+          a x
@@ -293,7 +293,7 @@ aa:=integrate(1/(p*%e^(a*x)+q*%e^-(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 20
+--S 20 of 40
 bb1:=1/(a*sqrt(p*q))*atan(sqrt(p/q)*%e^(a*x))
 --R
 --R                   +-+
@@ -306,7 +306,7 @@ bb1:=1/(a*sqrt(p*q))*atan(sqrt(p/q)*%e^(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 21
+--S 21 of 40
 bb2:=1/(2*a*sqrt(-p*q))*log((%e^(a*x)-sqrt(-q/p))/(%e^(a*x)+sqrt(-q/p)))
 --R
 --R               +---+
@@ -324,7 +324,7 @@ bb2:=1/(2*a*sqrt(-p*q))*log((%e^(a*x)-sqrt(-q/p))/(%e^(a*x)+sqrt(-q/p)))
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 40
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -339,7 +339,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 40
 cc2:=aa.2-bb1
 --R
 --R               a x +---+               +-+
@@ -352,7 +352,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 40
 cc3:=aa.1-bb2
 --R
 --R                                                            +---+
@@ -370,7 +370,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 25     14:517 Axiom cannot simplify these expressions
+--S 25 of 40     14:517 Axiom cannot simplify these expressions
 cc4:=aa.2-bb2
 --R
 --R                       +---+
@@ -397,7 +397,7 @@ $$
 <<*>>=
 )clear all
 
---S 26
+--S 26 of 40
 aa:=integrate(%e^(a*x)*sin(b*x),x)
 --R
 --R            a x                       a x
@@ -408,7 +408,7 @@ aa:=integrate(%e^(a*x)*sin(b*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 27
+--S 27 of 40
 bb:=((%e^(a*x))*(a*sin(b*x)-b*cos(b*x)))/(a^2+b^2)
 --R
 --R            a x                       a x
@@ -419,7 +419,7 @@ bb:=((%e^(a*x))*(a*sin(b*x)-b*cos(b*x)))/(a^2+b^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 28     14:518 Schaums and Axiom agree
+--S 28 of 40     14:518 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -435,7 +435,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 40
 aa:=integrate(%e^(a*x)*cos(b*x),x)
 --R
 --R            a x                       a x
@@ -446,7 +446,7 @@ aa:=integrate(%e^(a*x)*cos(b*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 40
 bb:=((%e^(a*x))*(a*cos(b*x)+b*sin(b*x)))/(a^2+b^2)
 --R
 --R            a x                       a x
@@ -457,7 +457,7 @@ bb:=((%e^(a*x))*(a*cos(b*x)+b*sin(b*x)))/(a^2+b^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 31     14:519 Schaums and Axiom agree
+--S 31 of 40     14:519 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -474,7 +474,7 @@ $$
 <<*>>=
 )clear all
 
---S 32
+--S 32 of 40
 aa:=integrate(x*%e^(a*x)*sin(b*x),x)
 --R
 --R   (1)
@@ -486,7 +486,7 @@ aa:=integrate(x*%e^(a*x)*sin(b*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 33
+--S 33 of 40
 bb:=(x*%e^(a*x)*(a*sin(b*x)-b*cos(b*x)))/(a^2+b^2)-(%e^(a*x)*((a^2-b^2)*sin(b*x)-2*a*b*cos(b*x)))/(a^2+b^2)^2
 --R
 --R   (2)
@@ -498,7 +498,7 @@ bb:=(x*%e^(a*x)*(a*sin(b*x)-b*cos(b*x)))/(a^2+b^2)-(%e^(a*x)*((a^2-b^2)*sin(b*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 34     14:520 Schaums and Axiom agree
+--S 34 of 40     14:520 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -515,7 +515,7 @@ $$
 <<*>>=
 )clear all
 
---S 35
+--S 35 of 40
 aa:=integrate(x*%e^(a*x)*cos(b*x),x)
 --R
 --R   (1)
@@ -527,7 +527,7 @@ aa:=integrate(x*%e^(a*x)*cos(b*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 36
+--S 36 of 40
 bb:=(x*%e^(a*x)*(a*cos(b*x)+b*sin(b*x)))/(a^2+b^2)-(%e^(a*x)*((a^2-b^2)*cos(b*x)+2*a*b*sin(b*x)))/(a^2+b^2)^2
 --R
 --R   (2)
@@ -539,7 +539,7 @@ bb:=(x*%e^(a*x)*(a*cos(b*x)+b*sin(b*x)))/(a^2+b^2)-(%e^(a*x)*((a^2-b^2)*cos(b*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 37     14:521 Schaums and Axiom agree
+--S 37 of 40     14:521 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -555,7 +555,7 @@ $$
 <<*>>=
 )clear all
 
---S 38     14:522 Schaums and Axiom agree by definition
+--S 38 of 40     14:522 Schaums and Axiom agree by definition
 aa:=integrate(%e^(a*x)*log(x),x)
 --R
 --R          a x
@@ -575,7 +575,7 @@ $$
 <<*>>=
 )clear all
 
---S 39     14:523 Axiom cannot compute this integral
+--S 39 of 40     14:523 Axiom cannot compute this integral
 aa:=integrate(%e^(a*x)*sin(b*x)^n,x)
 --R
 --R           x
@@ -595,7 +595,7 @@ $$
 <<*>>=
 )clear all
 
---S 40     14:524 Axiom cannot compute this integral
+--S 40 of 40     14:524 Axiom cannot compute this integral
 aa:=integrate(%e^(a*x)*cos(b*x)^n,x)
 --R
 --R           x
diff --git a/src/input/schaum26.input.pamphlet b/src/input/schaum26.input.pamphlet
index 9bdeec5..a75d995 100644
--- a/src/input/schaum26.input.pamphlet
+++ b/src/input/schaum26.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 43
 aa:=integrate(log(x),x)
 --R 
 --R
@@ -26,14 +26,14 @@ aa:=integrate(log(x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 43
 bb:=x*log(x)-x
 --R
 --R   (2)  x log(x) - x
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:525 Schaums and Axiom agree
+--S 3 of 43      14:525 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -49,7 +49,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 43
 aa:=integrate(x*log(x),x)
 --R 
 --R
@@ -60,7 +60,7 @@ aa:=integrate(x*log(x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 5
+--S 5 of 43
 bb:=x^2/2*(log(x)-1/2)
 --R
 --R          2          2
@@ -70,7 +70,7 @@ bb:=x^2/2*(log(x)-1/2)
 --R                                                     Type: Expression Integer
 --E 
 
---S 6      14:526 Schaums and Axiom agree
+--S 6 of 43      14:526 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -86,7 +86,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 43
 aa:=integrate(x^m*log(x),x)
 --R 
 --R
@@ -98,7 +98,7 @@ aa:=integrate(x^m*log(x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 8
+--S 8 of 43
 bb:=x^(m+1)/(m+1)*(log(x)-1/(m+1))
 --R
 --R                            m + 1
@@ -109,7 +109,7 @@ bb:=x^(m+1)/(m+1)*(log(x)-1/(m+1))
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 43
 cc:=aa-bb
 --R
 --R                               m log(x)                         m + 1
@@ -120,7 +120,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 43
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -128,7 +128,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 11
+--S 11 of 43
 dd:=explog cc
 --R
 --R                              m + 1                         m
@@ -139,7 +139,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:527 Schaums and Axiom agree
+--S 12 of 43     14:527 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -155,7 +155,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 43
 aa:=integrate(log(x)/x,x)
 --R 
 --R
@@ -166,7 +166,7 @@ aa:=integrate(log(x)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 14
+--S 14 of 43
 bb:=1/2*log(x)^2
 --R
 --R              2
@@ -176,7 +176,7 @@ bb:=1/2*log(x)^2
 --R                                                     Type: Expression Integer
 --E 
 
---S 15     14:528 Schaums and Axiom agree
+--S 15 of 43     14:528 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -192,7 +192,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 43
 aa:=integrate(log(x)/x^2,x)
 --R 
 --R
@@ -202,7 +202,7 @@ aa:=integrate(log(x)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 17
+--S 17 of 43
 bb:=-log(x)/x-1/x
 --R
 --R        - log(x) - 1
@@ -211,7 +211,7 @@ bb:=-log(x)/x-1/x
 --R                                                     Type: Expression Integer
 --E
 
---S 18     14:529 Schaums and Axiom agree
+--S 18 of 43     14:529 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -227,7 +227,7 @@ $$
 <<*>>=
 )clear all
 
---S 19
+--S 19 of 43
 aa:=integrate(log(x)^2,x)
 --R 
 --R
@@ -236,7 +236,7 @@ aa:=integrate(log(x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 20
+--S 20 of 43
 bb:=x*log(x)^2-2*x*log(x)+2*x
 --R
 --R                2
@@ -244,7 +244,7 @@ bb:=x*log(x)^2-2*x*log(x)+2*x
 --R                                                     Type: Expression Integer
 --E 
 
---S 21     14:530 Schaums and Axiom agree
+--S 21 of 43     14:530 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -260,7 +260,7 @@ $$
 <<*>>=
 )clear all
 
---S 22
+--S 22 of 43
 aa:=integrate(log(x)^n/x,x)
 --R 
 --R
@@ -271,7 +271,7 @@ aa:=integrate(log(x)^n/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 23
+--S 23 of 43
 bb:=log(x)^(n+1)/(n+1)
 --R
 --R              n + 1
@@ -281,7 +281,7 @@ bb:=log(x)^(n+1)/(n+1)
 --R                                                     Type: Expression Integer
 --E 
 
---S 24
+--S 24 of 43
 cc:=aa-bb
 --R
 --R                n log(log(x))         n + 1
@@ -291,7 +291,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 43
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -299,7 +299,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 26
+--S 26 of 43
 dd:=explog cc
 --R
 --R                n + 1               n
@@ -309,7 +309,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:531 Schaums and Axiom agree
+--S 27 of 43     14:531 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -325,7 +325,7 @@ $$
 <<*>>=
 )clear all
 
---S 28
+--S 28 of 43
 aa:=integrate(1/(x*log(x)),x)
 --R 
 --R
@@ -333,14 +333,14 @@ aa:=integrate(1/(x*log(x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 29
+--S 29 of 43
 bb:=log(log(x))
 --R
 --R   (2)  log(log(x))
 --R                                                     Type: Expression Integer
 --E
 
---S 30     14:532 Schaums and Axiom agree
+--S 30 of 43     14:532 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -358,7 +358,7 @@ $$
 <<*>>=
 )clear all
 
---S 31     14:533 Schaums and Axiom agree by definition
+--S 31 of 43     14:533 Schaums and Axiom agree by definition
 aa:=integrate(1/log(x),x)
 --R 
 --R
@@ -376,7 +376,7 @@ $$
 <<*>>=
 )clear all
 
---S 32     14:534 Axiom cannot compute this integral
+--S 32 of 43     14:534 Axiom cannot compute this integral
 aa:=integrate(x^m/log(x),x)
 --R 
 --R
@@ -396,7 +396,7 @@ $$
 <<*>>=
 )clear all
 
---S 33     14:535 Axiom cannot compute this integral
+--S 33 of 43     14:535 Axiom cannot compute this integral
 aa:=integrate(log(x)^n,x)
 --R 
 --R
@@ -416,7 +416,7 @@ $$
 <<*>>=
 )clear all
 
---S 34     14:536 Axiom cannot compute this integral
+--S 34 of 43     14:536 Axiom cannot compute this integral
 aa:=integrate(x^m*log(x)^n,x)
 --R 
 --R
@@ -436,7 +436,7 @@ $$
 <<*>>=
 )clear all
 
---S 35
+--S 35 of 43
 aa:=integrate(log(x^2+a^2),x)
 --R 
 --R
@@ -446,7 +446,7 @@ aa:=integrate(log(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 36
+--S 36 of 43
 bb:=x*log(x^2+a^2)-2*x+2*a*atan(x/a)
 --R
 --R               2    2            x
@@ -455,7 +455,7 @@ bb:=x*log(x^2+a^2)-2*x+2*a*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 37     14:537 Schaums and Axiom agree
+--S 37 of 43     14:537 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -471,7 +471,7 @@ $$
 <<*>>=
 )clear all
 
---S 38
+--S 38 of 43
 aa:=integrate(log(x^2-a^2),x)
 --R 
 --R
@@ -480,7 +480,7 @@ aa:=integrate(log(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 39
+--S 39 of 43
 bb:=x*log(x^2-a^2)-2*x+a*log((x+a)/(x-a))
 --R
 --R               2    2          x + a
@@ -489,7 +489,7 @@ bb:=x*log(x^2-a^2)-2*x+a*log((x+a)/(x-a))
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 43
 cc:=aa-bb
 --R
 --R                                            x + a
@@ -498,7 +498,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 41     14:538 Schaums and Axiom agree
+--S 41 of 43     14:538 Schaums and Axiom agree
 dd:=expandLog cc
 --R
 --R   (4)  0
@@ -515,7 +515,7 @@ $$
 <<*>>=
 )clear all
 
---S 42
+--S 42 of 43
 aa:=integrate(x^m*log(x^2+a^2),x)
 --R 
 --R
@@ -528,7 +528,7 @@ aa:=integrate(x^m*log(x^2+a^2),x)
 
 )clear all
 
---S 43     14:539 Axiom cannot compute this integral
+--S 43 of 43     14:539 Axiom cannot compute this integral
 aa:=integrate(x^m*log(x^2-a^2),x)
 --R 
 --R
diff --git a/src/input/schaum27.input.pamphlet b/src/input/schaum27.input.pamphlet
index 68d33a3..3563060 100644
--- a/src/input/schaum27.input.pamphlet
+++ b/src/input/schaum27.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 84
 aa:=integrate(sinh(a*x),x)
 --R
 --R        cosh(a x)
@@ -27,7 +27,7 @@ aa:=integrate(sinh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 84
 bb:=cosh(a*x)/a
 --R
 --R        cosh(a x)
@@ -36,7 +36,7 @@ bb:=cosh(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:540 Schaums and Axiom agree
+--S 3 of 84      14:540 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -52,7 +52,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 84
 aa:=integrate(x*sinh(a*x),x)
 --R 
 --R
@@ -63,7 +63,7 @@ aa:=integrate(x*sinh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 84
 bb:=(x*cosh(a*x))/a-sinh(a*x)/a^2
 --R
 --R        - sinh(a x) + a x cosh(a x)
@@ -73,7 +73,7 @@ bb:=(x*cosh(a*x))/a-sinh(a*x)/a^2
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:541 Schaums and Axiom agree
+--S 6 of 84      14:541 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -89,7 +89,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 84
 aa:=integrate(x^2*sinh(a*x),x)
 --R 
 --R
@@ -101,7 +101,7 @@ aa:=integrate(x^2*sinh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 84
 bb:=(x^2/a+2/a^3)*cosh(a*x)-(2*x)/a^2*sinh(a*x)
 --R
 --R                             2 2
@@ -112,7 +112,7 @@ bb:=(x^2/a+2/a^3)*cosh(a*x)-(2*x)/a^2*sinh(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:542 Schaums and Axiom agree
+--S 9 of 84      14:542 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -128,7 +128,7 @@ $$
 <<*>>=
 )clear all
 
---S 10     14:543 Axiom cannot compute this integral
+--S 10 of 84     14:543 Axiom cannot compute this integral
 aa:=integrate(sinh(a*x)/x,x)
 --R 
 --R
@@ -148,7 +148,7 @@ $$
 <<*>>=
 )clear all
 
---S 11     14:544 Axiom cannot compute this integral
+--S 11 of 84     14:544 Axiom cannot compute this integral
 aa:=integrate(sinh(a*x)/x^2,x)
 --R 
 --R
@@ -169,7 +169,7 @@ $$
 <<*>>=
 )clear all
 
---S 12
+--S 12 of 84
 aa:=integrate(1/sinh(a*x),x)
 --R 
 --R
@@ -179,7 +179,7 @@ aa:=integrate(1/sinh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 13
+--S 13 of 84
 bb:=1/a*log(tanh(a*x)/2)
 --R
 --R            tanh(a x)
@@ -190,7 +190,7 @@ bb:=1/a*log(tanh(a*x)/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 14     14:545 Axiom cannot simplify this expression
+--S 14 of 84     14:545 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -214,7 +214,7 @@ $$
 <<*>>=
 )clear all
 
---S 15     14:546 Axiom cannot compute this integral
+--S 15 of 84     14:546 Axiom cannot compute this integral
 aa:=integrate(x/sinh(a*x),x)
 --R 
 --R
@@ -234,7 +234,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 84
 aa:=integrate(sinh(a*x)^2,x)
 --R 
 --R
@@ -244,7 +244,7 @@ aa:=integrate(sinh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 17
+--S 17 of 84
 bb:=(sinh(a*x)*cosh(a*x))/(2*a)-x/2
 --R
 --R        cosh(a x)sinh(a x) - a x
@@ -253,7 +253,7 @@ bb:=(sinh(a*x)*cosh(a*x))/(2*a)-x/2
 --R                                                     Type: Expression Integer
 --E
 
---S 18     14:547 Schaums and Axiom agree
+--S 18 of 84     14:547 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -269,7 +269,7 @@ $$
 <<*>>=
 )clear all
 
---S 19
+--S 19 of 84
 aa:=integrate(x*sinh(a*x)^2,x)
 --R 
 --R
@@ -281,7 +281,7 @@ aa:=integrate(x*sinh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 20
+--S 20 of 84
 bb:=(x*sinh(2*a*x))/(4*a)-cosh(2*a*x)/(8*a^2)-x^2/4
 --R
 --R                                         2 2
@@ -292,7 +292,7 @@ bb:=(x*sinh(2*a*x))/(4*a)-cosh(2*a*x)/(8*a^2)-x^2/4
 --R                                                     Type: Expression Integer
 --E
 
---S 21
+--S 21 of 84
 cc:=aa-bb
 --R
 --R   (3)
@@ -307,7 +307,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 84
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -316,7 +316,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 23
+--S 23 of 84
 dd:=sinhsqrrule cc
 --R
 --R   (5)
@@ -328,7 +328,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 84
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -337,7 +337,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 25
+--S 25 of 84
 ee:=coshsqrrule dd
 --R
 --R        - x sinh(2a x) + 2x cosh(a x)sinh(a x)
@@ -346,7 +346,7 @@ ee:=coshsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 84
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %K sinh(y + x) - %K sinh(y - x)
@@ -355,7 +355,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 27     14:548 Schaums and Axiom agree
+--S 27 of 84     14:548 Schaums and Axiom agree
 ff:=sinhcoshrule ee
 --R
 --R   (9)  0
@@ -371,7 +371,7 @@ $$
 <<*>>=
 )clear all
 
---S 28
+--S 28 of 84
 aa:=integrate(1/sinh(a*x)^2,x)
 --R 
 --R
@@ -382,7 +382,7 @@ aa:=integrate(1/sinh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 29
+--S 29 of 84
 bb:=-coth(a*x)/a
 --R
 --R          coth(a x)
@@ -391,7 +391,7 @@ bb:=-coth(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 84
 cc:=aa-bb
 --R
 --R   (3)
@@ -406,7 +406,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 84
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -415,7 +415,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 32
+--S 32 of 84
 dd:=sinhsqrrule cc
 --R
 --R   (5)
@@ -427,7 +427,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 84
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -436,7 +436,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 34
+--S 34 of 84
 ee:=coshsqrrule dd
 --R
 --R        2cosh(a x)coth(a x)sinh(a x) + (cosh(2a x) - 1)coth(a x) - 2
@@ -445,7 +445,7 @@ ee:=coshsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 84
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --I                             %B sinh(y + x) - %B sinh(y - x)
 --I   (8)  %B cosh(y)sinh(x) == -------------------------------
@@ -453,7 +453,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 36
+--S 36 of 84
 ff:=sinhcoshrule ee
 --R
 --R        coth(a x)sinh(2a x) + (cosh(2a x) - 1)coth(a x) - 2
@@ -462,7 +462,7 @@ ff:=sinhcoshrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 84
 cothrule:=rule(coth(x) == cosh(x)/sinh(x))
 --R
 --R                    cosh(x)
@@ -471,7 +471,7 @@ cothrule:=rule(coth(x) == cosh(x)/sinh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 38
+--S 38 of 84
 gg:=cothrule ff
 --R
 --R         cosh(a x)sinh(2a x) - 2sinh(a x) + cosh(a x)cosh(2a x) - cosh(a x)
@@ -480,7 +480,7 @@ gg:=cothrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 39
+--S 39 of 84
 hh:=sinhcoshrule gg
 --R
 --R         sinh(3a x) - 3sinh(a x) + 2cosh(a x)cosh(2a x) - 2cosh(a x)
@@ -489,7 +489,7 @@ hh:=sinhcoshrule gg
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 84
 sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R
 --I                              %M cosh(y + x) - %M cosh(y - x)
@@ -498,7 +498,7 @@ sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 41
+--S 41 of 84
 ii:=sinhsinhrule gg
 --R
 --R         2cosh(a x)sinh(2a x) - 4sinh(a x) + 2cosh(a x)cosh(2a x) - 2cosh(a x)
@@ -507,7 +507,7 @@ ii:=sinhsinhrule gg
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 84
 coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R
 --I                              %N cosh(y + x) + %N cosh(y - x)
@@ -516,7 +516,7 @@ coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 43
+--S 43 of 84
 jj:=coshcoshrule ii
 --R
 --R         2cosh(a x)sinh(2a x) - 4sinh(a x) + cosh(3a x) - cosh(a x)
@@ -525,7 +525,7 @@ jj:=coshcoshrule ii
 --R                                                     Type: Expression Integer
 --E
 
---S 44     14:549 Schaums and Axiom differ by a constant
+--S 44 of 84     14:549 Schaums and Axiom differ by a constant
 kk:=sinhcoshrule jj
 --R
 --R         1
@@ -543,7 +543,7 @@ $$
 <<*>>=
 )clear all
 
---S 45
+--S 45 of 84
 aa:=integrate(sinh(a*x)*sinh(p*x),x)
 --R 
 --R
@@ -554,7 +554,7 @@ aa:=integrate(sinh(a*x)*sinh(p*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 46
+--S 46 of 84
 bb:=(sinh(a+p)*x)/(2*(a+p))-(sinh(a-p)*x)/(2*(a-p))
 --R
 --R        (p - a)x sinh(p + a) + (- p - a)x sinh(p - a)
@@ -564,7 +564,7 @@ bb:=(sinh(a+p)*x)/(2*(a+p))-(sinh(a-p)*x)/(2*(a-p))
 --R                                                     Type: Expression Integer
 --E
 
---S 47     14:550 Axiom cannot simplify this expression
+--S 47 of 84     14:550 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -593,7 +593,7 @@ $$
 <<*>>=
 )clear all
 
---S 48
+--S 48 of 84
 aa:=integrate(sinh(a*x)*sin(p*x),x)
 --R 
 --R
@@ -611,7 +611,7 @@ aa:=integrate(sinh(a*x)*sin(p*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 49
+--S 49 of 84
 bb:=(a*cosh(a*x)*sin(p*x)-p*sinh(a*x)*cos(p*x))/(a^2+p^2)
 --R
 --R        - p cos(p x)sinh(a x) + a cosh(a x)sin(p x)
@@ -621,7 +621,7 @@ bb:=(a*cosh(a*x)*sin(p*x)-p*sinh(a*x)*cos(p*x))/(a^2+p^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 84
 cc:=aa-bb
 --R
 --R   (3)
@@ -636,7 +636,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 84
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -645,7 +645,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 52
+--S 52 of 84
 dd:=sinhsqrrule cc
 --R
 --R   (5)
@@ -660,7 +660,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 53
+--S 53 of 84
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -669,7 +669,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 54     14:551 Schaums and Axiom agree
+--S 54 of 84     14:551 Schaums and Axiom agree
 ee:=coshsqrrule dd
 --R
 --R   (7)  0
@@ -685,7 +685,7 @@ $$
 <<*>>=
 )clear all
 
---S 55
+--S 55 of 84
 aa:=integrate(sinh(a*x)*cos(p*x),x)
 --R 
 --R
@@ -703,7 +703,7 @@ aa:=integrate(sinh(a*x)*cos(p*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 56
+--S 56 of 84
 bb:=(a*cosh(a*x)*cos(p*x)+p*sinh(a*x)*sin(p*x))/(a^2+p^2)
 --R
 --R        p sin(p x)sinh(a x) + a cos(p x)cosh(a x)
@@ -713,7 +713,7 @@ bb:=(a*cosh(a*x)*cos(p*x)+p*sinh(a*x)*sin(p*x))/(a^2+p^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 84
 cc:=aa-bb
 --R
 --R   (3)
@@ -728,7 +728,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 58
+--S 58 of 84
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -737,7 +737,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 59
+--S 59 of 84
 dd:=sinhsqrrule cc
 --R
 --R   (5)
@@ -752,7 +752,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 60
+--S 60 of 84
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -761,7 +761,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 61     14:552 Schaums and Axiom agree
+--S 61 of 84     14:552 Schaums and Axiom agree
 ee:=coshsqrrule dd
 --R
 --R   (7)  0
@@ -778,7 +778,7 @@ $$
 <<*>>=
 )clear all
 
---S 62
+--S 62 of 84
 aa:=integrate(1/(p+q*sinh(a*x)),x)
 --R 
 --R
@@ -808,7 +808,7 @@ aa:=integrate(1/(p+q*sinh(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 63
+--S 63 of 84
 bb:=1/(a*sqrt(p^2+q^2))*log((q*%e^(a*x)+p-sqrt(p^2+q^2))/(q*%e^(a*x)+p+sqrt(p^2+q^2)))
 --R
 --R               +-------+
@@ -825,7 +825,7 @@ bb:=1/(a*sqrt(p^2+q^2))*log((q*%e^(a*x)+p-sqrt(p^2+q^2))/(q*%e^(a*x)+p+sqrt(p^2+
 --R                                                     Type: Expression Integer
 --E
 
---S 64     14:553 Axiom cannot simplify this expression
+--S 64 of 84     14:553 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -872,7 +872,7 @@ $$
 <<*>>=
 )clear all
 
---S 65
+--S 65 of 84
 aa:=integrate(1/(p*q*sinh(a*x))^2,x)
 --R 
 --R
@@ -884,7 +884,7 @@ aa:=integrate(1/(p*q*sinh(a*x))^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 66
+--S 66 of 84
 t1:=integrate(1/(p+q*sinh(a*x)),x)
 --R
 --R   (2)
@@ -913,7 +913,7 @@ t1:=integrate(1/(p+q*sinh(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 67
+--S 67 of 84
 bb:=(-q*cosh(a*x))/(a*(p^2+q^2)*(p+q*sinh(a*x)))+p/(p^2+q^2)*t1
 --R
 --R   (3)
@@ -949,7 +949,7 @@ bb:=(-q*cosh(a*x))/(a*(p^2+q^2)*(p+q*sinh(a*x)))+p/(p^2+q^2)*t1
 --R                                                     Type: Expression Integer
 --E
 
---S 68     14:554 Axiom cannot simplify this expression
+--S 68 of 84     14:554 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (4)
@@ -1033,7 +1033,7 @@ $$
 <<*>>=
 )clear all
 
---S 69
+--S 69 of 84
 aa:=integrate(1/(p^2+q^2*sinh(a*x)^2),x)
 --R 
 --R
@@ -1097,7 +1097,7 @@ aa:=integrate(1/(p^2+q^2*sinh(a*x)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 70
+--S 70 of 84
 bb1:=1/(a*p*sqrt(q^2-p^2))*atan((sqrt(q^2-p^2)*tanh(a*x))/p)
 --R
 --R                       +-------+
@@ -1112,7 +1112,7 @@ bb1:=1/(a*p*sqrt(q^2-p^2))*atan((sqrt(q^2-p^2)*tanh(a*x))/p)
 --R                                                     Type: Expression Integer
 --E
 
---S 71
+--S 71 of 84
 bb2:=1/(2*a*p*sqrt(p^2-q^2))*log((p+sqrt(p^2-q^2)*tanh(a*x))/(p-sqrt(p^2-q^2)*tanh(a*x)))
 --R
 --R                        +---------+
@@ -1129,7 +1129,7 @@ bb2:=1/(2*a*p*sqrt(p^2-q^2))*log((p+sqrt(p^2-q^2)*tanh(a*x))/(p-sqrt(p^2-q^2)*ta
 --R                                                     Type: Expression Integer
 --E
 
---S 72
+--S 72 of 84
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -1184,7 +1184,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 73
+--S 73 of 84
 cc2:=aa.2-bb1
 --R
 --R   (5)
@@ -1211,7 +1211,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 74
+--S 74 of 84
 cc3:=aa.2-bb1
 --R
 --R   (6)
@@ -1238,7 +1238,7 @@ cc3:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 75     14:555 Axiom cannot simplify this expression
+--S 75 of 84     14:555 Axiom cannot simplify this expression
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -1281,7 +1281,7 @@ $$
 <<*>>=
 )clear all
 
---S 76
+--S 76 of 84
 aa:=integrate(1/(p^2+q^2*sinh(a*x)^2),x)
 --R 
 --R
@@ -1345,7 +1345,7 @@ aa:=integrate(1/(p^2+q^2*sinh(a*x)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 77
+--S 77 of 84
 bb:=1/(2*a*p*sqrt(p^2+q^2))*log((p+sqrt(p^2+q^2)*tanh(a*x))/(p-sqrt(p^2+q^2)*tanh(a*x)))
 --R
 --R                        +-------+
@@ -1362,7 +1362,7 @@ bb:=1/(2*a*p*sqrt(p^2+q^2))*log((p+sqrt(p^2+q^2)*tanh(a*x))/(p-sqrt(p^2+q^2)*tan
 --R                                                     Type: Expression Integer
 --E
 
---S 78
+--S 78 of 84
 cc1:=aa.1-bb
 --R
 --R   (3)
@@ -1419,7 +1419,7 @@ cc1:=aa.1-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 79     14:556 Axiom cannot simplify this expression
+--S 79 of 84     14:556 Axiom cannot simplify this expression
 cc2:=aa.2-bb
 --R
 --R   (4)
@@ -1461,7 +1461,7 @@ $$
 <<*>>=
 )clear all
 
---S 80     14:557 Axiom cannot compute this integral
+--S 80 of 84     14:557 Axiom cannot compute this integral
 aa:=integrate(x^m*sinh(a*x),x)
 --R 
 --R
@@ -1481,7 +1481,7 @@ $$
 <<*>>=
 )clear all
 
---S 81     14:558 Axiom cannot compute this integral
+--S 81 of 84     14:558 Axiom cannot compute this integral
 aa:=integrate(sinh(a*x)^n,x)
 --R 
 --R
@@ -1501,7 +1501,7 @@ $$
 <<*>>=
 )clear all
 
---S 82     14:559 Axiom cannot compute this integral
+--S 82 of 84     14:559 Axiom cannot compute this integral
 aa:=integrate(sinh(a*x)/x^n,x)
 --R
 --R           x
@@ -1523,7 +1523,7 @@ $$
 <<*>>=
 )clear all
 
---S 83     14:560 Axiom cannot compute this integral
+--S 83 of 84     14:560 Axiom cannot compute this integral
 aa:=integrate(1/sinh(a*x)^n,x)
 --R 
 --R
@@ -1546,7 +1546,7 @@ $$
 <<*>>=
 )clear all
 
---S 84     14:561 Axiom cannot compute this integral
+--S 84 of 84     14:561 Axiom cannot compute this integral
 aa:=integrate(x/sinh(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum28.input.pamphlet b/src/input/schaum28.input.pamphlet
index 49efb0e..0015905 100644
--- a/src/input/schaum28.input.pamphlet
+++ b/src/input/schaum28.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 139
 aa:=integrate(cosh(a*x),x)
 --R 
 --R
@@ -28,7 +28,7 @@ aa:=integrate(cosh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 139
 bb:=sinh(a*x)/a
 --R
 --R        sinh(a x)
@@ -37,7 +37,7 @@ bb:=sinh(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:562 Schaums and Axiom agree
+--S 3 of 139      14:562 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -53,7 +53,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 139
 aa:=integrate(x*cosh(a*x),x)
 --R 
 --R
@@ -64,7 +64,7 @@ aa:=integrate(x*cosh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 139
 bb:=(x*sinh(a*x))/a-cosh(a*x)/a^2
 --R
 --R        a x sinh(a x) - cosh(a x)
@@ -74,7 +74,7 @@ bb:=(x*sinh(a*x))/a-cosh(a*x)/a^2
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:563 Schaums and Axiom agree
+--S 6 of 139      14:563 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -90,7 +90,7 @@ $$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 139
 aa:=integrate(x^2*cosh(a*x),x)
 --R 
 --R
@@ -102,7 +102,7 @@ aa:=integrate(x^2*cosh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 139
 bb:=-(2*x*cosh(a*x))/a^2+(x^2/a+2/a^3)*sinh(a*x)
 --R
 --R          2 2
@@ -113,7 +113,7 @@ bb:=-(2*x*cosh(a*x))/a^2+(x^2/a+2/a^3)*sinh(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:564 Schaums and Axiom agree
+--S 9 of 139      14:564 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -131,7 +131,7 @@ $$
 <<*>>=
 )clear all
 
---S 10     14:565 Axiom cannot compute this integral
+--S 10 of 139     14:565 Axiom cannot compute this integral
 aa:=integrate(cosh(a*x)/x,x)
 --R 
 --R
@@ -151,7 +151,7 @@ $$
 <<*>>=
 )clear all
 
---S 11     14:566 Axiom cannot compute this integral
+--S 11 of 139     14:566 Axiom cannot compute this integral
 aa:=integrate(cosh(a*x)/x^2,x)
 --R 
 --R
@@ -172,7 +172,7 @@ $$
 <<*>>=
 )clear all
 
---S 12
+--S 12 of 139
 aa:=integrate(1/cosh(a*x),x)
 --R 
 --R
@@ -182,7 +182,7 @@ aa:=integrate(1/cosh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 13
+--S 13 of 139
 bb:=2/a*atan(%e^(a*x))
 --R
 --R                a x
@@ -192,7 +192,7 @@ bb:=2/a*atan(%e^(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 14
+--S 14 of 139
 cc:=aa-bb
 --R
 --R                                               a x
@@ -202,7 +202,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 15     14:567 Schaums and Axiom agree
+--S 15 of 139     14:567 Schaums and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -219,7 +219,7 @@ $$
 <<*>>=
 )clear all
 
---S 16     14:568 Axiom cannot compute this integral
+--S 16 of 139     14:568 Axiom cannot compute this integral
 aa:=integrate(x/cosh(a*x),x)
 --R 
 --R
@@ -243,7 +243,7 @@ $$
 <<*>>=
 )clear all
 
---S 17
+--S 17 of 139
 aa:=integrate(cosh(a*x)^2,x)
 --R 
 --R
@@ -253,7 +253,7 @@ aa:=integrate(cosh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 18
+--S 18 of 139
 bb:=x/2+(sinh(a*x)*cosh(a*x))/(2*a)
 --R
 --R        cosh(a x)sinh(a x) + a x
@@ -262,7 +262,7 @@ bb:=x/2+(sinh(a*x)*cosh(a*x))/(2*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 19     14:569 Schaums and Axiom agree
+--S 19 of 139     14:569 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -279,7 +279,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 139
 aa:=integrate(x*cosh(a*x)^2,x)
 --R 
 --R
@@ -291,7 +291,7 @@ aa:=integrate(x*cosh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 21
+--S 21 of 139
 bb:=x^2/4+(x*sinh(2*a*x))/(4*a)-cosh(2*a*x)/(8*a^2)
 --R
 --R                                         2 2
@@ -302,7 +302,7 @@ bb:=x^2/4+(x*sinh(2*a*x))/(4*a)-cosh(2*a*x)/(8*a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 139
 cc:=aa-bb
 --R
 --R   (3)
@@ -317,7 +317,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 139
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -326,7 +326,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 24
+--S 24 of 139
 dd:=sinhsqrrule cc
 --R
 --R   (5)
@@ -338,7 +338,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 139
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -347,7 +347,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 26
+--S 26 of 139
 ee:=coshsqrrule dd
 --R
 --R        - x sinh(2a x) + 2x cosh(a x)sinh(a x)
@@ -356,7 +356,7 @@ ee:=coshsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 139
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %S sinh(y + x) - %S sinh(y - x)
@@ -365,7 +365,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 28     14:570 Schaums and Axiom agree
+--S 28 of 139     14:570 Schaums and Axiom agree
 ff:=sinhcoshrule ee
 --R
 --R   (9)  0
@@ -381,7 +381,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 139
 aa:=integrate(1/cosh(a*x)^2,x)
 --R 
 --R
@@ -392,7 +392,7 @@ aa:=integrate(1/cosh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 139
 bb:=tanh(a*x)/a
 --R
 --R        tanh(a x)
@@ -401,7 +401,7 @@ bb:=tanh(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 139
 cc:=aa-bb
 --R
 --R                    2                                  2
@@ -412,7 +412,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 32     14:571 Schaums and Axiom differ by a constant
+--S 32 of 139     14:571 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R          1
@@ -430,7 +430,7 @@ $$
 <<*>>=
 )clear all
 
---S 33 
+--S 33  of 139
 aa:=integrate(cosh(a*x)*cosh(p*x),x)
 --R 
 --R
@@ -441,7 +441,7 @@ aa:=integrate(cosh(a*x)*cosh(p*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 34
+--S 34 of 139
 bb:=(sinh(a-p)*x)/(2*(a-p))+(sinh(a+p)*x)/(2*(a+p))
 --R
 --R        (p - a)x sinh(p + a) + (p + a)x sinh(p - a)
@@ -451,7 +451,7 @@ bb:=(sinh(a-p)*x)/(2*(a-p))+(sinh(a+p)*x)/(2*(a+p))
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 139
 cc:=aa-bb
 --R
 --R   (3)
@@ -471,7 +471,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 139
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -480,7 +480,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 37
+--S 37 of 139
 dd:=sinhsqrrule cc
 --R
 --R   (5)
@@ -497,7 +497,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 139
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -506,7 +506,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 39
+--S 39 of 139
 ee:=coshsqrrule dd
 --R
 --R   (7)
@@ -519,7 +519,7 @@ ee:=coshsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 139
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %V sinh(y + x) - %V sinh(y - x)
@@ -528,7 +528,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 41     14:572 Axiom cannot simplify this expression
+--S 41 of 139     14:572 Axiom cannot simplify this expression
 ff:=sinhcoshrule ee
 --R
 --R   (9)
@@ -550,7 +550,7 @@ $$
 <<*>>=
 )clear all
 
---S 42
+--S 42 of 139
 aa:=integrate(cosh(a*x)*sin(p*x),x)
 --R 
 --R
@@ -568,7 +568,7 @@ aa:=integrate(cosh(a*x)*sin(p*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 43
+--S 43 of 139
 bb:=(a*sinh(a*x)*sin(p*x)-p*cosh(a*x)*cos(p*x))/(a^2+p^2)
 --R
 --R        a sin(p x)sinh(a x) - p cos(p x)cosh(a x)
@@ -578,7 +578,7 @@ bb:=(a*sinh(a*x)*sin(p*x)-p*cosh(a*x)*cos(p*x))/(a^2+p^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 139
 cc:=aa-bb
 --R
 --R   (3)
@@ -593,7 +593,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 139
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -602,7 +602,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 46
+--S 46 of 139
 dd:=coshsqrrule cc
 --R
 --R   (5)
@@ -616,7 +616,7 @@ dd:=coshsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 139
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -625,7 +625,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 48     14:573 Schaums and Axiom agree
+--S 48 of 139     14:573 Schaums and Axiom agree
 ee:=sinhsqrrule dd
 --R
 --R   (7)  0
@@ -641,7 +641,7 @@ $$
 <<*>>=
 )clear all
 
---S 49
+--S 49 of 139
 aa:=integrate(cosh(a*x)*cos(p*x),x)
 --R 
 --R
@@ -659,7 +659,7 @@ aa:=integrate(cosh(a*x)*cos(p*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 50
+--S 50 of 139
 bb:=(a*sinh(a*x)*cos(p*x)+p*cosh(a*x)*sin(p*x))/(a^2+p^2)
 --R
 --R        a cos(p x)sinh(a x) + p cosh(a x)sin(p x)
@@ -669,7 +669,7 @@ bb:=(a*sinh(a*x)*cos(p*x)+p*cosh(a*x)*sin(p*x))/(a^2+p^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 139
 cc:=aa-bb
 --R
 --R   (3)
@@ -684,7 +684,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 52
+--S 52 of 139
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -693,7 +693,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 53
+--S 53 of 139
 dd:=coshsqrrule cc
 --R
 --R   (5)
@@ -707,7 +707,7 @@ dd:=coshsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 139
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -716,7 +716,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 55     14:574 Schaums and Axiom agree
+--S 55 of 139     14:574 Schaums and Axiom agree
 ee:=sinhsqrrule dd
 --R
 --R   (7)  0
@@ -732,7 +732,7 @@ $$
 <<*>>=
 )clear all
 
---S 56
+--S 56 of 139
 aa:=integrate(1/(cosh(a*x)+1),x)
 --R 
 --R
@@ -742,7 +742,7 @@ aa:=integrate(1/(cosh(a*x)+1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 57
+--S 57 of 139
 bb:=1/a*tanh((a*x)/2)
 --R
 --R             a x
@@ -753,7 +753,7 @@ bb:=1/a*tanh((a*x)/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 58
+--S 58 of 139
 cc:=aa-bb
 --R
 --R                                          a x
@@ -764,7 +764,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 59
+--S 59 of 139
 tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R
 --R                   sinh(x)
@@ -773,7 +773,7 @@ tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 60
+--S 60 of 139
 dd:=tanhrule cc
 --R
 --R               a x                                   a x          a x
@@ -786,7 +786,7 @@ dd:=tanhrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 61
+--S 61 of 139
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                              %BC sinh(y + x) - %BC sinh(y - x)
@@ -795,7 +795,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 62
+--S 62 of 139
 ee:=sinhcoshrule dd
 --R
 --R                  3a x          a x                  a x          a x
@@ -808,7 +808,7 @@ ee:=sinhcoshrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 63
+--S 63 of 139
 sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R
 --I                              %BD sinh(y + x) - %BD sinh(y - x)
@@ -817,7 +817,7 @@ sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 64
+--S 64 of 139
 ff:=sinhsinhrule ee
 --R
 --R                       3a x         a x         3a x          a x
@@ -830,7 +830,7 @@ ff:=sinhsinhrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 65
+--S 65 of 139
 coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R
 --I                               %BC cosh(y + x) + %BC cosh(y - x)
@@ -839,7 +839,7 @@ coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 66     14:575 Schaums and Axiom differ by a constant
+--S 66 of 139     14:575 Schaums and Axiom differ by a constant
 gg:=coshcoshrule ff
 --R
 --R           1
@@ -857,7 +857,7 @@ $$
 <<*>>=
 )clear all
 
---S 67
+--S 67 of 139
 aa:=integrate(1/(cosh(a*x)-1),x)
 --R 
 --R
@@ -867,7 +867,7 @@ aa:=integrate(1/(cosh(a*x)-1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 68
+--S 68 of 139
 bb:=-1/a*coth((a*x)/2)
 --R
 --R               a x
@@ -878,7 +878,7 @@ bb:=-1/a*coth((a*x)/2)
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 139
 cc:=aa-bb
 --R
 --R             a x                                 a x
@@ -889,7 +889,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 139
 cothrule:=rule(coth(x) == cosh(x)/sinh(x))
 --R
 --R                   cosh(x)
@@ -898,7 +898,7 @@ cothrule:=rule(coth(x) == cosh(x)/sinh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 71
+--S 71 of 139
 dd:=cothrule cc
 --R
 --R             a x                   a x         a x                  a x
@@ -911,7 +911,7 @@ dd:=cothrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 72
+--S 72 of 139
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                              %BD sinh(y + x) - %BD sinh(y - x)
@@ -920,7 +920,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 73
+--S 73 of 139
 ee:=sinhcoshrule dd
 --R
 --R             3a x          a x          a x                   a x
@@ -933,7 +933,7 @@ ee:=sinhcoshrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 74
+--S 74 of 139
 sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R
 --I                              %BE cosh(y + x) - %BE cosh(y - x)
@@ -942,7 +942,7 @@ sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 75
+--S 75 of 139
 ff:=sinhsinhrule ee
 --R
 --R             3a x          a x          a x                   a x
@@ -955,7 +955,7 @@ ff:=sinhsinhrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 76
+--S 76 of 139
 coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R
 --I                               %BF cosh(y + x) + %BF cosh(y - x)
@@ -964,7 +964,7 @@ coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 77     14:576 Schaums and Axiom differ by a constant
+--S 77 of 139     14:576 Schaums and Axiom differ by a constant
 gg:=coshcoshrule ff
 --R
 --R         1
@@ -982,7 +982,7 @@ $$
 <<*>>=
 )clear all
 
---S 78
+--S 78 of 139
 aa:=integrate(x/(cosh(a*x)+1),x)
 --R 
 --R
@@ -996,7 +996,7 @@ aa:=integrate(x/(cosh(a*x)+1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 79
+--S 79 of 139
 bb:=x/a*tanh((a*x)/2)-2/a^2*log(cosh((a*x)/2))
 --R
 --R                    a x              a x
@@ -1008,7 +1008,7 @@ bb:=x/a*tanh((a*x)/2)-2/a^2*log(cosh((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 80
+--S 80 of 139
 cc:=aa-bb
 --R
 --R   (3)
@@ -1029,7 +1029,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 81
+--S 81 of 139
 tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R
 --R                   sinh(x)
@@ -1038,7 +1038,7 @@ tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 82
+--S 82 of 139
 dd:=tanhrule cc
 --R
 --R   (5)
@@ -1066,7 +1066,7 @@ dd:=tanhrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 83
+--S 83 of 139
 coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R
 --I                              %BG cosh(y + x) + %BG cosh(y - x)
@@ -1075,7 +1075,7 @@ coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 84
+--S 84 of 139
 ee:=coshcoshrule dd
 --R
 --R   (7)
@@ -1103,7 +1103,7 @@ ee:=coshcoshrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 85
+--S 85 of 139
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                              %BH sinh(y + x) - %BH sinh(y - x)
@@ -1112,7 +1112,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 86
+--S 86 of 139
 ff:=sinhcoshrule ee
 --R
 --R   (9)
@@ -1140,7 +1140,7 @@ ff:=sinhcoshrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 139
 sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R
 --I                               %BI cosh(y + x) - %BI cosh(y - x)
@@ -1149,7 +1149,7 @@ sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 88
+--S 88 of 139
 gg:=sinhsinhrule ff
 --R
 --R                                                       a x
@@ -1161,7 +1161,7 @@ gg:=sinhsinhrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 89     14:577 Schaums and Axiom differ by a constant
+--S 89 of 139     14:577 Schaums and Axiom differ by a constant
 complexNormalize gg
 --R
 --R           2log(2)
@@ -1180,7 +1180,7 @@ $$
 <<*>>=
 )clear all
 
---S 90
+--S 90 of 139
 aa:=integrate(x/(cosh(a*x)-1),x)
 --R 
 --R
@@ -1194,7 +1194,7 @@ aa:=integrate(x/(cosh(a*x)-1),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 91
+--S 91 of 139
 bb:=-x/a*coth((a*x)/2)+2/a^2*log(sinh((a*x)/2))
 --R
 --R                  a x              a x
@@ -1206,7 +1206,7 @@ bb:=-x/a*coth((a*x)/2)+2/a^2*log(sinh((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 92
+--S 92 of 139
 cc:=aa-bb
 --R
 --R   (3)
@@ -1227,7 +1227,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 93
+--S 93 of 139
 cothrule:=rule(coth(x) == cosh(x)/sinh(x))
 --R
 --R                   cosh(x)
@@ -1236,7 +1236,7 @@ cothrule:=rule(coth(x) == cosh(x)/sinh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 94
+--S 94 of 139
 dd:=cothrule cc
 --R
 --R   (5)
@@ -1264,7 +1264,7 @@ dd:=cothrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 95
+--S 95 of 139
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                              %BJ sinh(y + x) - %BJ sinh(y - x)
@@ -1273,7 +1273,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 96
+--S 96 of 139
 ee:=sinhcoshrule dd
 --R
 --R   (7)
@@ -1301,7 +1301,7 @@ ee:=sinhcoshrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 97
+--S 97 of 139
 sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R
 --I                              %BK cosh(y + x) - %BK cosh(y - x)
@@ -1310,7 +1310,7 @@ sinhsinhrule:=rule(sinh(x)*sinh(y)==1/2*(cosh(x+y)-cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 98
+--S 98 of 139
 ff:=sinhsinhrule ee
 --R
 --R   (9)
@@ -1338,7 +1338,7 @@ ff:=sinhsinhrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 99
+--S 99 of 139
 coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R
 --I                               %BL cosh(y + x) + %BL cosh(y - x)
@@ -1347,7 +1347,7 @@ coshcoshrule:=rule(cosh(x)*cosh(y)==1/2*(cosh(x+y)+cosh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 100
+--S 100 of 139
 gg:=coshcoshrule ff
 --R
 --R                                                     a x
@@ -1359,7 +1359,7 @@ gg:=coshcoshrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 101    14:578 Schaums and Axiom differ by a constant
+--S 101 of 139    14:578 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         2log(2)
@@ -1378,7 +1378,7 @@ $$
 <<*>>=
 )clear all
 
---S 102
+--S 102 of 139
 aa:=integrate(1/(cosh(a*x)+1)^2,x)
 --R 
 --R
@@ -1396,7 +1396,7 @@ aa:=integrate(1/(cosh(a*x)+1)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 103
+--S 103 of 139
 bb:=1/(2*a)*tanh((a*x)/2)-1/(6*a)*tanh((a*x)/2)^3
 --R
 --R               a x 3         a x
@@ -1407,7 +1407,7 @@ bb:=1/(2*a)*tanh((a*x)/2)-1/(6*a)*tanh((a*x)/2)^3
 --R                                                     Type: Expression Integer
 --E
 
---S 104    14:579 Axiom cannot compute this integral
+--S 104 of 139    14:579 Axiom cannot compute this integral
 cc:=aa-bb
 --R
 --R   (3)
@@ -1458,7 +1458,7 @@ $$
 <<*>>=
 )clear all
 
---S 105
+--S 105 of 139
 aa:=integrate(1/(cosh(a*x)-1)^2,x)
 --R 
 --R
@@ -1476,7 +1476,7 @@ aa:=integrate(1/(cosh(a*x)-1)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 106
+--S 106 of 139
 bb:=1/(2*a)*coth((a*x)/2)-1/(6*a)*coth((a*x)/2)^3
 --R
 --R               a x 3         a x
@@ -1487,7 +1487,7 @@ bb:=1/(2*a)*coth((a*x)/2)-1/(6*a)*coth((a*x)/2)^3
 --R                                                     Type: Expression Integer
 --E
 
---S 107    14:580 Axiom cannot simplify this expression
+--S 107 of 139    14:580 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -1546,7 +1546,7 @@ $$
 <<*>>=
 )clear all
 
---S 108
+--S 108 of 139
 aa:=integrate(1/(p+q*cosh(a*x)),x)
 --R 
 --R
@@ -1588,7 +1588,7 @@ aa:=integrate(1/(p+q*cosh(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 109
+--S 109 of 139
 bb1:=2/(a*sqrt(q^2-p^2))*atan((q*%e^(a*x)+p)/sqrt(q^2-p^2))
 --R
 --R                  a x
@@ -1604,7 +1604,7 @@ bb1:=2/(a*sqrt(q^2-p^2))*atan((q*%e^(a*x)+p)/sqrt(q^2-p^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 110
+--S 110 of 139
 bb2:=1/(a*sqrt(p^2-q^2))*log((q*%e^(a*x)+p-sqrt(p^2-q^2))/(q*%e^(a*x)+p+sqrt(p^2-q^2)))
 --R
 --R               +---------+
@@ -1621,7 +1621,7 @@ bb2:=1/(a*sqrt(p^2-q^2))*log((q*%e^(a*x)+p-sqrt(p^2-q^2))/(q*%e^(a*x)+p+sqrt(p^2
 --R                                                     Type: Expression Integer
 --E
 
---S 111
+--S 111 of 139
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -1661,7 +1661,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 112
+--S 112 of 139
 cc2:=aa.2-bb1
 --R
 --R                                              +-------+
@@ -1678,7 +1678,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 113
+--S 113 of 139
 cc3:=aa.1-bb2
 --R
 --R   (6)
@@ -1715,7 +1715,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 114    14:581 Axiom cannot simplify this expression
+--S 114 of 139    14:581 Axiom cannot simplify this expression
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -1751,7 +1751,7 @@ $$
 <<*>>=
 )clear all
 
---S 115
+--S 115 of 139
 aa:=integrate(1/(p+q*cosh(a*x))^2,x)
 --R 
 --R
@@ -1833,7 +1833,7 @@ aa:=integrate(1/(p+q*cosh(a*x))^2,x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 116
+--S 116 of 139
 t1:=integrate(1/(p+q*cosh(a*x)),x)
 --R
 --R   (2)
@@ -1874,7 +1874,7 @@ t1:=integrate(1/(p+q*cosh(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 117
+--S 117 of 139
 bb1:=(q*sinh(a*x))/(a*(q^2-p^2)*(p+q*cosh(a*x)))-p/(q^2-p^2)*t1.1
 --R
 --R   (3)
@@ -1910,7 +1910,7 @@ bb1:=(q*sinh(a*x))/(a*(q^2-p^2)*(p+q*cosh(a*x)))-p/(q^2-p^2)*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 118
+--S 118 of 139
 bb2:=(q*sinh(a*x))/(a*(q^2-p^2)*(p+q*cosh(a*x)))-p/(q^2-p^2)*t1.2
 --R
 --R   (4)
@@ -1931,7 +1931,7 @@ bb2:=(q*sinh(a*x))/(a*(q^2-p^2)*(p+q*cosh(a*x)))-p/(q^2-p^2)*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 119
+--S 119 of 139
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -2027,7 +2027,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 120
+--S 120 of 139
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -2115,7 +2115,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 121
+--S 121 of 139
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -2203,7 +2203,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 122    14:582 Axiom cannot simplify this expression
+--S 122 of 139    14:582 Axiom cannot simplify this expression
 cc4:=aa.2-bb2
 --R
 --R   (8)
@@ -2253,7 +2253,7 @@ $$
 <<*>>=
 )clear all
 
---S 123
+--S 123 of 139
 aa:=integrate(1/(p^2-q^2*cosh(a*x)^2),x)
 --R 
 --R
@@ -2321,7 +2321,7 @@ aa:=integrate(1/(p^2-q^2*cosh(a*x)^2),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 124
+--S 124 of 139
 bb1:=1/(2*a*p*sqrt(p^2-q^2))*log((p*tanh(a*x)+sqrt(p^2-q^2))/(p*tanh(a*x)-sqrt(p^2-q^2)))
 --R
 --R               +---------+
@@ -2338,7 +2338,7 @@ bb1:=1/(2*a*p*sqrt(p^2-q^2))*log((p*tanh(a*x)+sqrt(p^2-q^2))/(p*tanh(a*x)-sqrt(p
 --R                                                     Type: Expression Integer
 --E
 
---S 125
+--S 125 of 139
 bb2:=-1/(a*p*sqrt(q^2-p^2))*atan((p*tanh(a*x))/sqrt(q^2-p^2))
 --R
 --R               p tanh(a x)
@@ -2353,7 +2353,7 @@ bb2:=-1/(a*p*sqrt(q^2-p^2))*atan((p*tanh(a*x))/sqrt(q^2-p^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 126
+--S 126 of 139
 cc1:=aa.1-bb1
 --R
 --R   (4)
@@ -2406,7 +2406,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 127
+--S 127 of 139
 cc2:=aa.2-bb1
 --R
 --R   (5)
@@ -2443,7 +2443,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 128
+--S 128 of 139
 cc3:=aa.1-bb2
 --R
 --R   (6)
@@ -2502,7 +2502,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 129    14:583 Axiom cannot simplify this expression
+--S 129 of 139    14:583 Axiom cannot simplify this expression
 cc4:=aa.2-bb2
 --R
 --R   (7)
@@ -2552,7 +2552,7 @@ $$
 <<*>>=
 )clear all
 
---S 130
+--S 130 of 139
 aa:=integrate(1/(p^2+q^2*cosh(a*x)^2),x)
 --R 
 --R
@@ -2598,7 +2598,7 @@ aa:=integrate(1/(p^2+q^2*cosh(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 131
+--S 131 of 139
 bb1:=1/(2*a*p*sqrt(p^2+q^2))*log((p*tanh(a*x)+sqrt(p^2+q^2))/(p*tanh(a*x)-sqrt(p^2+q^2)))
 --R
 --R               +-------+
@@ -2615,7 +2615,7 @@ bb1:=1/(2*a*p*sqrt(p^2+q^2))*log((p*tanh(a*x)+sqrt(p^2+q^2))/(p*tanh(a*x)-sqrt(p
 --R                                                     Type: Expression Integer
 --E
 
---S 132
+--S 132 of 139
 bb2:=1/(a*p*sqrt(p^2+q^2))*atan((p*tanh(a*x))/sqrt(p^2+q^2))
 --R
 --R             p tanh(a x)
@@ -2630,7 +2630,7 @@ bb2:=1/(a*p*sqrt(p^2+q^2))*atan((p*tanh(a*x))/sqrt(p^2+q^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 133
+--S 133 of 139
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -2683,7 +2683,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 134    14:584 Axiom cannot simplify this expression
+--S 134 of 139    14:584 Axiom cannot simplify this expression
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -2743,7 +2743,7 @@ $$
 <<*>>=
 )clear all
 
---S 135    14:585 Axiom cannot compute this integral
+--S 135 of 139    14:585 Axiom cannot compute this integral
 aa:=integrate(x^m*cosh(a*x),x)
 --R 
 --R
@@ -2763,7 +2763,7 @@ $$
 <<*>>=
 )clear all
 
---S 136    14:586 Axiom cannot compute this integral
+--S 136 of 139    14:586 Axiom cannot compute this integral
 aa:=integrate(cosh(a*x)^n,x)
 --R 
 --R
@@ -2784,7 +2784,7 @@ $$
 <<*>>=
 )clear all
 
---S 137    14:587 Axiom cannot compute this integral
+--S 137 of 139    14:587 Axiom cannot compute this integral
 aa:=integrate(cosh(a*x)/x^n,x)
 --R 
 --R
@@ -2806,7 +2806,7 @@ $$
 <<*>>=
 )clear all
 
---S 138    14:588 Axiom cannot compute this integral
+--S 138 of 139    14:588 Axiom cannot compute this integral
 aa:=integrate(1/cosh(a*x)^n,x)
 --R 
 --R
@@ -2829,7 +2829,7 @@ $$
 <<*>>=
 )clear all
 
---S 139    14:589 Axiom cannot compute this integral
+--S 139 of 139    14:589 Axiom cannot compute this integral
 aa:=integrate(1/cosh(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum29.input.pamphlet b/src/input/schaum29.input.pamphlet
index 9c79630..559e612 100644
--- a/src/input/schaum29.input.pamphlet
+++ b/src/input/schaum29.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 81
 aa:=integrate(sinh(a*x)*cosh(a*x),x)
 --R 
 --R
@@ -29,7 +29,7 @@ aa:=integrate(sinh(a*x)*cosh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 81
 bb:=sinh(a*x)^2/(2*a)
 --R
 --R                 2
@@ -39,7 +39,7 @@ bb:=sinh(a*x)^2/(2*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 81
 cc:=aa-bb
 --R
 --R                   2            2
@@ -49,7 +49,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 81
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -58,7 +58,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 5
+--S 5 of 81
 dd:=sinhsqrrule cc
 --R
 --R                                 2
@@ -68,7 +68,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 81
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -77,7 +77,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 7      14:590 Schaums and Axiom differ by a constant
+--S 7 of 81      14:590 Schaums and Axiom differ by a constant
 ee:=coshsqrrule dd
 --R
 --R         1
@@ -95,7 +95,7 @@ $$
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 81
 aa:=integrate(sinh(p*x)*cosh(q*x),x)
 --R 
 --R
@@ -106,7 +106,7 @@ aa:=integrate(sinh(p*x)*cosh(q*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 81
 bb:=(cosh(p+q)*x)/(2*(p+q))+(cosh(p-q)*x)/(2*(p-q))
 --R
 --R        (q - p)x cosh(q + p) + (- q - p)x cosh(q - p)
@@ -116,7 +116,7 @@ bb:=(cosh(p+q)*x)/(2*(p+q))+(cosh(p-q)*x)/(2*(p-q))
 --R                                                     Type: Expression Integer
 --E
 
---S 10     14:591 Axiom cannot simplify this expression
+--S 10 of 81     14:591 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -144,7 +144,7 @@ $$
 <<*>>=
 )clear all
 
---S 11
+--S 11 of 81
 aa:=integrate(sinh(a*x)^n*cosh(a*x),x)
 --R 
 --R
@@ -155,7 +155,7 @@ aa:=integrate(sinh(a*x)^n*cosh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 12
+--S 12 of 81
 bb:=sinh(a*x)/((n+1)*a)
 --R
 --R        sinh(a x)
@@ -164,7 +164,7 @@ bb:=sinh(a*x)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 13     14:592 Axiom cannot simplify this expression
+--S 13 of 81     14:592 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -187,7 +187,7 @@ $$
 <<*>>=
 )clear all
 
---S 14
+--S 14 of 81
 aa:=integrate(cosh(a*x)^n*sinh(a*x),x)
 --R 
 --R
@@ -198,7 +198,7 @@ aa:=integrate(cosh(a*x)^n*sinh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 15
+--S 15 of 81
 bb:=cosh(a*x)^(n+1)/((n+1)*a)
 --R
 --R                 n + 1
@@ -208,7 +208,7 @@ bb:=cosh(a*x)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 16     14:593 Axiom cannot simplify this expression
+--S 16 of 81     14:593 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -231,7 +231,7 @@ $$
 <<*>>=
 )clear all
 
---S 17
+--S 17 of 81
 aa:=integrate(sinh(a*x)^2*cosh(a*x)^2,x)
 --R 
 --R
@@ -242,7 +242,7 @@ aa:=integrate(sinh(a*x)^2*cosh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 18
+--S 18 of 81
 bb:=sinh(4*a*x)/(32*a)-x/8
 --R
 --R        sinh(4a x) - 4a x
@@ -251,7 +251,7 @@ bb:=sinh(4*a*x)/(32*a)-x/8
 --R                                                     Type: Expression Integer
 --E
 
---S 19     14:594 Schaums and Axiom agree
+--S 19 of 81     14:594 Schaums and Axiom agree
 cc:=complexNormalize(aa-bb)
 --R
 --R   (3)  0
@@ -267,7 +267,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 81
 aa:=integrate(1/(sinh(a*x)*cosh(a*x)),x)
 --R 
 --R
@@ -279,7 +279,7 @@ aa:=integrate(1/(sinh(a*x)*cosh(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 21
+--S 21 of 81
 bb:=1/a*log(tanh(a*x))
 --R
 --R        log(tanh(a x))
@@ -288,7 +288,7 @@ bb:=1/a*log(tanh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 81
 cc:=aa-bb
 --R
 --R   (3)
@@ -304,7 +304,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 81
 dd:=expandLog cc
 --R
 --R        - log(tanh(a x)) + log(sinh(a x)) - log(cosh(a x))
@@ -313,7 +313,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 81
 tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R
 --R                   sinh(x)
@@ -322,7 +322,7 @@ tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 25
+--S 25 of 81
 ee:=tanhrule dd
 --R
 --R                             sinh(a x)
@@ -333,7 +333,7 @@ ee:=tanhrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 26     14:595 Schaums and Axiom agree
+--S 26 of 81     14:595 Schaums and Axiom agree
 ff:=expandLog ee
 --R
 --R   (7)  0
@@ -349,7 +349,7 @@ $$
 <<*>>=
 )clear all
 
---S 27
+--S 27 of 81
 aa:=integrate(1/(sinh(a*x)^2*cosh(a*x)),x)
 --R
 --R   (1)
@@ -365,7 +365,7 @@ aa:=integrate(1/(sinh(a*x)^2*cosh(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 28
+--S 28 of 81
 bb:=-1/a*atan(sinh(a*x)-csch(a*x))/a
 --R
 --R          atan(sinh(a x) - csch(a x))
@@ -375,7 +375,7 @@ bb:=-1/a*atan(sinh(a*x)-csch(a*x))/a
 --R                                                     Type: Expression Integer
 --E
 
---S 29     14:596 Axiom cannot simplify this expression
+--S 29 of 81     14:596 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -405,7 +405,7 @@ $$
 <<*>>=
 )clear all
 
---S 30
+--S 30 of 81
 aa:=integrate(1/(sinh(a*x)*cosh(a*x)^2),x)
 --R 
 --R
@@ -427,7 +427,7 @@ aa:=integrate(1/(sinh(a*x)*cosh(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 31
+--S 31 of 81
 bb:=sech(a*x)/a+1/a*log(tanh((a*x)/2))
 --R
 --R                 a x
@@ -438,7 +438,7 @@ bb:=sech(a*x)/a+1/a*log(tanh((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 81
 cc:=aa-bb
 --R
 --R   (3)
@@ -467,7 +467,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 81
 sechrule:=rule(sech(x) == 1/cosh(x))
 --R
 --R                      1
@@ -476,7 +476,7 @@ sechrule:=rule(sech(x) == 1/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 34
+--S 34 of 81
 dd:=sechrule cc
 --R
 --R   (5)
@@ -505,7 +505,7 @@ dd:=sechrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 81
 tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R
 --R                   sinh(x)
@@ -514,7 +514,7 @@ tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 36
+--S 36 of 81
 ee:=tanhrule dd
 --R
 --R   (7)
@@ -547,7 +547,7 @@ ee:=tanhrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 81
 coshcuberule:=rule(cosh(x)^3 == 1/4*cosh(3*x)-3/4*cosh(x))
 --R
 --R               3    cosh(3x) - 3cosh(x)
@@ -556,7 +556,7 @@ coshcuberule:=rule(cosh(x)^3 == 1/4*cosh(3*x)-3/4*cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 38
+--S 38 of 81
 ff:=coshcuberule ee
 --R
 --R   (9)
@@ -595,7 +595,7 @@ ff:=coshcuberule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 39
+--S 39 of 81
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R                2    cosh(2x) + 1
@@ -604,7 +604,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 40
+--S 40 of 81
 gg:=coshsqrrule ff
 --R
 --R   (11)
@@ -645,7 +645,7 @@ gg:=coshsqrrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 81
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R                2    cosh(2x) - 1
@@ -654,7 +654,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 42
+--S 42 of 81
 hh:=sinhsqrrule gg
 --R
 --R   (13)
@@ -672,7 +672,7 @@ hh:=sinhsqrrule gg
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 81
 ii:=expandLog hh
 --R
 --R   (14)
@@ -686,7 +686,7 @@ ii:=expandLog hh
 --R                                                     Type: Expression Integer
 --E
 
---S 44     14:597 Schaums and Axiom agree
+--S 44 of 81     14:597 Schaums and Axiom agree
 jj:=complexNormalize ii
 --R
 --R   (15)  0
@@ -702,7 +702,7 @@ $$
 <<*>>=
 )clear all
 
---S 45
+--S 45 of 81
 aa:=integrate(1/(sinh(a*x)^2*cosh(a*x)^2),x)
 --R 
 --R
@@ -718,7 +718,7 @@ aa:=integrate(1/(sinh(a*x)^2*cosh(a*x)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 46
+--S 46 of 81
 bb:=-(2*coth(2*a*x))/a
 --R
 --R          2coth(2a x)
@@ -727,7 +727,7 @@ bb:=-(2*coth(2*a*x))/a
 --R                                                     Type: Expression Integer
 --E
 
---S 47     14:598 Axiom cannot simplify this expression
+--S 47 of 81     14:598 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -757,7 +757,7 @@ $$
 <<*>>=
 )clear all
 
---S 48
+--S 48 of 81
 aa:=integrate(sinh(a*x)^2/cosh(a*x),x)
 --R 
 --R
@@ -772,7 +772,7 @@ aa:=integrate(sinh(a*x)^2/cosh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 49
+--S 49 of 81
 bb:=sinh(a*x)/a-1/a*atan(sinh(a*x))
 --R
 --R        - atan(sinh(a x)) + sinh(a x)
@@ -781,7 +781,7 @@ bb:=sinh(a*x)/a-1/a*atan(sinh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 50     14:599 Axiom cannot simplify this expression
+--S 50 of 81     14:599 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -803,7 +803,7 @@ $$
 <<*>>=
 )clear all
 
---S 51
+--S 51 of 81
 aa:=integrate(cosh(a*x)^2/sinh(a*x),x)
 --R 
 --R
@@ -820,7 +820,7 @@ aa:=integrate(cosh(a*x)^2/sinh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 52
+--S 52 of 81
 bb:=cosh(a*x)/a+1/a*log(tanh((a*x)/2))
 --R
 --R                 a x
@@ -831,7 +831,7 @@ bb:=cosh(a*x)/a+1/a*log(tanh((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 53     14:600 Axiom cannot simplify this expression
+--S 53 of 81     14:600 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -861,7 +861,7 @@ $$
 <<*>>=
 )clear all
 
---S 54
+--S 54 of 81
 aa:=integrate(1/(cosh(a*x)*(1+sinh(a*x))),x)
 --R 
 --R
@@ -876,7 +876,7 @@ aa:=integrate(1/(cosh(a*x)*(1+sinh(a*x))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 55
+--S 55 of 81
 bb:=1/(2*a)*log((1+sinh(a*x))/cosh(a*x))+1/a*atan(%e^(a*x))
 --R
 --R            sinh(a x) + 1            a x
@@ -887,7 +887,7 @@ bb:=1/(2*a)*log((1+sinh(a*x))/cosh(a*x))+1/a*atan(%e^(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 56
+--S 56 of 81
 cc:=aa-bb
 --R
 --R   (3)
@@ -903,7 +903,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 81
 dd:=expandLog cc
 --R
 --R                                             a x
@@ -913,7 +913,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 58
+--S 58 of 81
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -924,7 +924,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 59
+--S 59 of 81
 ee:=atanrule dd
 --R
 --R                   a x
@@ -937,7 +937,7 @@ ee:=atanrule dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 60
+--S 60 of 81
 ff:=expandLog ee
 --R
 --R   (7)
@@ -950,7 +950,7 @@ ff:=expandLog ee
 --R                                             Type: Expression Complex Integer
 --E
 
---S 61     14:601 Schaums and Axiom agree
+--S 61 of 81     14:601 Schaums and Axiom agree
 gg:=complexNormalize ff
 --R
 --R   (8)  0
@@ -966,7 +966,7 @@ $$
 <<*>>=
 )clear all
 
---S 62
+--S 62 of 81
 aa:=integrate(1/(sinh(a*x)*(cosh(a*x)+1)),x)
 --R 
 --R
@@ -992,7 +992,7 @@ aa:=integrate(1/(sinh(a*x)*(cosh(a*x)+1)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 63
+--S 63 of 81
 bb:=1/(2*a)*log(tanh((a*x)/2))+1/(2*a*(cosh(a*x)+1))
 --R
 --R                                a x
@@ -1003,7 +1003,7 @@ bb:=1/(2*a)*log(tanh((a*x)/2))+1/(2*a*(cosh(a*x)+1))
 --R                                                     Type: Expression Integer
 --E
 
---S 64
+--S 64 of 81
 cc:=aa-bb
 --R
 --R   (3)
@@ -1051,7 +1051,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 65
+--S 65 of 81
 coshcuberule:=rule(cosh(x)^3 == 1/4*cosh(3*x)-3/4*cosh(x))
 --R
 --R               3    cosh(3x) - 3cosh(x)
@@ -1060,7 +1060,7 @@ coshcuberule:=rule(cosh(x)^3 == 1/4*cosh(3*x)-3/4*cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 66
+--S 66 of 81
 dd:=coshcuberule cc
 --R
 --R   (5)
@@ -1110,7 +1110,7 @@ dd:=coshcuberule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 67
+--S 67 of 81
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -1119,7 +1119,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 68
+--S 68 of 81
 ee:=sinhsqrrule dd
 --R
 --R   (7)
@@ -1160,7 +1160,7 @@ ee:=sinhsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 81
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -1169,7 +1169,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 70
+--S 70 of 81
 ff:=coshsqrrule ee
 --R
 --R   (9)
@@ -1183,7 +1183,7 @@ ff:=coshsqrrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 71     14:602 Schaums and Axiom agree
+--S 71 of 81     14:602 Schaums and Axiom agree
 gg:=complexNormalize ff
 --R
 --R   (10)  0
@@ -1199,7 +1199,7 @@ $$
 <<*>>=
 )clear all
 
---S 72
+--S 72 of 81
 aa:=integrate(1/(sinh(a*x)*(cosh(a*x)-1)),x)
 --R 
 --R
@@ -1225,7 +1225,7 @@ aa:=integrate(1/(sinh(a*x)*(cosh(a*x)-1)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 73
+--S 73 of 81
 bb:=-1/(2*a)*log(tanh((a*x)/2))-1/(2*a*(cosh(a*x)-1))
 --R
 --R                                  a x
@@ -1236,7 +1236,7 @@ bb:=-1/(2*a)*log(tanh((a*x)/2))-1/(2*a*(cosh(a*x)-1))
 --R                                                     Type: Expression Integer
 --E
 
---S 74
+--S 74 of 81
 cc:=aa-bb
 --R
 --R   (3)
@@ -1282,7 +1282,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 75
+--S 75 of 81
 coshcuberule:=rule(cosh(x)^3 == 1/4*cosh(3*x)-3/4*cosh(x))
 --R
 --R               3    cosh(3x) - 3cosh(x)
@@ -1291,7 +1291,7 @@ coshcuberule:=rule(cosh(x)^3 == 1/4*cosh(3*x)-3/4*cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 76
+--S 76 of 81
 dd:=coshcuberule cc
 --R
 --R   (5)
@@ -1338,7 +1338,7 @@ dd:=coshcuberule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 77
+--S 77 of 81
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -1347,7 +1347,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 78
+--S 78 of 81
 ee:=sinhsqrrule dd
 --R
 --R   (7)
@@ -1388,7 +1388,7 @@ ee:=sinhsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 79
+--S 79 of 81
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -1397,7 +1397,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 80
+--S 80 of 81
 ff:=coshsqrrule ee
 --R
 --R   (9)
@@ -1411,7 +1411,7 @@ ff:=coshsqrrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 81     14:603 Schaums and Axiom agree
+--S 81 of 81     14:603 Schaums and Axiom agree
 gg:=complexNormalize ff
 --R
 --R   (10)  0
diff --git a/src/input/schaum3.input.pamphlet b/src/input/schaum3.input.pamphlet
index bed98c8..6ad4c38 100644
--- a/src/input/schaum3.input.pamphlet
+++ b/src/input/schaum3.input.pamphlet
@@ -16,7 +16,7 @@ $$\int{\frac{1}{(ax+b)(px+q)}}=
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 28
 aa:=integrate(1/((a*x+b)*(p*x+q)),x)
 --R 
 --R
@@ -26,7 +26,7 @@ aa:=integrate(1/((a*x+b)*(p*x+q)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 28
 bb:=1/(b*p-a*q)*log((p*x+q)/(a*x+b))
 --R 
 --R
@@ -38,7 +38,7 @@ bb:=1/(b*p-a*q)*log((p*x+q)/(a*x+b))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 28
 cc:=aa-bb
 --R 
 --R
@@ -50,7 +50,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 28
 logdiv:=rule(log(a)-log(b) == log(a/b))
 --R
 --R                                      a
@@ -59,7 +59,7 @@ logdiv:=rule(log(a)-log(b) == log(a/b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 5
+--S 5 of 28
 dd:=logdiv cc
 --R
 --R                              1
@@ -70,14 +70,14 @@ dd:=logdiv cc
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 28
 logmul:=rule(log(a)+log(b) == log(a*b))
 --R
 --I   (6)  log(b) + log(a) + %J == log(a b) + %J
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 7      14:105 Schaums and Axiom agree
+--S 7 of 28      14:105 Schaums and Axiom agree
 ee:=logmul dd
 --R
 --R   (7)  0
@@ -92,7 +92,7 @@ $$\int{\frac{x}{(ax+b)(px+q)}}=
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 28
 aa:=integrate(x/((a*x+b)*(p*x+q)),x)
 --R 
 --R
@@ -103,7 +103,7 @@ aa:=integrate(x/((a*x+b)*(p*x+q)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 28
 bb:=1/(b*p-a*q)*(b/a*log(a*x+b)-q/p*log(p*x+q))
 --R 
 --R
@@ -114,7 +114,7 @@ bb:=1/(b*p-a*q)*(b/a*log(a*x+b)-q/p*log(p*x+q))
 --R                                                     Type: Expression Integer
 --E
 
---S 10     14:106 Schaums and Axiom agree
+--S 10 of 28     14:106 Schaums and Axiom agree
 cc:=aa-bb
 --R 
 --R
@@ -131,7 +131,7 @@ $$\int{\frac{1}{(ax+b)^2(px+q)}}=
 <<*>>=
 )clear all
 
---S 11
+--S 11 of 28
 aa:=integrate(1/((a*x+b)^2*(p*x+q)),x)
 --R 
 --R
@@ -142,7 +142,7 @@ aa:=integrate(1/((a*x+b)^2*(p*x+q)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 12
+--S 12 of 28
 bb:=1/(b*p-a*q)*(1/(a*x+b)+p/(b*p-a*q)*log((p*x+q)/(a*x+b)))
 --R 
 --R
@@ -155,7 +155,7 @@ bb:=1/(b*p-a*q)*(1/(a*x+b)+p/(b*p-a*q)*log((p*x+q)/(a*x+b)))
 --R                                                     Type: Expression Integer
 --E
 
---S 13
+--S 13 of 28
 cc:=aa-bb
 --R 
 --R
@@ -168,7 +168,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 14
+--S 14 of 28
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -177,7 +177,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 15     14:107 Schaums and Axiom agree
+--S 15 of 28     14:107 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -195,7 +195,7 @@ $$\int{\frac{x}{(ax+b)^2(px+q)}}=
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 28
 aa:=integrate(x/((a*x+b)^2*(p*x+q)),x)
 --R 
 --R
@@ -208,7 +208,7 @@ aa:=integrate(x/((a*x+b)^2*(p*x+q)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 17
+--S 17 of 28
 bb:=1/(b*p-a*q)*(q/(b*p-a*q)*log((a*x+b)/(p*x+q))-b/(a*(a*x+b)))
 --R 
 --R
@@ -221,7 +221,7 @@ bb:=1/(b*p-a*q)*(q/(b*p-a*q)*log((a*x+b)/(p*x+q))-b/(a*(a*x+b)))
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 28
 cc:=aa-bb
 --R 
 --R
@@ -234,7 +234,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 28
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -243,7 +243,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 20     14:108 Schaums and Axiom agree
+--S 20 of 28     14:108 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -259,7 +259,7 @@ $$\frac{b^2}{(bp-aq)a^2(ax+b)}+\frac{1}{(bp-aq)^2}
 <<*>>=
 )clear all
 
---S 21
+--S 21 of 28
 aa:=integrate(x^2/((a*x+b)^2*(p*x+q)),x)
 --R 
 --R
@@ -275,7 +275,7 @@ aa:=integrate(x^2/((a*x+b)^2*(p*x+q)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 22
+--S 22 of 28
 bb:=b^2/((b*p-a*q)*a^2*(a*x+b))+_
      1/(b*p-a*q)^2*(q^2/p*log(p*x+q)+((b*(b*p-2*a*q))/a^2)*log(a*x+b))
 --R 
@@ -292,7 +292,7 @@ bb:=b^2/((b*p-a*q)*a^2*(a*x+b))+_
 --R                                                     Type: Expression Integer
 --E
 
---S 23     14:109 Schaums and Axiom agree
+--S 23 of 28     14:109 Schaums and Axiom agree
 cc:=aa-bb
 --R 
 --R
@@ -309,7 +309,7 @@ a(m+n-2)~\int{\frac{1}{(ax+b)^m(px+q)^{n-1}}}\right\}$$
 <<*>>=
 )clear all
 
---S 24     14:110 Axiom cannot do this integral
+--S 24 of 28     14:110 Axiom cannot do this integral
 aa:=integrate(1/((a*x+b)^m*(p*x+q)^n),x)
 --R 
 --R
@@ -327,7 +327,7 @@ $$\int{\frac{ax+b}{px+q}}=\frac{ax}{p}+\frac{bp-aq}{p^2}~\ln(px+q)$$
 <<*>>=
 )clear all
 
---S 25
+--S 25 of 28
 aa:=integrate((a*x+b)/(p*x+q),x)
 --R 
 --R
@@ -338,7 +338,7 @@ aa:=integrate((a*x+b)/(p*x+q),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 26
+--S 26 of 28
 bb:=(a*x)/p+(b*p-a*q)/p^2*log(p*x+q)
 --R 
 --R
@@ -349,7 +349,7 @@ bb:=(a*x)/p+(b*p-a*q)/p^2*log(p*x+q)
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:111 Schaums and Axiom agree
+--S 27 of 28     14:111 Schaums and Axiom agree
 cc:=aa-bb
 --R 
 --R
@@ -373,7 +373,7 @@ $$\int{\frac{(ax+b)^m}{(px+q)^n}}=\left\{
 <<*>>=
 )clear all
 
---S 28     14:112 Axiom cannot do this integral
+--S 28 of 28     14:112 Axiom cannot do this integral
 aa:=integrate((a*x+b)^m/(p*x+q)^n,x)
 --R 
 --R
diff --git a/src/input/schaum30.input.pamphlet b/src/input/schaum30.input.pamphlet
index 5df48bc..5f5a26b 100644
--- a/src/input/schaum30.input.pamphlet
+++ b/src/input/schaum30.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 46
 aa:=integrate(tanh(a*x),x)
 --R 
 --R
@@ -30,7 +30,7 @@ aa:=integrate(tanh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 46
 bb:=1/a*log(cosh(a*x))
 --R
 --R        log(cosh(a x))
@@ -39,7 +39,7 @@ bb:=1/a*log(cosh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 46
 cc:=aa-bb
 --R
 --R                                       2cosh(a x)
@@ -50,7 +50,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 46
 dd:=expandLog cc
 --R
 --R        - log(sinh(a x) - cosh(a x)) + log(- 2) - a x
@@ -59,7 +59,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 5      14:604 Schaums and Axiom differ by a constant
+--S 5 of 46      14:604 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        - log(- 1) + log(- 2)
@@ -77,7 +77,7 @@ $$
 <<*>>=
 )clear all
 
---S 6
+--S 6 of 46
 aa:=integrate(tanh(a*x)^2,x)
 --R 
 --R
@@ -87,7 +87,7 @@ aa:=integrate(tanh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 7
+--S 7 of 46
 bb:=x-tanh(a*x)/a
 --R
 --R        - tanh(a x) + a x
@@ -96,7 +96,7 @@ bb:=x-tanh(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 46
 cc:=aa-bb
 --R
 --R        cosh(a x)tanh(a x) - sinh(a x) + cosh(a x)
@@ -105,7 +105,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 46
 tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R
 --R                   sinh(x)
@@ -114,7 +114,7 @@ tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 10     14:605 Schaums and Axiom differ by a constant
+--S 10 of 46     14:605 Schaums and Axiom differ by a constant
 dd:=tanhrule cc
 --R
 --R        1
@@ -132,7 +132,7 @@ $$
 <<*>>=
 )clear all
 
---S 11
+--S 11 of 46
 aa:=integrate(tanh(a*x)^3,x)
 --R 
 --R
@@ -167,7 +167,7 @@ aa:=integrate(tanh(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 12
+--S 12 of 46
 bb:=1/a*log(cosh(a*x))-tanh(a*x)^2/(2*a)
 --R
 --R                                   2
@@ -177,7 +177,7 @@ bb:=1/a*log(cosh(a*x))-tanh(a*x)^2/(2*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 13     14:606 Axiom cannot simplify this expression
+--S 13 of 46     14:606 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -239,7 +239,7 @@ $$
 <<*>>=
 )clear all
 
---S 14
+--S 14 of 46
 aa:=integrate(tanh(a*x)^n*sech(a*x)^2,x)
 --R 
 --R
@@ -251,7 +251,7 @@ aa:=integrate(tanh(a*x)^n*sech(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 15
+--S 15 of 46
 bb:=tanh(a*x)^(n+1)/((n+1)*a)
 --R
 --R                 n + 1
@@ -261,7 +261,7 @@ bb:=tanh(a*x)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 16     14:607 Axiom cannot simplify this expression
+--S 16 of 46     14:607 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -285,7 +285,7 @@ $$
 <<*>>=
 )clear all
 
---S 17
+--S 17 of 46
 aa:=integrate(sech(a*x)^2/tanh(a*x),x)
 --R 
 --R
@@ -297,7 +297,7 @@ aa:=integrate(sech(a*x)^2/tanh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 18
+--S 18 of 46
 bb:=1/a*log(tanh(a*x))
 --R
 --R        log(tanh(a x))
@@ -306,7 +306,7 @@ bb:=1/a*log(tanh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 46
 cc:=aa-bb
 --R
 --R   (3)
@@ -322,7 +322,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 20
+--S 20 of 46
 tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R
 --R                   sinh(x)
@@ -331,7 +331,7 @@ tanhrule:=rule(tanh(x) == sinh(x)/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 21
+--S 21 of 46
 dd:=tanhrule cc
 --R
 --R   (5)
@@ -347,7 +347,7 @@ dd:=tanhrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 22     14:608 Schaums and Axiom agree
+--S 22 of 46     14:608 Schaums and Axiom agree
 ee:=expandLog dd
 --R
 --R   (6)  0
@@ -363,7 +363,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 46
 aa:=integrate(1/tanh(a*x),x)
 --R 
 --R
@@ -375,7 +375,7 @@ aa:=integrate(1/tanh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 46
 bb:=1/a*log(sinh(a*x))
 --R
 --R        log(sinh(a x))
@@ -384,7 +384,7 @@ bb:=1/a*log(sinh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 46
 cc:=aa-bb
 --R
 --R                                       2sinh(a x)
@@ -395,7 +395,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 46
 dd:=expandLog cc
 --R
 --R        - log(sinh(a x) - cosh(a x)) + log(- 2) - a x
@@ -404,7 +404,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:609 Schaums and Axiom differ by a constant
+--S 27 of 46     14:609 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        - log(- 1) + log(- 2)
@@ -424,7 +424,7 @@ $$
 <<*>>=
 )clear all
 
---S 28     14:610 Axiom cannot compute this integral
+--S 28 of 46     14:610 Axiom cannot compute this integral
 aa:=integrate(x*tanh(a*x),x)
 --R 
 --R
@@ -444,7 +444,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 46
 aa:=integrate(x*tanh(a*x)^2,x)
 --R 
 --R
@@ -467,7 +467,7 @@ aa:=integrate(x*tanh(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 30
+--S 30 of 46
 bb:=x^2/2-(x*tanh(a*x))/a+1/a^2*log(cosh(a*x))
 --R
 --R                                            2 2
@@ -478,7 +478,7 @@ bb:=x^2/2-(x*tanh(a*x))/a+1/a^2*log(cosh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 46
 cc:=aa-bb
 --R
 --R   (3)
@@ -505,7 +505,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 46
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -514,7 +514,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 33
+--S 33 of 46
 dd:=sinhsqrrule cc
 --R
 --R   (5)
@@ -541,7 +541,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 46
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -550,7 +550,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 35
+--S 35 of 46
 ee:=coshsqrrule dd
 --R
 --R   (7)
@@ -569,7 +569,7 @@ ee:=coshsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 46
 ff:=expandLog ee
 --R
 --R   (8)
@@ -586,7 +586,7 @@ ff:=expandLog ee
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 46
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %N sinh(y + x) - %N sinh(y - x)
@@ -595,7 +595,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 38
+--S 38 of 46
 gg:=sinhcoshrule ff
 --R
 --R   (10)
@@ -610,7 +610,7 @@ gg:=sinhcoshrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 39     14:611 Schaums and Axiom differ by a constant
+--S 39 of 46     14:611 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         - log(- 1) + log(- 2)
@@ -630,7 +630,7 @@ $$
 <<*>>=
 )clear all
 
---S 40     14:612 Axiom cannot compute this integral
+--S 40 of 46     14:612 Axiom cannot compute this integral
 aa:=integrate(tanh(a*x)/x,x)
 --R 
 --R
@@ -650,7 +650,7 @@ $$
 <<*>>=
 )clear all
 
---S 41
+--S 41 of 46
 aa:=integrate(1/(p+q*tanh(a*x)),x)
 --R 
 --R
@@ -663,7 +663,7 @@ aa:=integrate(1/(p+q*tanh(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 42
+--S 42 of 46
 bb:=(p*x)/(p^2-q^2)-q/(a*(p^2-q^2))*log(q*sinh(a*x)+p*cosh(a*x))
 --R
 --R        q log(q sinh(a x) + p cosh(a x)) - a p x
@@ -673,7 +673,7 @@ bb:=(p*x)/(p^2-q^2)-q/(a*(p^2-q^2))*log(q*sinh(a*x)+p*cosh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 46
 cc:=aa-bb
 --R
 --R   (3)
@@ -688,7 +688,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 46
 dd:=expandLog cc
 --R
 --R   (4)
@@ -701,7 +701,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 45     14:613 Schaums and Axiom differ by a constant
+--S 45 of 46     14:613 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        q log(2) - 2q log(- 1)
@@ -720,7 +720,7 @@ $$
 <<*>>=
 )clear all
 
---S 46     14:614 Axiom cannot compute this integral
+--S 46 of 46     14:614 Axiom cannot compute this integral
 aa:=integrate(tanh(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum31.input.pamphlet b/src/input/schaum31.input.pamphlet
index 343aa2a..36eb793 100644
--- a/src/input/schaum31.input.pamphlet
+++ b/src/input/schaum31.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 46
 aa:=integrate(coth(a*x),x)
 --R 
 --R
@@ -30,7 +30,7 @@ aa:=integrate(coth(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 46
 bb:=1/a*log(sinh(a*x))
 --R
 --R        log(sinh(a x))
@@ -39,7 +39,7 @@ bb:=1/a*log(sinh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 46
 cc:=aa-bb
 --R
 --R                                       2sinh(a x)
@@ -50,7 +50,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 46
 dd:=expandLog cc
 --R
 --R        - log(sinh(a x) - cosh(a x)) + log(- 2) - a x
@@ -59,7 +59,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 5      14:615 Schaums and Axiom differ by a constant
+--S 5 of 46      14:615 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        - log(- 1) + log(- 2)
@@ -77,7 +77,7 @@ $$
 <<*>>=
 )clear all
 
---S 6
+--S 6 of 46
 aa:=integrate(coth(a*x)^2,x)
 --R 
 --R
@@ -87,7 +87,7 @@ aa:=integrate(coth(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 7
+--S 7 of 46
 bb:=x-coth(a*x)/a
 --R
 --R        - coth(a x) + a x
@@ -96,7 +96,7 @@ bb:=x-coth(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 46
 cc:=aa-bb
 --R
 --R        (coth(a x) + 1)sinh(a x) - cosh(a x)
@@ -105,7 +105,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:616 Schaums and Axiom differ by a constant
+--S 9 of 46      14:616 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R        1
@@ -123,7 +123,7 @@ $$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 46
 aa:=integrate(coth(a*x)^3,x)
 --R 
 --R
@@ -158,7 +158,7 @@ aa:=integrate(coth(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 46
 bb:=1/a*log(sinh(a*x)-coth(a*x)^2)/(2*a)
 --R
 --R                                 2
@@ -169,7 +169,7 @@ bb:=1/a*log(sinh(a*x)-coth(a*x)^2)/(2*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:617 Axiom cannot simplify this expression
+--S 12 of 46     14:617 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -230,7 +230,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 46
 aa:=integrate(coth(a*x)^n*csch(a*x)^2,x)
 --R 
 --R
@@ -242,7 +242,7 @@ aa:=integrate(coth(a*x)^n*csch(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 46
 bb:=-coth(a*x)^(n+1)/((n+1)*a)
 --R
 --R                   n + 1
@@ -252,7 +252,7 @@ bb:=-coth(a*x)^(n+1)/((n+1)*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 46
 cc:=aa-bb
 --R
 --R   (3)
@@ -267,7 +267,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 46
 dd:=expandLog cc
 --R
 --R   (4)
@@ -282,7 +282,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 17     14:618 Schaums and Axiom agree
+--S 17 of 46     14:618 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (5)  0
@@ -298,7 +298,7 @@ $$
 <<*>>=
 )clear all
 
---S 18
+--S 18 of 46
 aa:=integrate(csch(a*x)^2/coth(a*x),x)
 --R 
 --R
@@ -310,7 +310,7 @@ aa:=integrate(csch(a*x)^2/coth(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 19
+--S 19 of 46
 bb:=-1/a*log(coth(a*x))
 --R
 --R          log(coth(a x))
@@ -319,7 +319,7 @@ bb:=-1/a*log(coth(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 20
+--S 20 of 46
 cc:=aa-bb
 --R
 --R   (3)
@@ -331,7 +331,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 21
+--S 21 of 46
 dd:=expandLog cc
 --R
 --R        log(sinh(a x)) + log(coth(a x)) - log(cosh(a x))
@@ -340,7 +340,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 22     14:619 Schaums and Axiom agree
+--S 22 of 46     14:619 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (5)  0
@@ -356,7 +356,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 46
 aa:=integrate(1/coth(a*x),x)
 --R 
 --R
@@ -368,7 +368,7 @@ aa:=integrate(1/coth(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 46
 bb:=1/a*log(cosh(a*x))
 --R
 --R        log(cosh(a x))
@@ -377,7 +377,7 @@ bb:=1/a*log(cosh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 46
 cc:=aa-bb
 --R
 --R                                       2cosh(a x)
@@ -388,7 +388,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 46
 dd:=expandLog cc
 --R
 --R        - log(sinh(a x) - cosh(a x)) + log(- 2) - a x
@@ -397,7 +397,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:620 Schaums and Axiom differ by a constant
+--S 27 of 46     14:620 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        - log(- 1) + log(- 2)
@@ -417,7 +417,7 @@ $$
 <<*>>=
 )clear all
 
---S 28     14:621 Axiom cannot compute this integral
+--S 28 of 46     14:621 Axiom cannot compute this integral
 aa:=integrate(x*coth(a*x),x)
 --R 
 --R
@@ -437,7 +437,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 46
 aa:=integrate(x*coth(a*x)^2,x)
 --R 
 --R
@@ -460,7 +460,7 @@ aa:=integrate(x*coth(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 30
+--S 30 of 46
 bb:=x^2/2-(x*coth(a*x)/a)+1/a^2*log(sinh(a*x))
 --R
 --R                                            2 2
@@ -471,7 +471,7 @@ bb:=x^2/2-(x*coth(a*x)/a)+1/a^2*log(sinh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 46
 cc:=aa-bb
 --R
 --R   (3)
@@ -498,7 +498,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 46
 dd:=expandLog cc
 --R
 --R   (4)
@@ -520,7 +520,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 46
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -529,7 +529,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 34
+--S 34 of 46
 ee:=sinhsqrrule dd
 --R
 --R   (6)
@@ -553,7 +553,7 @@ ee:=sinhsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 46
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -562,7 +562,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 36
+--S 36 of 46
 ff:=coshsqrrule ee
 --R
 --R   (8)
@@ -577,7 +577,7 @@ ff:=coshsqrrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 46
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %L sinh(y + x) - %L sinh(y - x)
@@ -586,7 +586,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 38
+--S 38 of 46
 gg:=sinhcoshrule ff
 --R
 --R   (10)
@@ -601,7 +601,7 @@ gg:=sinhcoshrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 39     14:622 Schaums and Axiom differ by a constant
+--S 39 of 46     14:622 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         - log(- 1) + log(- 2)
@@ -621,7 +621,7 @@ $$
 <<*>>=
 )clear all
 
---S 40     14:623 Axiom cannot compute this integral
+--S 40 of 46     14:623 Axiom cannot compute this integral
 aa:=integrate(coth(a*x)/x,x)
 --R 
 --R
@@ -641,7 +641,7 @@ $$
 <<*>>=
 )clear all
 
---S 41
+--S 41 of 46
 aa:=integrate(1/(p+q*coth(a*x)),x)
 --R 
 --R
@@ -654,7 +654,7 @@ aa:=integrate(1/(p+q*coth(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 42
+--S 42 of 46
 bb:=(p*x)/(p^2-q^2)-q/(a*(p^2-q^2))*log(p*sinh(a*x)+q*cosh(a*x))
 --R
 --R        q log(p sinh(a x) + q cosh(a x)) - a p x
@@ -664,7 +664,7 @@ bb:=(p*x)/(p^2-q^2)-q/(a*(p^2-q^2))*log(p*sinh(a*x)+q*cosh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 46
 cc:=aa-bb
 --R
 --R   (3)
@@ -679,7 +679,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 46
 dd:=expandLog cc
 --R
 --R   (4)
@@ -692,7 +692,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 45     14:624 Schaums and Axiom differ by a constant
+--S 45 of 46     14:624 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        q log(2) - 2q log(- 1)
@@ -711,7 +711,7 @@ $$
 <<*>>=
 )clear all
 
---S 46     14:625 Axiom cannot compute this integral
+--S 46 of 46     14:625 Axiom cannot compute this integral
 aa:=integrate(coth(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum32.input.pamphlet b/src/input/schaum32.input.pamphlet
index e5b2409..d5ce6f4 100644
--- a/src/input/schaum32.input.pamphlet
+++ b/src/input/schaum32.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 52
 aa:=integrate(sech(a*x),x)
 --R 
 --R
@@ -28,7 +28,7 @@ aa:=integrate(sech(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 52
 bb:=2/a*atan(%e^(a*x))
 --R
 --R                a x
@@ -38,7 +38,7 @@ bb:=2/a*atan(%e^(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 52
 cc:=aa-bb
 --R
 --R                                               a x
@@ -48,7 +48,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 52
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                            - x + %i
@@ -59,7 +59,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 5
+--S 5 of 52
 dd:=atanrule cc
 --R
 --R                   a x
@@ -72,7 +72,7 @@ dd:=atanrule cc
 --R                                             Type: Expression Complex Integer
 --E
 
---S 6
+--S 6 of 52
 ee:=expandLog dd
 --R
 --R   (6)
@@ -85,7 +85,7 @@ ee:=expandLog dd
 --R                                             Type: Expression Complex Integer
 --E
 
---S 7      14:626 Schaums and Axiom agree
+--S 7 of 52      14:626 Schaums and Axiom agree
 ff:=complexNormalize ee
 --R
 --R   (7)  0
@@ -101,7 +101,7 @@ $$
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 52
 aa:=integrate(sech(a*x)^2,x)
 --R 
 --R
@@ -112,7 +112,7 @@ aa:=integrate(sech(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 52
 bb:=tanh(a*x)/a
 --R
 --R        tanh(a x)
@@ -121,7 +121,7 @@ bb:=tanh(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 52
 cc:=aa-bb
 --R
 --R                    2                                  2
@@ -132,7 +132,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 52
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -141,7 +141,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 12
+--S 12 of 52
 dd:=sinhsqrrule cc
 --R
 --R                                                        2
@@ -152,7 +152,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 13
+--S 13 of 52
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -161,7 +161,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 14
+--S 14 of 52
 ee:=coshsqrrule dd
 --R
 --R        (- 2cosh(a x)sinh(a x) - cosh(2a x) - 1)tanh(a x) - 2
@@ -170,7 +170,7 @@ ee:=coshsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 52
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %L sinh(y + x) - %L sinh(y - x)
@@ -179,7 +179,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 16
+--S 16 of 52
 ff:=sinhcoshrule ee
 --R
 --R        (- sinh(2a x) - cosh(2a x) - 1)tanh(a x) - 2
@@ -188,7 +188,7 @@ ff:=sinhcoshrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 17     14:627 Schaums and Axiom differ by a constant
+--S 17 of 52     14:627 Schaums and Axiom differ by a constant
 gg:=complexNormalize ff
 --R
 --R           1
@@ -206,7 +206,7 @@ $$
 <<*>>=
 )clear all
 
---S 18
+--S 18 of 52
 aa:=integrate(sech(a*x)^3,x)
 --R 
 --R
@@ -233,7 +233,7 @@ aa:=integrate(sech(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 19
+--S 19 of 52
 bb:=(sech(a*x)*tanh(a*x))/(2*a)+1/(2*a)*atan(sinh(a*x))
 --R
 --R        atan(sinh(a x)) + sech(a x)tanh(a x)
@@ -242,7 +242,7 @@ bb:=(sech(a*x)*tanh(a*x))/(2*a)+1/(2*a)*atan(sinh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 20     14:628 Axiom cannot simplify this expression
+--S 20 of 52     14:628 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -301,7 +301,7 @@ $$
 <<*>>=
 )clear all
 
---S 21
+--S 21 of 52
 aa:=integrate(sech(a*x)^n*tanh(a*x),x)
 --R 
 --R
@@ -320,7 +320,7 @@ aa:=integrate(sech(a*x)^n*tanh(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 22
+--S 22 of 52
 bb:=-sech(a*x)^n/(n*a)
 --R
 --R                   n
@@ -330,7 +330,7 @@ bb:=-sech(a*x)^n/(n*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 52
 cc:=aa-bb
 --R
 --R   (3)
@@ -351,7 +351,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 52
 sechrule:=rule(sech(x) == 1/cosh(x))
 --R
 --R                      1
@@ -360,7 +360,7 @@ sechrule:=rule(sech(x) == 1/cosh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 25
+--S 25 of 52
 dd:=sechrule cc
 --R
 --R   (5)
@@ -382,7 +382,7 @@ dd:=sechrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 52
 ee:=expandLog dd
 --R
 --R   (6)
@@ -407,7 +407,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 27     14:629 Schaums and Axiom agree
+--S 27 of 52     14:629 Schaums and Axiom agree
 ff:=complexNormalize ee
 --R
 --R   (7)  0
@@ -423,7 +423,7 @@ $$
 <<*>>=
 )clear all
 
---S 28
+--S 28 of 52
 aa:=integrate(1/sech(a*x),x)
 --R 
 --R
@@ -433,7 +433,7 @@ aa:=integrate(1/sech(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 29
+--S 29 of 52
 bb:=sinh(a*x)/a
 --R
 --R        sinh(a x)
@@ -442,7 +442,7 @@ bb:=sinh(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 30     14:630 Schaums and Axiom agree
+--S 30 of 52     14:630 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -460,7 +460,7 @@ $$
 <<*>>=
 )clear all
 
---S 31     14:631 Axiom cannot compute this integral
+--S 31 of 52     14:631 Axiom cannot compute this integral
 aa:=integrate(x*sech(a*x),x)
 --R 
 --R
@@ -480,7 +480,7 @@ $$
 <<*>>=
 )clear all
 
---S 32
+--S 32 of 52
 aa:=integrate(x*sech(a*x)^2,x)
 --R 
 --R
@@ -500,7 +500,7 @@ aa:=integrate(x*sech(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 33
+--S 33 of 52
 bb:=(x*tanh(a*x))/a-1/a^2*log(cosh(a*x))
 --R
 --R        - log(cosh(a x)) + a x tanh(a x)
@@ -510,7 +510,7 @@ bb:=(x*tanh(a*x))/a-1/a^2*log(cosh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 52
 cc:=aa-bb
 --R
 --R   (3)
@@ -537,7 +537,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 52
 dd:=expandLog cc
 --R
 --R   (4)
@@ -562,7 +562,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 52
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -571,7 +571,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 37
+--S 37 of 52
 ee:=sinhsqrrule dd
 --R
 --R   (6)
@@ -595,7 +595,7 @@ ee:=sinhsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 52
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -604,7 +604,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 39
+--S 39 of 52
 ff:=coshsqrrule ee
 --R
 --R   (8)
@@ -621,7 +621,7 @@ ff:=coshsqrrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 52
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %P sinh(y + x) - %P sinh(y - x)
@@ -630,7 +630,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 41
+--S 41 of 52
 gg:=sinhcoshrule ff
 --R
 --R   (10)
@@ -645,7 +645,7 @@ gg:=sinhcoshrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 42     14:632 Schaums and Axiom differ by a constant
+--S 42 of 52     14:632 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         log(- 1) - log(- 2)
@@ -665,7 +665,7 @@ $$
 <<*>>=
 )clear all
 
---S 43     14:633 Axiom cannot compute this integral
+--S 43 of 52     14:633 Axiom cannot compute this integral
 aa:=integrate(sech(a*x)/x,x)
 --R 
 --R
@@ -685,7 +685,7 @@ $$
 <<*>>=
 )clear all
 
---S 44
+--S 44 of 52
 aa:=integrate(1/(q+p*sech(a*x)),x)
 --R 
 --R
@@ -733,7 +733,7 @@ aa:=integrate(1/(q+p*sech(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 45
+--S 45 of 52
 t1:=integrate(1/(p+q*cosh(a*x)),x)
 --R
 --R   (2)
@@ -774,7 +774,7 @@ t1:=integrate(1/(p+q*cosh(a*x)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 46
+--S 46 of 52
 bb1:=x/q-p/q*t1.1
 --R
 --R   (3)
@@ -810,7 +810,7 @@ bb1:=x/q-p/q*t1.1
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 52
 bb2:=x/q-p/q*t1.2
 --R
 --R                                                  +-------+
@@ -826,7 +826,7 @@ bb2:=x/q-p/q*t1.2
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 52
 cc1:=aa.1-bb1
 --R
 --R   (5)
@@ -878,7 +878,7 @@ cc1:=aa.1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 49
+--S 49 of 52
 cc2:=aa.2-bb1
 --R
 --R   (6)
@@ -918,7 +918,7 @@ cc2:=aa.2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 52
 cc3:=aa.1-bb2
 --R
 --R   (7)
@@ -958,7 +958,7 @@ cc3:=aa.1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:634 Schaums and Axiom agree
+--S 51 of 52     14:634 Schaums and Axiom agree
 cc4:=aa.2-bb2
 --R
 --R   (8)  0
@@ -975,7 +975,7 @@ $$
 <<*>>=
 )clear all
 
---S 52     14:635 Axiom cannot compute this integral
+--S 52 of 52     14:635 Axiom cannot compute this integral
 aa:=integrate(sech(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum33.input.pamphlet b/src/input/schaum33.input.pamphlet
index 61506d7..7a33dd1 100644
--- a/src/input/schaum33.input.pamphlet
+++ b/src/input/schaum33.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 49
 aa:=integrate(csch(a*x),x)
 --R 
 --R
@@ -28,7 +28,7 @@ aa:=integrate(csch(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 49
 bb:=1/a*log(tanh((a*x)/2))
 --R
 --R                 a x
@@ -39,7 +39,7 @@ bb:=1/a*log(tanh((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 49
 cc:=aa-bb
 --R
 --R   (3)
@@ -53,7 +53,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4      14:636 Schaums and Axiom agree
+--S 4 of 49      14:636 Schaums and Axiom agree
 dd:=complexNormalize cc
 --R
 --R   (4)  0
@@ -69,7 +69,7 @@ $$
 <<*>>=
 )clear all
 
---S 5
+--S 5 of 49
 aa:=integrate(csch(a*x)^2,x)
 --R 
 --R
@@ -80,7 +80,7 @@ aa:=integrate(csch(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 6
+--S 6 of 49
 bb:=-coth(a*x)/a
 --R
 --R          coth(a x)
@@ -89,7 +89,7 @@ bb:=-coth(a*x)/a
 --R                                                     Type: Expression Integer
 --E
 
---S 7      14:637 Axiom cannot simplify this expression
+--S 7 of 49      14:637 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -113,7 +113,7 @@ $$
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 49
 aa:=integrate(csch(a*x)^3,x)
 --R 
 --R
@@ -150,7 +150,7 @@ aa:=integrate(csch(a*x)^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 49
 bb:=-(csch(a*x)*coth(a*x))/(2*a)-1/(2*a)*log(tanh((a*x)/2))
 --R
 --R                   a x
@@ -161,7 +161,7 @@ bb:=-(csch(a*x)*coth(a*x))/(2*a)-1/(2*a)*log(tanh((a*x)/2))
 --R                                                     Type: Expression Integer
 --E
 
---S 10     14:638 Axiom cannot simplify this expression
+--S 10 of 49     14:638 Axiom cannot simplify this expression
 cc:=aa-bb
 --R
 --R   (3)
@@ -225,7 +225,7 @@ $$
 <<*>>=
 )clear all
 
---S 11
+--S 11 of 49
 aa:=integrate(csch(a*x)^n*coth(a*x),x)
 --R 
 --R
@@ -244,7 +244,7 @@ aa:=integrate(csch(a*x)^n*coth(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 12
+--S 12 of 49
 bb:=-csch(a*x)^n/(n*a)
 --R
 --R                   n
@@ -254,7 +254,7 @@ bb:=-csch(a*x)^n/(n*a)
 --R                                                     Type: Expression Integer
 --E
 
---S 13
+--S 13 of 49
 cc:=aa-bb
 --R
 --R   (3)
@@ -275,7 +275,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 14
+--S 14 of 49
 cschrule:=rule(csch(x) == 1/sinh(x))
 --R
 --R                      1
@@ -284,7 +284,7 @@ cschrule:=rule(csch(x) == 1/sinh(x))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 15
+--S 15 of 49
 dd:=cschrule cc
 --R
 --R   (5)
@@ -306,7 +306,7 @@ dd:=cschrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 49
 ee:=expandLog dd
 --R
 --R   (6)
@@ -331,7 +331,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 49
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -340,7 +340,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 18
+--S 18 of 49
 ff:=sinhsqrrule ee
 --R
 --R   (8)
@@ -369,7 +369,7 @@ ff:=sinhsqrrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 49
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -378,7 +378,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 20
+--S 20 of 49
 gg:=coshsqrrule ff
 --R
 --R   (10)
@@ -401,7 +401,7 @@ gg:=coshsqrrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 21
+--S 21 of 49
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                              %O sinh(y + x) - %O sinh(y - x)
@@ -410,7 +410,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 22
+--S 22 of 49
 hh:=sinhcoshrule gg
 --R
 --R   (12)
@@ -433,7 +433,7 @@ hh:=sinhcoshrule gg
 --R                                                     Type: Expression Integer
 --E
 
---S 23     14:639 Schaums and Axiom agree
+--S 23 of 49     14:639 Schaums and Axiom agree
 ii:=complexNormalize hh
 --R
 --R   (13)  0
@@ -449,7 +449,7 @@ $$
 <<*>>=
 )clear all
 
---S 24
+--S 24 of 49
 aa:=integrate(1/csch(a*x),x)
 --R 
 --R
@@ -459,7 +459,7 @@ aa:=integrate(1/csch(a*x),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 25
+--S 25 of 49
 bb:=1/a*cosh(a*x)
 --R
 --R        cosh(a x)
@@ -468,7 +468,7 @@ bb:=1/a*cosh(a*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 26     14:640 Schaums and Axiom agree
+--S 26 of 49     14:640 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -486,7 +486,7 @@ $$
 <<*>>=
 )clear all
 
---S 27     14:641 Axiom cannot compute this integral
+--S 27 of 49     14:641 Axiom cannot compute this integral
 aa:=integrate(x*csch(a*x),x)
 --R 
 --R
@@ -506,7 +506,7 @@ $$
 <<*>>=
 )clear all
 
---S 28
+--S 28 of 49
 aa:=integrate(x*csch(a*x)^2,x)
 --R 
 --R
@@ -526,7 +526,7 @@ aa:=integrate(x*csch(a*x)^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 29
+--S 29 of 49
 bb:=-(x*coth(a*x))/a+1/a^2*log(sinh(a*x))
 --R
 --R        log(sinh(a x)) - a x coth(a x)
@@ -536,7 +536,7 @@ bb:=-(x*coth(a*x))/a+1/a^2*log(sinh(a*x))
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 49
 cc:=aa-bb
 --R
 --R   (3)
@@ -563,7 +563,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 49
 dd:=expandLog cc
 --R
 --R   (4)
@@ -585,7 +585,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 49
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -594,7 +594,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 33
+--S 33 of 49
 ee:=sinhsqrrule dd
 --R
 --R   (6)
@@ -618,7 +618,7 @@ ee:=sinhsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 49
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -627,7 +627,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 35
+--S 35 of 49
 ff:=coshsqrrule ee
 --R
 --R   (8)
@@ -642,7 +642,7 @@ ff:=coshsqrrule ee
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 49
 sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R
 --I                             %P sinh(y + x) - %P sinh(y - x)
@@ -651,7 +651,7 @@ sinhcoshrule:=rule(sinh(x)*cosh(y) == 1/2*(sinh(x+y)+sinh(x-y)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 37
+--S 37 of 49
 gg:=sinhcoshrule ff
 --R
 --R   (10)
@@ -666,7 +666,7 @@ gg:=sinhcoshrule ff
 --R                                                     Type: Expression Integer
 --E
 
---S 38     14:642 Schaums and Axiom differ by a constant
+--S 38 of 49     14:642 Schaums and Axiom differ by a constant
 hh:=complexNormalize gg
 --R
 --R         - log(- 1) + log(- 2)
@@ -686,7 +686,7 @@ $$
 <<*>>=
 )clear all
 
---S 39     14:643 Axiom cannot compute this integral
+--S 39 of 49     14:643 Axiom cannot compute this integral
 aa:=integrate(csch(a*x)/x,x)
 --R 
 --R
@@ -706,7 +706,7 @@ $$
 <<*>>=
 )clear all
 
---S 40
+--S 40 of 49
 aa:=integrate(1/(q+p*csch(a*x)),x)
 --R 
 --R
@@ -742,7 +742,7 @@ aa:=integrate(1/(q+p*csch(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 41
+--S 41 of 49
 t1:=integrate(1/(p+q*sinh(a*x)),x)
 --R
 --R   (2)
@@ -771,7 +771,7 @@ t1:=integrate(1/(p+q*sinh(a*x)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 42
+--S 42 of 49
 bb:=x/q-p/q*t1
 --R
 --R   (3)
@@ -807,7 +807,7 @@ bb:=x/q-p/q*t1
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 49
 cc:=aa-bb
 --R
 --R   (4)
@@ -859,7 +859,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 49
 sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R
 --R               2    cosh(2x) - 1
@@ -868,7 +868,7 @@ sinhsqrrule:=rule(sinh(x)^2 == 1/2*cosh(2*x)-1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 45
+--S 45 of 49
 dd:=sinhsqrrule cc
 --R
 --R   (6)
@@ -920,7 +920,7 @@ dd:=sinhsqrrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 46
+--S 46 of 49
 coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R
 --R               2    cosh(2x) + 1
@@ -929,7 +929,7 @@ coshsqrrule:=rule(cosh(x)^2 == 1/2*cosh(2*x)+1/2)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 47
+--S 47 of 49
 ee:=coshsqrrule dd
 --R
 --R   (8)
@@ -975,7 +975,7 @@ ee:=coshsqrrule dd
 --R                                                     Type: Expression Integer
 --E
 
---S 48     14:644 Schaums and Axiom differ by a constant
+--S 48 of 49     14:644 Schaums and Axiom differ by a constant
 ff:=complexNormalize ee
 --R
 --R               4    2 2
@@ -997,7 +997,7 @@ $$
 <<*>>=
 )clear all
 
---S 49     14:645 Axiom cannot compute this integral
+--S 49 of 49     14:645 Axiom cannot compute this integral
 aa:=integrate(csch(a*x)^n,x)
 --R 
 --R
diff --git a/src/input/schaum34.input.pamphlet b/src/input/schaum34.input.pamphlet
index d61b757..10ef92b 100644
--- a/src/input/schaum34.input.pamphlet
+++ b/src/input/schaum34.input.pamphlet
@@ -18,7 +18,7 @@ $$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 156
 aa:=integrate(asinh(x/a),x)
 --R 
 --R
@@ -34,7 +34,7 @@ aa:=integrate(asinh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 156
 bb:=x*asinh(x/a)-sqrt(x^2+a^2)
 --R
 --R           +-------+
@@ -44,7 +44,7 @@ bb:=x*asinh(x/a)-sqrt(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 156
 cc:=aa-bb
 --R
 --R               +-------+
@@ -55,7 +55,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 156
 asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R
 --R                         +------+
@@ -64,7 +64,7 @@ asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 5
+--S 5 of 156
 dd:=asinhlogrule cc
 --R
 --R                                        +-------+
@@ -78,7 +78,7 @@ dd:=asinhlogrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 156
 ee:=expandLog dd
 --R
 --R                                        +-------+
@@ -90,7 +90,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 7      14:646 Schaums and Axiom agree
+--S 7 of 156      14:646 Schaums and Axiom agree
 ff:=rootSimp ee
 --R
 --R   (7)  0
@@ -107,7 +107,7 @@ $$
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 156
 aa:=integrate(x*asinh(x/a),x)
 --R 
 --R
@@ -128,7 +128,7 @@ aa:=integrate(x*asinh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 156
 bb:=(x^2/2+a^2/4)*asinh(x/a)-(x*sqrt(x^2+a^2))/4
 --R
 --R            +-------+
@@ -140,7 +140,7 @@ bb:=(x^2/2+a^2/4)*asinh(x/a)-(x*sqrt(x^2+a^2))/4
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 156
 cc:=aa-bb
 --R
 --R                       +-------+
@@ -153,7 +153,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 156
 asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R
 --R                         +------+
@@ -162,7 +162,7 @@ asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 12
+--S 12 of 156
 dd:=asinhlogrule cc
 --R
 --R                                                          +-------+
@@ -178,7 +178,7 @@ dd:=asinhlogrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 13
+--S 13 of 156
 ee:=expandLog dd
 --R
 --R                                                          +-------+
@@ -192,7 +192,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 14     14:647 Schaums and Axiom agree
+--S 14 of 156     14:647 Schaums and Axiom agree
 ff:=rootSimp ee
 --R
 --R   (7)  0
@@ -208,7 +208,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 156
 aa:=integrate(x^2*asinh(x/a),x)
 --R 
 --R
@@ -229,7 +229,7 @@ aa:=integrate(x^2*asinh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 16
+--S 16 of 156
 bb:=x^3/3*asinh(x/a)+((2*a^2-x^2)*sqrt(x^2+a^2))/9
 --R
 --R                     +-------+
@@ -241,7 +241,7 @@ bb:=x^3/3*asinh(x/a)+((2*a^2-x^2)*sqrt(x^2+a^2))/9
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 156
 cc:=aa-bb
 --R
 --R               +-------+
@@ -254,7 +254,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 156
 asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R
 --R                         +------+
@@ -263,7 +263,7 @@ asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 19
+--S 19 of 156
 dd:=asinhlogrule cc
 --R
 --R                                        +-------+
@@ -279,7 +279,7 @@ dd:=asinhlogrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 20
+--S 20 of 156
 ee:=expandLog dd
 --R
 --R                                        +-------+
@@ -293,7 +293,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 21     14:648 Schaums and Axiom agree
+--S 21 of 156     14:648 Schaums and Axiom agree
 ff:=rootSimp ee
 --R
 --R   (7)  0
@@ -329,7 +329,7 @@ $$
 <<*>>=
 )clear all
 
---S 22     14:649 Axiom cannot compute this integral
+--S 22 of 156     14:649 Axiom cannot compute this integral
 aa:=integrate(asinh(x/a)/x,x)
 --R 
 --R
@@ -351,7 +351,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 156
 aa:=integrate(asinh(x/a)/x^2,x)
 --R 
 --R
@@ -370,7 +370,7 @@ aa:=integrate(asinh(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 156
 bb:=-asinh(x/a)/x-1/a*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                 +-------+
@@ -383,7 +383,7 @@ bb:=-asinh(x/a)/x-1/a*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 156
 cc:=aa-bb
 --R
 --R   (3)
@@ -401,7 +401,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 156
 asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R
 --R                         +------+
@@ -410,7 +410,7 @@ asinhlogrule:=rule(asinh(x) == log(x+sqrt(x^2+1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 27
+--S 27 of 156
 dd:=asinhlogrule cc
 --R
 --R   (5)
@@ -431,7 +431,7 @@ dd:=asinhlogrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 28
+--S 28 of 156
 ee:=expandLog dd
 --R
 --R   (6)
@@ -454,7 +454,7 @@ ee:=expandLog dd
 --R                                                     Type: Expression Integer
 --E
 
---S 29
+--S 29 of 156
 ff:=rootSimp ee
 --R
 --R   (7)
@@ -468,7 +468,7 @@ ff:=rootSimp ee
 --R                                                     Type: Expression Integer
 --E
 
---S 30     14:650 Schaums and Axiom differ by a constant
+--S 30 of 156     14:650 Schaums and Axiom differ by a constant
 gg:=complexNormalize ff
 --R
 --R          log(- 1)
@@ -494,7 +494,7 @@ $$
 <<*>>=
 )clear all
 
---S 31
+--S 31 of 156
 aa:=integrate(acosh(x/a),x)
 --R 
 --R
@@ -510,7 +510,7 @@ aa:=integrate(acosh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 32
+--S 32 of 156
 bb1:=x*acosh(x/a)-sqrt(x^2-a^2)
 --R
 --R           +-------+
@@ -520,7 +520,7 @@ bb1:=x*acosh(x/a)-sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 156
 bb2:=x*acosh(x/a)+sqrt(x^2-a^2)
 --R
 --R         +-------+
@@ -530,7 +530,7 @@ bb2:=x*acosh(x/a)+sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 156
 cc1:=aa-bb1
 --R
 --R               +-------+
@@ -541,7 +541,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 156
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -561,7 +561,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 156
 acoshlogrule:=rule(acosh(x) == log(x+sqrt(x^2-1)))
 --R
 --R                         +------+
@@ -570,7 +570,7 @@ acoshlogrule:=rule(acosh(x) == log(x+sqrt(x^2-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 37
+--S 37 of 156
 dd1:=acoshlogrule cc1
 --R
 --R                                        +-------+
@@ -584,7 +584,7 @@ dd1:=acoshlogrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 156
 ee1:=expandLog dd1
 --R
 --R                                        +-------+
@@ -596,7 +596,7 @@ ee1:=expandLog dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 39     14:651 Schaums and Axiom agree
+--S 39 of 156     14:651 Schaums and Axiom agree
 ff1:=rootSimp ee1
 --R
 --R   (9)  0
@@ -623,7 +623,7 @@ $$
 <<*>>=
 )clear all
 
---S 40
+--S 40 of 156
 aa:=integrate(x*acosh(x/a),x)
 --R 
 --R
@@ -644,7 +644,7 @@ aa:=integrate(x*acosh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 41
+--S 41 of 156
 bb1:=1/4*(2*x^2-a^2)*acosh(x/a)-1/4*x*sqrt(x^2-a^2)
 --R
 --R            +-------+
@@ -656,7 +656,7 @@ bb1:=1/4*(2*x^2-a^2)*acosh(x/a)-1/4*x*sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 42
+--S 42 of 156
 bb2:=1/4*(2*x^2-a^2)*acosh(x/a)+1/4*x*sqrt(x^2-a^2)
 --R
 --R          +-------+
@@ -668,7 +668,7 @@ bb2:=1/4*(2*x^2-a^2)*acosh(x/a)+1/4*x*sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 156
 cc1:=aa-bb1
 --R
 --R                       +-------+
@@ -681,7 +681,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 156
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -706,7 +706,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 156
 acoshlogrule:=rule(acosh(x) == log(x+sqrt(x^2-1)))
 --R
 --R                         +------+
@@ -715,7 +715,7 @@ acoshlogrule:=rule(acosh(x) == log(x+sqrt(x^2-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 46
+--S 46 of 156
 dd1:=acoshlogrule cc1
 --R
 --R                                                          +-------+
@@ -731,7 +731,7 @@ dd1:=acoshlogrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 156
 ee1:=expandLog dd1
 --R
 --R                                                          +-------+
@@ -745,7 +745,7 @@ ee1:=expandLog dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 48     14:652 Schaums and Axiom agree
+--S 48 of 156     14:652 Schaums and Axiom agree
 ff1:=rootSimp ee1
 --R
 --R   (9)  0
@@ -771,7 +771,7 @@ $$
 <<*>>=
 )clear all
 
---S 49
+--S 49 of 156
 aa:=integrate(x^2*acosh(x/a),x)
 --R 
 --R
@@ -792,7 +792,7 @@ aa:=integrate(x^2*acosh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 50
+--S 50 of 156
 bb1:=1/3*x^3*acosh(x/a)-1/9*(x^2+2*a^2)*sqrt(x^2-a^2)
 --R
 --R                     +-------+
@@ -804,7 +804,7 @@ bb1:=1/3*x^3*acosh(x/a)-1/9*(x^2+2*a^2)*sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 156
 bb2:=1/3*x^3*acosh(x/a)+1/9*(x^2+2*a^2)*sqrt(x^2-a^2)
 --R
 --R                   +-------+
@@ -816,7 +816,7 @@ bb2:=1/3*x^3*acosh(x/a)+1/9*(x^2+2*a^2)*sqrt(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 52
+--S 52 of 156
 cc1:=aa-bb1
 --R
 --R               +-------+
@@ -829,7 +829,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 53
+--S 53 of 156
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -854,7 +854,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 156
 acoshlogrule:=rule(acosh(x) == log(x+sqrt(x^2-1)))
 --R
 --R                         +------+
@@ -863,7 +863,7 @@ acoshlogrule:=rule(acosh(x) == log(x+sqrt(x^2-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 55
+--S 55 of 156
 dd1:=acoshlogrule cc1
 --R
 --R                                        +-------+
@@ -879,7 +879,7 @@ dd1:=acoshlogrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 56
+--S 56 of 156
 ee1:=expandLog dd1
 --R
 --R                                        +-------+
@@ -893,7 +893,7 @@ ee1:=expandLog dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 57     14:653 Schaums and Axiom agree
+--S 57 of 156     14:653 Schaums and Axiom agree
 ff1:=rootSimp ee1
 --R
 --R   (9)  0
@@ -918,7 +918,7 @@ $$
 <<*>>=
 )clear all
 
---S 58     14:654 Axiom cannot compute this integral
+--S 58 of 156     14:654 Axiom cannot compute this integral
 aa:=integrate(acosh(x/a)/x,x)
 --R 
 --R
@@ -947,7 +947,7 @@ $$
 <<*>>=
 )clear all
 
---S 59
+--S 59 of 156
 aa:=integrate(acosh(x/a)/x^2,x)
 --R 
 --R
@@ -961,7 +961,7 @@ aa:=integrate(acosh(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 60
+--S 60 of 156
 bb1:=-acosh(x/a)/x-1/a*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                 +-------+
@@ -974,7 +974,7 @@ bb1:=-acosh(x/a)/x-1/a*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 61
+--S 61 of 156
 bb2:=-acosh(x/a)/x+1/a*log((a+sqrt(x^2+a^2))/x)
 --R
 --R               +-------+
@@ -987,7 +987,7 @@ bb2:=-acosh(x/a)/x+1/a*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 62
+--S 62 of 156
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -1005,7 +1005,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 63     14:655 Axiom cannot simplify these expressions
+--S 63 of 156     14:655 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -1032,7 +1032,7 @@ $$
 <<*>>=
 )clear all
 
---S 64
+--S 64 of 156
 aa:=integrate(atanh(x/a),x)
 --R 
 --R
@@ -1044,7 +1044,7 @@ aa:=integrate(atanh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 65
+--S 65 of 156
 bb:=x*atanh(x/a)+a/2*log(a^2-x^2)
 --R
 --R                 2    2             x
@@ -1055,7 +1055,7 @@ bb:=x*atanh(x/a)+a/2*log(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 66
+--S 66 of 156
 cc:=aa-bb
 --R
 --R               2    2          - x - a             2    2             x
@@ -1066,7 +1066,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 67
+--S 67 of 156
 atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R
 --R                        - x - 1
@@ -1077,7 +1077,7 @@ atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 68
+--S 68 of 156
 dd:=atanhrule cc
 --R
 --R               2    2             2    2
@@ -1087,7 +1087,7 @@ dd:=atanhrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 69     14:656 Schaums and Axiom differ by a constant
+--S 69 of 156     14:656 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        a log(- 1)
@@ -1105,7 +1105,7 @@ $$
 <<*>>=
 )clear all
 
---S 70
+--S 70 of 156
 aa:=integrate(x*atanh(x/a),x)
 --R 
 --R
@@ -1117,7 +1117,7 @@ aa:=integrate(x*atanh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 71
+--S 71 of 156
 bb:=(a*x)/2+1/2*(x^2-a^2)*atanh(x/a)
 --R
 --R          2    2       x
@@ -1128,7 +1128,7 @@ bb:=(a*x)/2+1/2*(x^2-a^2)*atanh(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 72
+--S 72 of 156
 cc:=aa-bb
 --R
 --R          2    2     - x - a         2     2       x
@@ -1139,7 +1139,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 73
+--S 73 of 156
 atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R
 --R                        - x - 1
@@ -1150,7 +1150,7 @@ atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 74     14:657 Schaums and Axiom agree
+--S 74 of 156     14:657 Schaums and Axiom agree
 dd:=atanhrule cc
 --R
 --R   (5)  0
@@ -1167,7 +1167,7 @@ $$
 <<*>>=
 )clear all
 
---S 75
+--S 75 of 156
 aa:=integrate(x^2*atanh(x/a),x)
 --R 
 --R
@@ -1179,7 +1179,7 @@ aa:=integrate(x^2*atanh(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 76
+--S 76 of 156
 bb:=(a*x^2)/6+x^3/3*atanh(x/a)+a^3/6*log(a^2-x^2)
 --R
 --R         3       2    2      3      x       2
@@ -1190,7 +1190,7 @@ bb:=(a*x^2)/6+x^3/3*atanh(x/a)+a^3/6*log(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 77
+--S 77 of 156
 cc:=aa-bb
 --R
 --R         3     2    2     3    - x - a     3       2    2      3      x
@@ -1201,7 +1201,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 78
+--S 78 of 156
 atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R
 --R                        - x - 1
@@ -1212,7 +1212,7 @@ atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 79
+--S 79 of 156
 dd:=atanhrule cc
 --R
 --R         3     2    2     3       2    2
@@ -1222,7 +1222,7 @@ dd:=atanhrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 80     14:658 Schaums and Axiom differ by a constant
+--S 80 of 156     14:658 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R         3
@@ -1241,7 +1241,7 @@ $$
 <<*>>=
 )clear all
 
---S 81     14:659 Axiom cannot compute this integral
+--S 81 of 156     14:659 Axiom cannot compute this integral
 aa:=integrate(atanh(x/a)/x,x)
 --R 
 --R
@@ -1262,7 +1262,7 @@ $$
 <<*>>=
 )clear all
 
---S 82
+--S 82 of 156
 aa:=integrate(atanh(x/a)/x^2,x)
 --R 
 --R
@@ -1274,7 +1274,7 @@ aa:=integrate(atanh(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 83
+--S 83 of 156
 bb:=-atanh(x/a)/x+1/(2*a)*log(x^2/(a^2-x^2))
 --R
 --R                    2
@@ -1287,7 +1287,7 @@ bb:=-atanh(x/a)/x+1/(2*a)*log(x^2/(a^2-x^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 84
+--S 84 of 156
 cc:=aa-bb
 --R
 --R   (3)
@@ -1305,7 +1305,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 85
+--S 85 of 156
 atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R
 --R                        - x - 1
@@ -1316,7 +1316,7 @@ atanhrule:=rule(atanh(x) == 1/2*log((1+x)/(1-x)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 86
+--S 86 of 156
 dd:=atanhrule cc
 --R
 --R                                             2
@@ -1329,7 +1329,7 @@ dd:=atanhrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 87     14:660 Schaums and Axiom agree
+--S 87 of 156     14:660 Schaums and Axiom agree
 ee:=expandLog dd
 --R
 --R          log(- 1)
@@ -1352,7 +1352,7 @@ $$
 <<*>>=
 )clear all
 
---S 88
+--S 88 of 156
 aa:=integrate(acoth(x/a),x)
 --R 
 --R
@@ -1364,7 +1364,7 @@ aa:=integrate(acoth(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 89
+--S 89 of 156
 bb:=x*acoth(x/a)+a/2*log(x^2-a^2)
 --R
 --R               2    2             x
@@ -1375,7 +1375,7 @@ bb:=x*acoth(x/a)+a/2*log(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 90
+--S 90 of 156
 cc:=aa-bb
 --R
 --R              x + a             x
@@ -1386,7 +1386,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 91
+--S 91 of 156
 acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R
 --R                        x + 1
@@ -1397,7 +1397,7 @@ acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 92     14:661 Schaums and Axiom agree
+--S 92 of 156     14:661 Schaums and Axiom agree
 dd:=acothrule cc
 --R
 --R   (5)  0
@@ -1413,7 +1413,7 @@ $$
 <<*>>=
 )clear all
 
---S 93
+--S 93 of 156
 aa:=integrate(x*acoth(x/a),x)
 --R 
 --R
@@ -1425,7 +1425,7 @@ aa:=integrate(x*acoth(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 94
+--S 94 of 156
 bb:=(a*x)/2+1/2*(x^2-a^2)*acoth(x/a)
 --R
 --R          2    2       x
@@ -1436,7 +1436,7 @@ bb:=(a*x)/2+1/2*(x^2-a^2)*acoth(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 95
+--S 95 of 156
 cc:=aa-bb
 --R
 --R          2    2     x + a         2     2       x
@@ -1447,7 +1447,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 96
+--S 96 of 156
 acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R
 --R                        x + 1
@@ -1458,7 +1458,7 @@ acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 97     14:662 Schaums and Axiom agree
+--S 97 of 156     14:662 Schaums and Axiom agree
 dd:=acothrule cc
 --R
 --R   (5)  0
@@ -1475,7 +1475,7 @@ $$
 <<*>>=
 )clear all
 
---S 98
+--S 98 of 156
 aa:=integrate(x^2*acoth(x/a),x)
 --R 
 --R
@@ -1487,7 +1487,7 @@ aa:=integrate(x^2*acoth(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 99
+--S 99 of 156
 bb:=(a*x^2)/6+x^3/3*acoth(x/a)+a^3/6*log(x^2-a^2)
 --R
 --R         3     2    2      3      x       2
@@ -1498,7 +1498,7 @@ bb:=(a*x^2)/6+x^3/3*acoth(x/a)+a^3/6*log(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 100
+--S 100 of 156
 cc:=aa-bb
 --R
 --R         3    x + a      3      x
@@ -1509,7 +1509,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 101
+--S 101 of 156
 acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R
 --R                        x + 1
@@ -1520,7 +1520,7 @@ acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 102    14:663 Schaums and Axiom agree
+--S 102 of 156    14:663 Schaums and Axiom agree
 dd:=acothrule cc
 --R
 --R   (5)  0
@@ -1536,7 +1536,7 @@ $$
 <<*>>=
 )clear all
 
---S 103    14:664 Axiom cannot compute this integral
+--S 103 of 156    14:664 Axiom cannot compute this integral
 aa:=integrate(acoth(x/a)/x,x)
 --R 
 --R
@@ -1557,7 +1557,7 @@ $$
 <<*>>=
 )clear all
 
---S 104
+--S 104 of 156
 aa:=integrate(acoth(x/a)/x^2,x)
 --R 
 --R
@@ -1569,7 +1569,7 @@ aa:=integrate(acoth(x/a)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 105
+--S 105 of 156
 bb:=-acoth(x/a)/x+1/(2*a)*log(x^2/(x^2-a^2))
 --R
 --R                  2
@@ -1582,7 +1582,7 @@ bb:=-acoth(x/a)/x+1/(2*a)*log(x^2/(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 106
+--S 106 of 156
 cc:=aa-bb
 --R
 --R   (3)
@@ -1596,7 +1596,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 107
+--S 107 of 156
 acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R
 --R                        x + 1
@@ -1607,7 +1607,7 @@ acothrule:=rule(acoth(x) == 1/2*log((x+1)/(x-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 108
+--S 108 of 156
 dd:=acothrule cc
 --R
 --R                                           2
@@ -1620,7 +1620,7 @@ dd:=acothrule cc
 --R                                                     Type: Expression Integer
 --E
 
---S 109    14:665 Schaums and Axiom agree
+--S 109 of 156    14:665 Schaums and Axiom agree
 ee:=expandLog dd
 --R
 --R   (6)  0
@@ -1644,7 +1644,7 @@ $$
 <<*>>=
 )clear all
 
---S 110
+--S 110 of 156
 aa:=integrate(asech(x/a),x)
 --R 
 --R
@@ -1656,7 +1656,7 @@ aa:=integrate(asech(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 111
+--S 111 of 156
 bb1:=x*asech(x/a)+a*asin(x/a)
 --R
 --R               x            x
@@ -1665,7 +1665,7 @@ bb1:=x*asech(x/a)+a*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 112
+--S 112 of 156
 bb2:=x*asech(x/a)-a*asin(x/a)
 --R
 --R                 x            x
@@ -1674,7 +1674,7 @@ bb2:=x*asech(x/a)-a*asin(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 113
+--S 113 of 156
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -1686,7 +1686,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 114
+--S 114 of 156
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -1698,7 +1698,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 115
+--S 115 of 156
 asechrule:=rule(asech(x) == log(1/x+sqrt(1/x^2-1)))
 --R
 --R                          +--------+
@@ -1712,7 +1712,7 @@ asechrule:=rule(asech(x) == log(1/x+sqrt(1/x^2-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 116
+--S 116 of 156
 dd1:=asechrule cc1
 --R
 --R   (7)
@@ -1733,7 +1733,7 @@ dd1:=asechrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 117
+--S 117 of 156
 asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R
 --R                           +--------+
@@ -1742,7 +1742,7 @@ asinrule:=rule(asin(x) == %i*log(-%i*x+sqrt(1-x^2)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 118
+--S 118 of 156
 ee1:=asinrule dd1
 --R
 --R   (9)
@@ -1763,7 +1763,7 @@ ee1:=asinrule dd1
 --R                                             Type: Expression Complex Integer
 --E
 
---S 119
+--S 119 of 156
 atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R
 --R                             - x + %i
@@ -1774,7 +1774,7 @@ atanrule:=rule(atan(x) == -%i/2*log((1+%i*x)/(1-%i*x)))
 --R        Type: RewriteRule(Integer,Complex Integer,Expression Complex Integer)
 --E
 
---S 120
+--S 120 of 156
 ff1:=atanrule ee1
 --R
 --R   (11)
@@ -1797,7 +1797,7 @@ ff1:=atanrule ee1
 --R                                             Type: Expression Complex Integer
 --E
 
---S 121
+--S 121 of 156
 gg1:=expandLog ff1
 --R
 --R   (12)
@@ -1818,7 +1818,7 @@ gg1:=expandLog ff1
 --R                                             Type: Expression Complex Integer
 --E
 
---S 122
+--S 122 of 156
 hh1:=rootSimp gg1
 --R
 --R   (13)
@@ -1832,7 +1832,7 @@ hh1:=rootSimp gg1
 --R                                             Type: Expression Complex Integer
 --E
 
---S 123    14:666 Schaums and Axiom agree
+--S 123 of 156    14:666 Schaums and Axiom agree
 ii1:=complexNormalize hh1
 --R
 --R   (14)  0
@@ -1844,7 +1844,7 @@ Note that Axiom has a built-in assumption about the sign of asech(x/a).
 We can see this if we simplify the cc2 value and show that it differs
 by a complex value of x.
 <<*>>=
---S 124
+--S 124 of 156
 dd2:=asechrule cc2
 --R
 --R   (15)
@@ -1865,7 +1865,7 @@ dd2:=asechrule cc2
 --R                                                     Type: Expression Integer
 --E
 
---S 125
+--S 125 of 156
 ee2:=asinrule dd2
 --R
 --R   (16)
@@ -1886,7 +1886,7 @@ ee2:=asinrule dd2
 --R                                             Type: Expression Complex Integer
 --E
 
---S 126
+--S 126 of 156
 ff2:=atanrule ee2
 --R
 --R   (17)
@@ -1909,7 +1909,7 @@ ff2:=atanrule ee2
 --R                                             Type: Expression Complex Integer
 --E
 
---S 127
+--S 127 of 156
 gg2:=expandLog ff2
 --R
 --R   (18)
@@ -1930,7 +1930,7 @@ gg2:=expandLog ff2
 --R                                             Type: Expression Complex Integer
 --E
 
---S 128
+--S 128 of 156
 hh2:=rootSimp gg2
 --R
 --R   (19)
@@ -1944,7 +1944,7 @@ hh2:=rootSimp gg2
 --R                                             Type: Expression Complex Integer
 --E
 
---S 129
+--S 129 of 156
 ii2:=complexNormalize hh2
 --R
 --R                      +-------+
@@ -1976,7 +1976,7 @@ $$
 <<*>>=
 )clear all
 
---S 130
+--S 130 of 156
 aa:=integrate(x*asech(x/a),x)
 --R 
 --R
@@ -1992,7 +1992,7 @@ aa:=integrate(x*asech(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 131
+--S 131 of 156
 bb1:=1/2*x^2*asech(x/a)-1/2*a*sqrt(a^2-x^2)
 --R
 --R            +---------+
@@ -2004,7 +2004,7 @@ bb1:=1/2*x^2*asech(x/a)-1/2*a*sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 132
+--S 132 of 156
 bb2:=1/2*x^2*asech(x/a)+1/2*a*sqrt(a^2-x^2)
 --R
 --R          +---------+
@@ -2016,7 +2016,7 @@ bb2:=1/2*x^2*asech(x/a)+1/2*a*sqrt(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 133
+--S 133 of 156
 cc1:=aa-bb1
 --R
 --R               +---------+
@@ -2029,7 +2029,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 134
+--S 134 of 156
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -2050,7 +2050,7 @@ cc2:=aa-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 135
+--S 135 of 156
 asechrule:=rule(asech(x) == log(1/x+sqrt(1/x^2-1)))
 --R
 --R                          +--------+
@@ -2064,7 +2064,7 @@ asechrule:=rule(asech(x) == log(1/x+sqrt(1/x^2-1)))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 136
+--S 136 of 156
 dd1:=asechrule cc1
 --R
 --R                  +---------+
@@ -2080,7 +2080,7 @@ dd1:=asechrule cc1
 --R                                                     Type: Expression Integer
 --E
 
---S 137
+--S 137 of 156
 ee1:=expandLog dd1
 --R
 --R                  +---------+
@@ -2094,7 +2094,7 @@ ee1:=expandLog dd1
 --R                                                     Type: Expression Integer
 --E
 
---S 138    14:667 Schaums and Axiom differ by a constant
+--S 138 of 156    14:667 Schaums and Axiom differ by a constant
 ff1:=rootSimp ee1
 --R
 --R           2
@@ -2128,7 +2128,7 @@ solution to the problem but Schaums gives a series solution.
 <<*>>=
 )clear all
 
---S 139    14:668 Axiom cannot compute this integral
+--S 139 of 156    14:668 Axiom cannot compute this integral
 aa:=integrate(asech(x/a)/x,x)
 --R 
 --R
@@ -2150,7 +2150,7 @@ $$
 <<*>>=
 )clear all
 
---S 140
+--S 140 of 156
 aa:=integrate(acsch(x/a),x)
 --R 
 --R
@@ -2162,7 +2162,7 @@ aa:=integrate(acsch(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 141
+--S 141 of 156
 bb1:=x*acsch(x/a)+a*asinh(x/a)
 --R
 --R                x            x
@@ -2171,7 +2171,7 @@ bb1:=x*acsch(x/a)+a*asinh(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 142
+--S 142 of 156
 bb2:=x*acsch(x/a)-a*asinh(x/a)
 --R
 --R                  x            x
@@ -2180,7 +2180,7 @@ bb2:=x*acsch(x/a)-a*asinh(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 143
+--S 143 of 156
 cc1:=aa-bb1
 --R
 --R   (4)
@@ -2192,7 +2192,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 144    14:669 Axiom cannot simplify these expressions
+--S 144 of 156    14:669 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -2214,7 +2214,7 @@ $$
 <<*>>=
 )clear all
 
---S 145
+--S 145 of 156
 aa:=integrate(x*acsch(x/a),x)
 --R 
 --R
@@ -2230,7 +2230,7 @@ aa:=integrate(x*acsch(x/a),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 146
+--S 146 of 156
 bb1:=x^2/2*acsch(x/a)+(a*sqrt(x^2+a^2))/2
 --R
 --R          +-------+
@@ -2242,7 +2242,7 @@ bb1:=x^2/2*acsch(x/a)+(a*sqrt(x^2+a^2))/2
 --R                                                     Type: Expression Integer
 --E
 
---S 147
+--S 147 of 156
 bb2:=x^2/2*acsch(x/a)-(a*sqrt(x^2+a^2))/2
 --R
 --R            +-------+
@@ -2254,7 +2254,7 @@ bb2:=x^2/2*acsch(x/a)-(a*sqrt(x^2+a^2))/2
 --R                                                     Type: Expression Integer
 --E
 
---S 148
+--S 148 of 156
 cc1:=aa-bb1
 --R
 --R               +-------+
@@ -2267,7 +2267,7 @@ cc1:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 149    14:670 Axiom cannot simplify these expressions
+--S 149 of 156    14:670 Axiom cannot simplify these expressions
 cc2:=aa-bb2
 --R
 --R   (5)
@@ -2316,7 +2316,7 @@ but Axiom has computed a closed form.
 <<*>>=
 )clear all
 
---S 150    14:671 Axiom cannot compute this integral
+--S 150 of 156    14:671 Axiom cannot compute this integral
 aa:=integrate(acsch(x/a)/x,x)
 --R 
 --R
@@ -2339,7 +2339,7 @@ $$
 <<*>>=
 )clear all
 
---S 151    14:672 Axiom cannot compute this integral
+--S 151 of 156    14:672 Axiom cannot compute this integral
 aa:=integrate(x^m*asinh(x/a),x)
 --R 
 --R
@@ -2371,7 +2371,7 @@ $$
 <<*>>=
 )clear all
 
---S 152    14:673 Axiom cannot compute this integral
+--S 152 of 156    14:673 Axiom cannot compute this integral
 aa:=integrate(x^m*acosh(x/a),x)
 --R 
 --R
@@ -2392,7 +2392,7 @@ $$
 <<*>>=
 )clear all
 
---S 153    14:674 Axiom cannot compute this integral
+--S 153 of 156    14:674 Axiom cannot compute this integral
 aa:=integrate(x^m*atanh(x/a),x)
 --R 
 --R
@@ -2413,7 +2413,7 @@ $$
 <<*>>=
 )clear all
 
---S 154    14:675 Axiom cannot compute this integral
+--S 154 of 156    14:675 Axiom cannot compute this integral
 aa:=integrate(x^m*acoth(x/a),x)
 --R 
 --R
@@ -2445,7 +2445,7 @@ $$
 <<*>>=
 )clear all
 
---S 155    14:676 Axiom cannot compute this integral
+--S 155 of 156    14:676 Axiom cannot compute this integral
 aa:=integrate(x^m*asech(x/a),x)
 --R 
 --R
@@ -2468,7 +2468,7 @@ $$
 <<*>>=
 )clear all
 
---S 156    14:677 Axiom cannot compute this integral
+--S 156 of 156    14:677 Axiom cannot compute this integral
 aa:=integrate(x^m*acsch(x/a),x)
 --R 
 --R
diff --git a/src/input/schaum4.input.pamphlet b/src/input/schaum4.input.pamphlet
index 0edbbf9..26dd9f9 100644
--- a/src/input/schaum4.input.pamphlet
+++ b/src/input/schaum4.input.pamphlet
@@ -16,7 +16,7 @@ $$\int{\frac{px+q}{\sqrt{ax+b}}}=
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 25
 aa:=integrate((p*x+q)/sqrt(a*x+b),x)
 --R 
 --R
@@ -28,7 +28,7 @@ aa:=integrate((p*x+q)/sqrt(a*x+b),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 25
 bb:=(2*(a*p*x+3*a*q-2*b*p))/(3*a^2)*sqrt(a*x+b)
 --R
 --R                               +-------+
@@ -39,7 +39,7 @@ bb:=(2*(a*p*x+3*a*q-2*b*p))/(3*a^2)*sqrt(a*x+b)
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:113 Schaums and Axiom agree
+--S 3 of 25      14:113 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -61,7 +61,7 @@ $$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 25
 aa:=integrate(1/((p*x+q)*sqrt(a*x+b)),x)
 --R 
 --R
@@ -87,7 +87,7 @@ aa:=integrate(1/((p*x+q)*sqrt(a*x+b)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 25
 aa1:=aa.1
 --R
 --R   (2)
@@ -103,7 +103,7 @@ aa1:=aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 25
 aa2:=aa.2
 --R
 --R               +------------+
@@ -118,7 +118,7 @@ aa2:=aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 25
 bb1:=1/sqrt(b*p-a*q)*log((sqrt(p*(a*x+b))-sqrt(b*p-a*q))/(sqrt(p*(a*x+b))+sqrt(b*p-a*q)))
 --R
 --R             +-----------+    +-----------+
@@ -132,7 +132,7 @@ bb1:=1/sqrt(b*p-a*q)*log((sqrt(p*(a*x+b))-sqrt(b*p-a*q))/(sqrt(p*(a*x+b))+sqrt(b
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 25
 bb2:=2/(sqrt(a*q-b*p)*sqrt(p))*atan(sqrt((p*(a*x+b))/(a*q-b*p)))
 --R
 --R               +-----------+
@@ -145,7 +145,7 @@ bb2:=2/(sqrt(a*q-b*p)*sqrt(p))*atan(sqrt((p*(a*x+b))/(a*q-b*p)))
 --R                                                     Type: Expression Integer
 --E
 
---S 9
+--S 9 of 25
 cc1:=aa1-bb1
 --R
 --R   (6)
@@ -170,7 +170,7 @@ cc1:=aa1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 25
 cc2:=aa1-bb2
 --R
 --R   (7)
@@ -194,7 +194,7 @@ cc2:=aa1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 25
 cc3:=aa2-bb1
 --R
 --R   (8)
@@ -216,7 +216,7 @@ cc3:=aa2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:114 Axiom cannot simplify these answers
+--S 12 of 25     14:114 Axiom cannot simplify these answers
 cc4:=aa2-bb2
 --R
 --R   (9)
@@ -252,7 +252,7 @@ $$\int{\frac{\sqrt{ax+b}}{px+q}}=
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 25
 aa:=integrate(sqrt(a*x+b)/(p*x+q),x)
 --R 
 --R
@@ -282,7 +282,7 @@ aa:=integrate(sqrt(a*x+b)/(p*x+q),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 25
 aa1:=aa.1
 --R
 --R   (2)
@@ -300,7 +300,7 @@ aa1:=aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 25
 aa2:=aa.2
 --R
 --R             +---------+       +-------+
@@ -315,7 +315,7 @@ aa2:=aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 25
 bb1:=(2*sqrt(a*x+b))/p+sqrt(b*p-a*q)/(p*sqrt(p))*log((sqrt(p*(a*x+b))-sqrt(b*p-a*q))/(sqrt(p*(a*x+b))+sqrt(b*p-a*q)))
 --R
 --R                           +-----------+    +-----------+
@@ -329,7 +329,7 @@ bb1:=(2*sqrt(a*x+b))/p+sqrt(b*p-a*q)/(p*sqrt(p))*log((sqrt(p*(a*x+b))-sqrt(b*p-a
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 25
 bb2:=(2*sqrt(a*x+b))/p-(2*sqrt(a*q-b*p))/(p*sqrt(p))*atan(sqrt((p*(a*x+b))/(a*q-b*p)))
 --R
 --R                             +-----------+
@@ -342,7 +342,7 @@ bb2:=(2*sqrt(a*x+b))/p-(2*sqrt(a*q-b*p))/(p*sqrt(p))*atan(sqrt((p*(a*x+b))/(a*q-
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 25
 cc1:=aa1-bb1
 --R
 --R   (6)
@@ -364,7 +364,7 @@ cc1:=aa1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 25
 cc2:=aa1-bb2
 --R
 --R   (7)
@@ -385,7 +385,7 @@ cc2:=aa1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 20
+--S 20 of 25
 cc3:=aa2-bb1
 --R
 --R   (8)
@@ -408,7 +408,7 @@ cc3:=aa2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 21     14:115 Axiom cannot simplify these answers
+--S 21 of 25     14:115 Axiom cannot simplify these answers
 cc4:=aa2-bb2
 --R
 --R   (9)
@@ -435,7 +435,7 @@ $$\int{(px+b)^n\sqrt{ax+b}}=
 <<*>>=
 )clear all
 
---S 22     14:116 Axiom cannot compute this integral
+--S 22 of 25     14:116 Axiom cannot compute this integral
 aa:=integrate((p*x+q)^n*sqrt(a*x+b),x)
 --R 
 --R
@@ -457,7 +457,7 @@ $$\int{\frac{1}{(px+b)^n\sqrt{ax+b}}}=
 <<*>>=
 )clear all
 
---S 23     14:117 Axiom cannot compute this integral
+--S 23 of 25     14:117 Axiom cannot compute this integral
 aa:=integrate(1/((p*x+q)^n*sqrt(a*x+b)),x)
 --R 
 --R
@@ -479,7 +479,7 @@ $$\int{\frac{(px+q)^n}{\sqrt{ax+b}}}=
 <<*>>=
 )clear all
 
---S 24     14:118 Axiom cannot compute this integral
+--S 24 of 25     14:118 Axiom cannot compute this integral
 aa:=integrate((p*x+q)^n/sqrt(a*x+b),x)
 --R 
 --R
@@ -500,7 +500,7 @@ $$\int{\frac{\sqrt{ax+b}}{(px+q)^n}}=
 <<*>>=
 )clear all
 
---S 25     14:119 Axiom cannot compute this integral
+--S 25 of 25     14:119 Axiom cannot compute this integral
 aa:=integrate(sqrt(a*x+b)/(p*x+q)^n,x)
 --R 
 --R
diff --git a/src/input/schaum5.input.pamphlet b/src/input/schaum5.input.pamphlet
index a5d3fc3..81784b7 100644
--- a/src/input/schaum5.input.pamphlet
+++ b/src/input/schaum5.input.pamphlet
@@ -22,7 +22,7 @@ $$\int{\frac{1}{\sqrt{(ax+b)(px+q)}}}=
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 45
 aa:=integrate(1/sqrt((a*x+b)*(p*x+q)),x)
 --R 
 --R
@@ -54,7 +54,7 @@ aa:=integrate(1/sqrt((a*x+b)*(p*x+q)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 45
 aa1:=aa.1
 --R
 --R   (2)
@@ -75,7 +75,7 @@ aa1:=aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 45
 aa2:=aa.2
 --R
 --R                       +---------------------------+
@@ -89,7 +89,7 @@ aa2:=aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 45
 bb1:=2/sqrt(a*p)*log(sqrt(a*(p*x+q))+sqrt(p*(a*x+b)))
 --R
 --R              +-----------+    +-----------+
@@ -100,7 +100,7 @@ bb1:=2/sqrt(a*p)*log(sqrt(a*(p*x+q))+sqrt(p*(a*x+b)))
 --R                                                     Type: Expression Integer
 --E
 
---S 5
+--S 5 of 45
 bb2:=2/sqrt(-a*p)*atan(sqrt((-p*(a*x+b))/(a*(p*x+q))))
 --R
 --R               +-------------+
@@ -113,7 +113,7 @@ bb2:=2/sqrt(-a*p)*atan(sqrt((-p*(a*x+b))/(a*(p*x+q))))
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 45
 cc1:=aa1-bb1
 --R
 --R   (6)
@@ -137,7 +137,7 @@ cc1:=aa1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 7
+--S 7 of 45
 cc2:=aa1-bb2
 --R
 --R   (7)
@@ -166,7 +166,7 @@ cc2:=aa1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 8
+--S 8 of 45
 cc3:=aa2-bb1
 --R
 --R   (8)
@@ -184,7 +184,7 @@ cc3:=aa2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:120 Axiom cannot simplify these answers
+--S 9 of 45      14:120 Axiom cannot simplify these answers
 cc4:=aa2-bb2
 --R
 --R   (9)
@@ -215,7 +215,7 @@ $$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 45
 aa:=integrate(x/sqrt((a*x+b)*(p*x+q)),x)
 --R 
 --R
@@ -285,7 +285,7 @@ aa:=integrate(x/sqrt((a*x+b)*(p*x+q)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 45
 bb1:=integrate(1/(sqrt(a*x+b)*(p*x+q)),x)
 --R
 --R   (2)
@@ -310,7 +310,7 @@ bb1:=integrate(1/(sqrt(a*x+b)*(p*x+q)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 12
+--S 12 of 45
 bb2:=sqrt((a*x+b)*(p*x+q))/(a*p)-(b*p+a*q)/(2*a*p)
 --R
 --R          +---------------------------+
@@ -321,7 +321,7 @@ bb2:=sqrt((a*x+b)*(p*x+q))/(a*p)-(b*p+a*q)/(2*a*p)
 --R                                                     Type: Expression Integer
 --E
 
---S 13
+--S 13 of 45
 bb:=bb2*bb1
 --R
 --R   (4)
@@ -353,7 +353,7 @@ bb:=bb2*bb1
 --R                                              Type: Vector Expression Integer
 --E
 
---S 14     14:121 Axiom cannot simplify this answer
+--S 14 of 45     14:121 Axiom cannot simplify this answer
 cc:=aa-bb
 --R
 --R   (5)
@@ -475,7 +475,7 @@ $$
 <<*>>=
 )clear all
 
---S 15
+--S 15 of 45
 aa:=integrate(sqrt((a*x+b)*(p*x+q)),x)
 --R 
 --R
@@ -625,7 +625,7 @@ aa:=integrate(sqrt((a*x+b)*(p*x+q)),x)
 @
 Since there are two parts to the aa variable we split them: 
 <<*>>=
---S 16
+--S 16 of 45
 aa1:=aa.1
 --R
 --R   (2)
@@ -703,7 +703,7 @@ aa1:=aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 17
+--S 17 of 45
 aa2:=aa.2
 --R
 --R   (3)
@@ -778,7 +778,7 @@ aa2:=aa.2
 We break the books answer into 3 parts, the first term, the coefficient
 of the second term, and the integral.
 <<*>>=
---S 18
+--S 18 of 45
 bba:=((2*a*p*x+b*p+a*q)/(4*a*p))*sqrt((a*x+b)*(p*x+q))
 --R
 --R                             +---------------------------+
@@ -789,7 +789,7 @@ bba:=((2*a*p*x+b*p+a*q)/(4*a*p))*sqrt((a*x+b)*(p*x+q))
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 45
 bbb:=-(b*p-a*q)^2/(8*a*p)
 --R
 --R           2 2               2 2
@@ -799,7 +799,7 @@ bbb:=-(b*p-a*q)^2/(8*a*p)
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 20
+--S 20 of 45
 bbc:=integrate(1/sqrt((a*x+b)*(p*x+q)),x)
 --R
 --R   (6)
@@ -832,7 +832,7 @@ bbc:=integrate(1/sqrt((a*x+b)*(p*x+q)),x)
 @
 Since the integral has two parts, we break them apart
 <<*>>=
---S 21
+--S 21 of 45
 bbc1:=bbc.1
 --R
 --R   (7)
@@ -853,7 +853,7 @@ bbc1:=bbc.1
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 45
 bbc2:=bbc.2
 --R
 --R                       +---------------------------+
@@ -869,7 +869,7 @@ bbc2:=bbc.2
 @ 
 And now we construct the two bb answers based on the integral parts
 <<*>>=
---S 23
+--S 23 of 45
 bb1:=bba+bbb*bbc1
 --R
 --R   (9)
@@ -897,7 +897,7 @@ bb1:=bba+bbb*bbc1
 --R                                                     Type: Expression Integer
 --E
 
---S 24
+--S 24 of 45
 bb2:=bba+bbb*bbc2
 --R
 --R   (10)
@@ -922,7 +922,7 @@ bb2:=bba+bbb*bbc2
 So there are 4 possible combinations that might yield an answer.
 We construct all four.
 <<*>>=
---S 25
+--S 25 of 45
 cc1:=aa1-bb1
 --R
 --R   (11)
@@ -1022,7 +1022,7 @@ cc1:=aa1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 45
 cc2:=aa1-bb2
 --R
 --R   (12)
@@ -1122,7 +1122,7 @@ cc2:=aa1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 45
 cc3:=aa1-bb1
 --R
 --R   (13)
@@ -1222,7 +1222,7 @@ cc3:=aa1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 28     14:122 Axiom cannot simplify this answer
+--S 28 of 45     14:122 Axiom cannot simplify this answer
 cc4:=aa2-bb2
 --R
 --R   (14)
@@ -1264,7 +1264,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 45
 aa:=integrate(sqrt((p*x+q)/(a*x+b)),x)
 --R 
 --R
@@ -1297,7 +1297,7 @@ aa:=integrate(sqrt((p*x+q)/(a*x+b)),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 45
 aa1:=aa.1
 --R
 --R   (2)
@@ -1316,7 +1316,7 @@ aa1:=aa.1
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 45
 aa2:=aa.2
 --R
 --R                                 +-------+
@@ -1331,7 +1331,7 @@ aa2:=aa.2
 --R                                                     Type: Expression Integer
 --E
 
---S 32
+--S 32 of 45
 bba:=sqrt((a*x+b)*(p*x+q))/a
 --R
 --R         +---------------------------+
@@ -1342,7 +1342,7 @@ bba:=sqrt((a*x+b)*(p*x+q))/a
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 45
 bbb:=(a*q-b*p)/(2*a)
 --R
 --R        a q - b p
@@ -1351,7 +1351,7 @@ bbb:=(a*q-b*p)/(2*a)
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 34
+--S 34 of 45
 bbc:=integrate(1/(sqrt((a*x+b)*(p*x+q))),x)
 --R
 --R   (6)
@@ -1382,7 +1382,7 @@ bbc:=integrate(1/(sqrt((a*x+b)*(p*x+q))),x)
 --R                                     Type: Union(List Expression Integer,...)
 --E
 
---S 35
+--S 35 of 45
 bbc1:=bbc.1
 --R
 --R   (7)
@@ -1403,7 +1403,7 @@ bbc1:=bbc.1
 --R                                                     Type: Expression Integer
 --E
 
---S 36
+--S 36 of 45
 bbc2:=bbc.2
 --R
 --R                       +---------------------------+
@@ -1417,7 +1417,7 @@ bbc2:=bbc.2
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 45
 bb1:=bba+bbb*bbc1
 --R
 --R   (9)
@@ -1444,7 +1444,7 @@ bb1:=bba+bbb*bbc1
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 45
 bb2:=bba+bbb*bbc2
 --R
 --R   (10)
@@ -1463,7 +1463,7 @@ bb2:=bba+bbb*bbc2
 --R                                                     Type: Expression Integer
 --E
 
---S 39
+--S 39 of 45
 cc1:=aa1-bb1
 --R
 --R   (11)
@@ -1496,7 +1496,7 @@ cc1:=aa1-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 40
+--S 40 of 45
 cc2:=aa1-bb2
 --R
 --R   (12)
@@ -1531,7 +1531,7 @@ cc2:=aa1-bb2
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 45
 cc3:=aa2-bb1
 --R
 --R   (13)
@@ -1571,7 +1571,7 @@ cc3:=aa2-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 42     14:123 Axiom cannot simplify these results
+--S 42 of 45     14:123 Axiom cannot simplify these results
 cc4:=aa2-bb2
 --R
 --R   (14)
@@ -1610,7 +1610,7 @@ $$
 <<*>>=
 )clear all
 
---S 43
+--S 43 of 45
 aa:=integrate(1/((p*x+q)*sqrt((a*x+b)*(p*x+q))),x)
 --R 
 --R
@@ -1622,7 +1622,7 @@ aa:=integrate(1/((p*x+q)*sqrt((a*x+b)*(p*x+q))),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 44
+--S 44 of 45
 bb:=(2*sqrt(a*x+b))/((a*q-b*p)*sqrt(p*x+q))
 --R
 --R               +-------+
@@ -1633,7 +1633,7 @@ bb:=(2*sqrt(a*x+b))/((a*q-b*p)*sqrt(p*x+q))
 --R                                                     Type: Expression Integer
 --E
 
---S 45     14:124 Axiom cannot simplify this result
+--S 45 of 45     14:124 Axiom cannot simplify this result
 cc:=aa-bb
 --R
 --R   (3)
diff --git a/src/input/schaum6.input.pamphlet b/src/input/schaum6.input.pamphlet
index ca2c6aa..82b1d2b 100644
--- a/src/input/schaum6.input.pamphlet
+++ b/src/input/schaum6.input.pamphlet
@@ -15,7 +15,7 @@ $$\int{\frac{1}{x^2+a^2}}=\frac{1}{a}\tan^{-1}\frac{x}{a}$$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 68
 aa:=integrate(1/(x^2+a^2),x)
 --R 
 --R
@@ -27,7 +27,7 @@ aa:=integrate(1/(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 68
 bb:=(1/a)*atan(x/a)
 --R
 --R             x
@@ -38,7 +38,7 @@ bb:=(1/a)*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 3      14:125 Schaums and Axiom agree
+--S 3 of 68      14:125 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -52,7 +52,7 @@ $$\int{\frac{x}{x^2+a^2}}=\frac{1}{2}\ln(x^2+a^2)$$
 <<*>>=
 )clear all
 
---S 4
+--S 4 of 68
 aa:=integrate(x/(x^2+a^2),x)
 --R 
 --R
@@ -63,7 +63,7 @@ aa:=integrate(x/(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 5
+--S 5 of 68
 bb:=(1/2)*log(x^2+a^2)
 --R
 --R             2    2
@@ -73,7 +73,7 @@ bb:=(1/2)*log(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 6      14:126 Schaums and Axiom agree
+--S 6 of 68      14:126 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -86,7 +86,7 @@ $$\int{\frac{x^2}{x^2+a^2}}=x-a\tan^{-1}\frac{x}{a}$$
 <<*>>=
 )clear all
 
---S 7
+--S 7 of 68
 aa:=integrate(x^2/(x^2+a^2),x)
 --R 
 --R
@@ -96,7 +96,7 @@ aa:=integrate(x^2/(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 8
+--S 8 of 68
 bb:=x-a*atan(x/a)
 --R
 --R                 x
@@ -105,7 +105,7 @@ bb:=x-a*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 9      14:127 Schaums and Axiom agree
+--S 9 of 68      14:127 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -120,7 +120,7 @@ $$\int{\frac{x^3}{x^2+a^2}}=\frac{x^2}{2}-\frac{a^2}{2}\ln(x^2+a^2)$$
 <<*>>=
 )clear all
 
---S 10
+--S 10 of 68
 aa:=integrate(x^3/(x^2+a^2),x)
 --R 
 --R
@@ -131,7 +131,7 @@ aa:=integrate(x^3/(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 11
+--S 11 of 68
 bb:=x^2/2-a^2/2*log(x^2+a^2)
 --R
 --R           2     2    2     2
@@ -141,7 +141,7 @@ bb:=x^2/2-a^2/2*log(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 12     14:128 Schaums and Axiom agree
+--S 12 of 68     14:128 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -156,7 +156,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 68
 aa:=integrate(1/(x*(x^2+a^2)),x)
 --R 
 --R
@@ -168,7 +168,7 @@ aa:=integrate(1/(x*(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 68
 bb:=1/(2*a^2)*log(x^2/(x^2+a^2))
 --R
 --R                2
@@ -182,7 +182,7 @@ bb:=1/(2*a^2)*log(x^2/(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 68
 cc:=aa-bb
 --R
 --R                                           2
@@ -196,7 +196,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 68
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -205,7 +205,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 17
+--S 17 of 68
 dd:=divlog cc
 --R
 --R               2
@@ -216,7 +216,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 68
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -224,7 +224,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 19     14:129 Schaums and Axiom agree
+--S 19 of 68     14:129 Schaums and Axiom agree
 ee:=logpow dd
 --R
 --R   (7)  0
@@ -240,7 +240,7 @@ $$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 68
 aa:=integrate(1/(x^2*(x^2+a^2)),x)
 --R 
 --R
@@ -253,7 +253,7 @@ aa:=integrate(1/(x^2*(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 21
+--S 21 of 68
 bb:=-1/(a^2*x)-1/a^3*atan(x/a)
 --R
 --R                 x
@@ -265,7 +265,7 @@ bb:=-1/(a^2*x)-1/a^3*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 22     14:130 Schaums and Axiom agree
+--S 22 of 68     14:130 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -281,7 +281,7 @@ $$
 <<*>>=
 )clear all
 
---S 23
+--S 23 of 68
 aa:=integrate(1/(x^3*(x^2+a^2)),x)
 --R 
 --R
@@ -293,7 +293,7 @@ aa:=integrate(1/(x^3*(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 24
+--S 24 of 68
 bb:=-1/(2*a^2*x^2)-1/(2*a^4)*log(x^2/(x^2+a^2))
 --R
 --R                    2
@@ -307,7 +307,7 @@ bb:=-1/(2*a^2*x^2)-1/(2*a^4)*log(x^2/(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 25
+--S 25 of 68
 cc:=aa-bb
 --R
 --R                                         2
@@ -321,7 +321,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 68
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -330,7 +330,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 27
+--S 27 of 68
 dd:=divlog cc
 --R
 --R             2
@@ -341,7 +341,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 28
+--S 28 of 68
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -349,7 +349,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 29     14:131 Schaums and Axiom agree
+--S 29 of 68     14:131 Schaums and Axiom agree
 ee:=logpow dd
 --R
 --R   (7)  0
@@ -365,7 +365,7 @@ $$
 <<*>>=
 )clear all
 
---S 30
+--S 30 of 68
 aa:=integrate(1/((x^2+a^2)^2),x)
 --R 
 --R
@@ -378,7 +378,7 @@ aa:=integrate(1/((x^2+a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 31
+--S 31 of 68
 bb:=x/(2*a^2*(x^2+a^2))+1/(2*a^3)*atan(x/a)
 --R
 --R          2    2      x
@@ -390,7 +390,7 @@ bb:=x/(2*a^2*(x^2+a^2))+1/(2*a^3)*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 32     14:132 Schaums and Axiom agree
+--S 32 of 68     14:132 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -406,7 +406,7 @@ $$
 <<*>>=
 )clear all
 
---S 33
+--S 33 of 68
 aa:=integrate(x/((x^2+a^2)^2),x)
 --R 
 --R
@@ -417,7 +417,7 @@ aa:=integrate(x/((x^2+a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 34
+--S 34 of 68
 bb:=-1/(2*(x^2+a^2))
 --R
 --R              1
@@ -427,7 +427,7 @@ bb:=-1/(2*(x^2+a^2))
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 35     14:133 Schaums and Axiom agree
+--S 35 of 68     14:133 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -442,7 +442,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 68
 aa:=integrate(x^2/((x^2+a^2)^2),x)
 --R 
 --R
@@ -455,7 +455,7 @@ aa:=integrate(x^2/((x^2+a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 37
+--S 37 of 68
 bb:=-x/(2*(x^2+a^2))+1/(2*a)*atan(x/a)
 --R
 --R          2    2      x
@@ -467,7 +467,7 @@ bb:=-x/(2*(x^2+a^2))+1/(2*a)*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 38     14:134 Schaums and Axiom agree
+--S 38 of 68     14:134 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -482,7 +482,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 68
 aa:=integrate(x^3/((x^2+a^2)^2),x)
 --R 
 --R
@@ -494,7 +494,7 @@ aa:=integrate(x^3/((x^2+a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 40
+--S 40 of 68
 bb:=a^2/(2*(x^2+a^2))+1/2*log(x^2+a^2)
 --R
 --R          2    2      2    2     2
@@ -505,7 +505,7 @@ bb:=a^2/(2*(x^2+a^2))+1/2*log(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 41     14:135 Schaums and Axiom agree
+--S 41 of 68     14:135 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -520,7 +520,7 @@ $$
 <<*>>=
 )clear all
 
---S 42
+--S 42 of 68
 aa:=integrate(1/(x*(x^2+a^2)^2),x)
 --R 
 --R
@@ -532,7 +532,7 @@ aa:=integrate(1/(x*(x^2+a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 43
+--S 43 of 68
 bb:=1/(2*a^2*(x^2+a^2))+1/(2*a^4)*log(x^2/(x^2+a^2))
 --R
 --R                         2
@@ -546,7 +546,7 @@ bb:=1/(2*a^2*(x^2+a^2))+1/(2*a^4)*log(x^2/(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 68
 cc:=aa-bb
 --R
 --R                                           2
@@ -560,7 +560,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 68
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -569,7 +569,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 46
+--S 46 of 68
 dd:=divlog cc
 --R
 --R               2
@@ -580,7 +580,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 68
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -588,7 +588,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 48     14:136 Schaums and Axiom agree
+--S 48 of 68     14:136 Schaums and Axiom agree
 ee:=logpow dd
 --R
 --R   (7)  0
@@ -603,7 +603,7 @@ $$
 <<*>>=
 )clear all
 
---S 49
+--S 49 of 68
 aa:=integrate(1/(x^2*(x^2+a^2)^2),x)
 --R
 --R             3     2       x        2     3
@@ -615,7 +615,7 @@ aa:=integrate(1/(x^2*(x^2+a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E
 
---S 50
+--S 50 of 68
 bb:=-1/(a^4*x)-x/(2*a^4*(x^2+a^2))-3/(2*a^5)*atan(x/a)
 --R
 --R             3     2       x        2     3
@@ -627,7 +627,7 @@ bb:=-1/(a^4*x)-x/(2*a^4*(x^2+a^2))-3/(2*a^5)*atan(x/a)
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:137 Schaums and Axiom agree
+--S 51 of 68     14:137 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -643,7 +643,7 @@ $$
 <<*>>=
 )clear all
 
---S 52
+--S 52 of 68
 aa:=integrate(1/(x^3*(x^2+a^2)^2),x)
 --R 
 --R
@@ -655,7 +655,7 @@ aa:=integrate(1/(x^3*(x^2+a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 53
+--S 53 of 68
 bb:=-1/(2*a^4*x^2)-1/(2*a^4*(x^2+a^2))-1/a^6*log(x^2/(x^2+a^2))
 --R
 --R                               2
@@ -669,7 +669,7 @@ bb:=-1/(2*a^4*x^2)-1/(2*a^4*(x^2+a^2))-1/a^6*log(x^2/(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 68
 cc:=aa-bb
 --R
 --R                                         2
@@ -683,7 +683,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 55
+--S 55 of 68
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -692,7 +692,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 56
+--S 56 of 68
 dd:=divlog cc
 --R
 --R             2
@@ -703,7 +703,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 68
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -711,7 +711,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 58     14:138 Schaums and Axiom agree
+--S 58 of 68     14:138 Schaums and Axiom agree
 ee:=logpow dd
 --R
 --R   (7)  0
@@ -728,7 +728,7 @@ $$
 <<*>>=
 )clear all
 
---S 59     14:139 Axiom cannot do this integral
+--S 59 of 68     14:139 Axiom cannot do this integral
 aa:=integrate(1/((x^2+a^2)^n),x)
 --R 
 --R
@@ -748,7 +748,7 @@ $$
 <<*>>=
 )clear all
 
---S 60
+--S 60 of 68
 aa:=integrate(x/((x^2+a^2)^n),x)
 --R 
 --R
@@ -761,7 +761,7 @@ aa:=integrate(x/((x^2+a^2)^n),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 61
+--S 61 of 68
 bb:=-1/(2*(n-1)*(x^2+a^2)^(n-1))
 --R
 --R                     1
@@ -771,7 +771,7 @@ bb:=-1/(2*(n-1)*(x^2+a^2)^(n-1))
 --R                                                     Type: Expression Integer
 --E
 
---S 62
+--S 62 of 68
 cc:=aa-bb
 --R
 --R                 2    2
@@ -784,7 +784,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 63
+--S 63 of 68
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -792,7 +792,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 64
+--S 64 of 68
 dd:=explog cc
 --R
 --R          2    2 n       2    2   2    2 n - 1
@@ -803,7 +803,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 65     14:140 Schaums and Axiom agree
+--S 65 of 68     14:140 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -819,7 +819,7 @@ $$
 <<*>>=
 )clear all
 
---S 66     14:141 Axiom cannot do this integral
+--S 66 of 68     14:141 Axiom cannot do this integral
 aa:=integrate(1/(x*(x^2+a^2)^n),x)
 --R 
 --R
@@ -840,7 +840,7 @@ $$
 <<*>>=
 )clear all
 
---S 67     14:142 Axiom cannot do this integral
+--S 67 of 68     14:142 Axiom cannot do this integral
 aa:=integrate(x^m/((x^2+a^2)^n),x)
 --R 
 --R
@@ -861,7 +861,7 @@ $$
 <<*>>=
 )clear all
 
---S 68     14:143 Axiom cannot do this integral
+--S 68 of 68     14:143 Axiom cannot do this integral
 aa:=integrate(1/(x^m*(x^2+a^2)^n),x)
 --R 
 --R
diff --git a/src/input/schaum7.input.pamphlet b/src/input/schaum7.input.pamphlet
index 52e0b97..3b64f8e 100644
--- a/src/input/schaum7.input.pamphlet
+++ b/src/input/schaum7.input.pamphlet
@@ -16,7 +16,7 @@ $$\int{\frac{1}{x^2-a^2}}=-\frac{1}{a}\coth^{-1}\frac{x}{a}$$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 80
 aa:=integrate(1/(x^2-a^2),x)
 --R 
 --R
@@ -26,7 +26,7 @@ aa:=integrate(1/(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 80
 bb:=1/(2*a)*log((x-a)/(x+a))
 --R
 --R            x - a
@@ -37,7 +37,7 @@ bb:=1/(2*a)*log((x-a)/(x+a))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 80
 cc:=aa-bb
 --R
 --R                                        x - a
@@ -48,7 +48,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -57,7 +57,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 5      14:144 Schaums and Axiom agree
+--S 5 of 80      14:144 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -71,7 +71,7 @@ $$\int{\frac{x}{x^2-a^2}}=\frac{1}{2}\ln(x^2-a^2)$$
 <<*>>=
 )clear all
 
---S 6
+--S 6 of 80
 aa:=integrate(x/(x^2-a^2),x)
 --R 
 --R
@@ -82,7 +82,7 @@ aa:=integrate(x/(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 7
+--S 7 of 80
 bb:=1/2*log(x^2-a^2)
 --R
 --R             2    2
@@ -92,7 +92,7 @@ bb:=1/2*log(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 8      14:145 Schaums and Axiom agree
+--S 8 of 80      14:145 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -106,7 +106,7 @@ $$\int{\frac{x^2}{x^2-a^2}}=x+\frac{a}{2}\ln\left(\frac{x-a}{x+a}\right)$$
 <<*>>=
 )clear all
 
---S 9
+--S 9 of 80
 aa:=integrate(x^2/(x^2-a^2),x)
 --R 
 --R
@@ -116,7 +116,7 @@ aa:=integrate(x^2/(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 10
+--S 10 of 80
 bb:=x+a/2*log((x-a)/(x+a))
 --R
 --R              x - a
@@ -127,7 +127,7 @@ bb:=x+a/2*log((x-a)/(x+a))
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 80
 cc:=aa-bb
 --R
 --R                                              x - a
@@ -138,7 +138,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 12
+--S 12 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -147,7 +147,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 13     14:146 Schaums and Axiom agree
+--S 13 of 80     14:146 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -162,7 +162,7 @@ $$\int{\frac{x^3}{x^2-a^2}}=\frac{x^2}{2}+\frac{a^2}{2}\ln(x^2-a^2)$$
 <<*>>=
 )clear all
 
---S 14
+--S 14 of 80
 aa:=integrate(x^3/(x^2-a^2),x)
 --R 
 --R
@@ -173,7 +173,7 @@ aa:=integrate(x^3/(x^2-a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 15
+--S 15 of 80
 bb:=x^2/2+a^2/2*log(x^2-a^2)
 --R
 --R         2     2    2     2
@@ -183,7 +183,7 @@ bb:=x^2/2+a^2/2*log(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 16     14:147 Schaums and Axiom agree
+--S 16 of 80     14:147 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -199,7 +199,7 @@ $$
 <<*>>=
 )clear all
 
---S 17
+--S 17 of 80
 aa:=integrate(1/(x*(x^2-a^2)),x)
 --R 
 --R
@@ -211,7 +211,7 @@ aa:=integrate(1/(x*(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 18
+--S 18 of 80
 bb:=1/(2*a^2)*log((x^2-a^2)/x^2)
 --R
 --R             2    2
@@ -225,7 +225,7 @@ bb:=1/(2*a^2)*log((x^2-a^2)/x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 80
 cc:=aa-bb
 --R
 --R                                      2    2
@@ -239,7 +239,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 20
+--S 20 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -248,7 +248,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 21
+--S 21 of 80
 dd:=divlog cc
 --R
 --R             2
@@ -259,7 +259,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 80
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -267,7 +267,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 23     14:148 Schaums and Axiom agree
+--S 23 of 80     14:148 Schaums and Axiom agree
 ee:=logpow dd
 --R
 --R   (7)  0
@@ -283,7 +283,7 @@ $$
 <<*>>=
 )clear all
 
---S 24
+--S 24 of 80
 aa:=integrate(1/(x^2*(x^2-a^2)),x)
 --R 
 --R
@@ -294,7 +294,7 @@ aa:=integrate(1/(x^2*(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 25
+--S 25 of 80
 bb:=1/(a^2*x)+1/(2*a^3)*log((x-a)/(x+a))
 --R
 --R              x - a
@@ -306,7 +306,7 @@ bb:=1/(a^2*x)+1/(2*a^3)*log((x-a)/(x+a))
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 80
 cc:=aa-bb
 --R
 --R                                        x - a
@@ -318,7 +318,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -327,7 +327,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 28     14:149 Schaums and Axiom agree
+--S 28 of 80     14:149 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -343,7 +343,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 80
 aa:=integrate(1/(x^3*(x^2-a^2)),x)
 --R 
 --R
@@ -355,7 +355,7 @@ aa:=integrate(1/(x^3*(x^2-a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 80
 bb:=1/(2*a^2*x^2)-1/(2*a^4)*log(x^2/(x^2-a^2))
 --R
 --R                    2
@@ -369,7 +369,7 @@ bb:=1/(2*a^2*x^2)-1/(2*a^4)*log(x^2/(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -378,7 +378,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 32
+--S 32 of 80
 t1:=divlog bb
 --R
 --R           2     2     2     2    2     2
@@ -389,7 +389,7 @@ t1:=divlog bb
 --R                                                     Type: Expression Integer
 --E
 
---S 33
+--S 33 of 80
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -397,7 +397,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 34
+--S 34 of 80
 t2:=logpow t1
 --R
 --R         2     2    2      2          2
@@ -408,7 +408,7 @@ t2:=logpow t1
 --R                                                     Type: Expression Integer
 --E
 
---S 35     14:150 Schaums and Axiom agree
+--S 35 of 80     14:150 Schaums and Axiom agree
 cc:=aa-t2
 --R
 --R   (7)  0
@@ -423,7 +423,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 80
 aa:=integrate(1/((x^2-a^2)^2),x)
 --R 
 --R
@@ -435,7 +435,7 @@ aa:=integrate(1/((x^2-a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 37
+--S 37 of 80
 bb:=-x/(2*a^2*(x^2-a^2))-1/(4*a^3)*log((x-a)/(x+a))
 --R
 --R            2    2     x - a
@@ -447,7 +447,7 @@ bb:=-x/(2*a^2*(x^2-a^2))-1/(4*a^3)*log((x-a)/(x+a))
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 80
 cc:=aa-bb
 --R
 --R                                      x - a
@@ -459,7 +459,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 39
+--S 39 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -468,7 +468,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 40     14:151 Schaums and Axiom agree
+--S 40 of 80     14:151 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -484,7 +484,7 @@ $$
 <<*>>=
 )clear all
 
---S 41
+--S 41 of 80
 aa:=integrate(x/((x^2-a^2)^2),x)
 --R 
 --R
@@ -495,7 +495,7 @@ aa:=integrate(x/((x^2-a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 42
+--S 42 of 80
 bb:=-1/(2*(x^2-a^2))
 --R
 --R              1
@@ -505,7 +505,7 @@ bb:=-1/(2*(x^2-a^2))
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 43     14:152 Schaums and Axiom agree
+--S 43 of 80     14:152 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -521,7 +521,7 @@ $$
 <<*>>=
 )clear all
 
---S 44
+--S 44 of 80
 aa:=integrate(x^2/((x^2-a^2)^2),x)
 --R 
 --R
@@ -533,7 +533,7 @@ aa:=integrate(x^2/((x^2-a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 45
+--S 45 of 80
 bb:=-x/(2*(x^2-a^2))+1/(4*a)*log((x-a)/(x+a))
 --R
 --R          2    2     x - a
@@ -545,7 +545,7 @@ bb:=-x/(2*(x^2-a^2))+1/(4*a)*log((x-a)/(x+a))
 --R                                                     Type: Expression Integer
 --E
 
---S 46
+--S 46 of 80
 cc:=aa-bb
 --R
 --R                                        x - a
@@ -556,7 +556,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 47
+--S 47 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -565,7 +565,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 48     14:153 Schaums and Axiom agree
+--S 48 of 80     14:153 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -581,7 +581,7 @@ $$
 <<*>>=
 )clear all
 
---S 49
+--S 49 of 80
 aa:=integrate(x^3/((x^2-a^2)^2),x)
 --R 
 --R
@@ -593,7 +593,7 @@ aa:=integrate(x^3/((x^2-a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 50
+--S 50 of 80
 bb:=-a^2/(2*(x^2-a^2))+1/2*log(x^2-a^2)
 --R
 --R          2    2      2    2     2
@@ -604,7 +604,7 @@ bb:=-a^2/(2*(x^2-a^2))+1/2*log(x^2-a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:154 Schaums and Axiom agree
+--S 51 of 80     14:154 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -620,7 +620,7 @@ $$
 <<*>>=
 )clear all
 
---S 52
+--S 52 of 80
 aa:=integrate(1/(x*(x^2-a^2)^2),x)
 --R 
 --R
@@ -632,7 +632,7 @@ aa:=integrate(1/(x*(x^2-a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 53
+--S 53 of 80
 bb:=-1/(2*a^2*(x^2-a^2))+1/(2*a^4)*log(x^2/(x^2-a^2))
 --R
 --R                         2
@@ -646,7 +646,7 @@ bb:=-1/(2*a^2*(x^2-a^2))+1/(2*a^4)*log(x^2/(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 80
 cc:=aa-bb
 --R
 --R                                           2
@@ -660,7 +660,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 55
+--S 55 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -669,7 +669,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 56
+--S 56 of 80
 dd:=divlog cc
 --R
 --R               2
@@ -680,7 +680,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 57
+--S 57 of 80
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -688,7 +688,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 58     14:155 Schaums and Axiom agree
+--S 58 of 80     14:155 Schaums and Axiom agree
 ee:=logpow dd
 --R
 --R   (7)  0
@@ -705,7 +705,7 @@ $$
 <<*>>=
 )clear all
 
---S 59
+--S 59 of 80
 aa:=integrate(1/(x^2*(x^2-a^2)^2),x)
 --R
 --R           3     2                    3     2                   2     3
@@ -716,7 +716,7 @@ aa:=integrate(1/(x^2*(x^2-a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 60
+--S 60 of 80
 bb:=-1/(a^4*x)-x/(2*a^4*(x^2-a^2))-3/(4*a^5)*log((x-a)/(x+a))
 --R
 --R             3     2      x - a        2     3
@@ -728,7 +728,7 @@ bb:=-1/(a^4*x)-x/(2*a^4*(x^2-a^2))-3/(4*a^5)*log((x-a)/(x+a))
 --R                                                     Type: Expression Integer
 --E
 
---S 61
+--S 61 of 80
 cc:=aa-bb
 --R
 --R                                         x - a
@@ -740,7 +740,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 62
+--S 62 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -749,7 +749,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 63     14:156 Schaums and Axiom agree
+--S 63 of 80     14:156 Schaums and Axiom agree
 dd:=divlog cc
 --R
 --R   (5)  0
@@ -766,7 +766,7 @@ $$
 <<*>>=
 )clear all
 
---S 64
+--S 64 of 80
 aa:=integrate(1/(x^3*(x^2-a^2)^2),x)
 --R 
 --R
@@ -778,7 +778,7 @@ aa:=integrate(1/(x^3*(x^2-a^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 65
+--S 65 of 80
 bb:=-1/(2*a^4*x^2)-1/(2*a^4*(x^2-a^2))+1/a^6*log(x^2/(x^2-a^2))
 --R
 --R                             2
@@ -792,7 +792,7 @@ bb:=-1/(2*a^4*x^2)-1/(2*a^4*(x^2-a^2))+1/a^6*log(x^2/(x^2-a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 66
+--S 66 of 80
 cc:=aa-bb
 --R
 --R                                           2
@@ -806,7 +806,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 67
+--S 67 of 80
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -815,7 +815,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 68
+--S 68 of 80
 dd:=divlog cc
 --R
 --R               2
@@ -826,7 +826,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 69
+--S 69 of 80
 logpow:=rule(log(a^n) == n*log(a))
 --R
 --R             n
@@ -834,7 +834,7 @@ logpow:=rule(log(a^n) == n*log(a))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 70     14:157 Schaums and Axiom agree
+--S 70 of 80     14:157 Schaums and Axiom agree
 ee:=logpow dd
 --R
 --R   (7)  0
@@ -851,7 +851,7 @@ $$
 <<*>>=
 )clear all
 
---S 71     14:158 Axiom cannot do this integral
+--S 71 of 80     14:158 Axiom cannot do this integral
 aa:=integrate(1/((x^2-a^2)^n),x)
 --R 
 --R
@@ -871,7 +871,7 @@ $$
 <<*>>=
 )clear all
 
---S 72
+--S 72 of 80
 aa:=integrate(x/((x^2-a^2)^n),x)
 --R 
 --R
@@ -884,7 +884,7 @@ aa:=integrate(x/((x^2-a^2)^n),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 73
+--S 73 of 80
 bb:=-1/(2*(n-1)*(x^2-a^2)^(n-1))
 --R
 --R                     1
@@ -894,7 +894,7 @@ bb:=-1/(2*(n-1)*(x^2-a^2)^(n-1))
 --R                                                     Type: Expression Integer
 --E
 
---S 74
+--S 74 of 80
 cc:=aa-bb
 --R
 --R                 2    2
@@ -907,7 +907,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 75
+--S 75 of 80
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -915,7 +915,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 76
+--S 76 of 80
 dd:=explog cc
 --R
 --R          2    2 n       2    2   2    2 n - 1
@@ -926,7 +926,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 77     14:159 Schaums and Axiom agree
+--S 77 of 80     14:159 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -942,7 +942,7 @@ $$
 <<*>>=
 )clear all
 
---S 78     14:160 Axiom cannot compute this integral
+--S 78 of 80     14:160 Axiom cannot compute this integral
 aa:=integrate(1/(x*(x^2-a^2)^n),x)
 --R 
 --R
@@ -963,7 +963,7 @@ $$
 <<*>>=
 )clear all
 
---S 79     14:161 Axiom cannot compute this integral
+--S 79 of 80     14:161 Axiom cannot compute this integral
 aa:=integrate(x^m/((x^2-a^2)^n),x)
 --R 
 --R
@@ -984,7 +984,7 @@ $$
 <<*>>=
 )clear all
 
---S 80     14:162 Axiom cannot compute this integral
+--S 80 of 80     14:162 Axiom cannot compute this integral
 aa:=integrate(1/(x^m*(x^2-a^2)^n),x)
 --R 
 --R
diff --git a/src/input/schaum8.input.pamphlet b/src/input/schaum8.input.pamphlet
index 10d9ef5..b633686 100644
--- a/src/input/schaum8.input.pamphlet
+++ b/src/input/schaum8.input.pamphlet
@@ -16,7 +16,7 @@ $$\int{\frac{1}{a^2-x^2}}=-\frac{1}{a}\coth^{-1}\frac{x}{a}$$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 99
 aa:=integrate(1/(a^2-x^2),x)
 --R 
 --R
@@ -26,7 +26,7 @@ aa:=integrate(1/(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 99
 bb:=1/(2*a)*log((a+x)/(a-x))
 --R
 --R            - x - a
@@ -37,7 +37,7 @@ bb:=1/(2*a)*log((a+x)/(a-x))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 99
 cc:=aa-bb
 --R
 --R                                      - x - a
@@ -48,7 +48,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4
+--S 4 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -57,7 +57,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 5      
+--S 5 of 99
 dd:=divlog cc
 --R
 --R        log(x + a) - log(- x - a)
@@ -66,14 +66,14 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 6
+--S 6 of 99
 logminus:=rule(log(x + a) - log(- x - a) == log(-1))
 --R
 --I   (6)  log(x + a) - log(- x - a) + %I == log(- 1) + %I
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 7      14:163 Schaums and Axiom differ by a constant
+--S 7 of 99      14:163 Schaums and Axiom differ by a constant
 ee:=logminus dd
 --R
 --R        log(- 1)
@@ -89,7 +89,7 @@ $$\int{\frac{x}{a^2-x^2}}=-\frac{1}{2}\ln(a^2-x^2)$$
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 99
 aa:=integrate(x/(a^2-x^2),x)
 --R 
 --R
@@ -100,7 +100,7 @@ aa:=integrate(x/(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 99
 bb:=-1/2*log(a^2-x^2)
 --R
 --R                 2    2
@@ -110,7 +110,7 @@ bb:=-1/2*log(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 99
 cc:=aa-bb
 --R
 --R               2    2           2    2
@@ -120,7 +120,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 99
 logminus1:=rule(-log(x^2-a^2)+log(-x^2+a^2) == log(-1))
 --R
 --R               2    2           2    2
@@ -128,7 +128,7 @@ logminus1:=rule(-log(x^2-a^2)+log(-x^2+a^2) == log(-1))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 12     14:164 Schaums and Axiom differ by a constant
+--S 12 of 99     14:164 Schaums and Axiom differ by a constant
 dd:=logminus1 cc
 --R
 --R        log(- 1)
@@ -143,7 +143,7 @@ $$\int{\frac{x^2}{a^2-x^2}}=-x+\frac{a}{2}\ln\left(\frac{a+x}{a-x}\right)$$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 99
 aa:=integrate(x^2/(a^2-x^2),x)
 --R 
 --R
@@ -153,7 +153,7 @@ aa:=integrate(x^2/(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 99
 bb:=-x+a/2*log((a+x)/(a-x))
 --R
 --R              - x - a
@@ -164,7 +164,7 @@ bb:=-x+a/2*log((a+x)/(a-x))
 --R                                                     Type: Expression Integer
 --E
 
---S 15
+--S 15 of 99
 cc:=aa-bb
 --R
 --R                                            - x - a
@@ -175,7 +175,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 16
+--S 16 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -184,7 +184,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 17
+--S 17 of 99
 dd:=divlog cc
 --R
 --R        a log(x + a) - a log(- x - a)
@@ -193,14 +193,14 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 99
 logminusa:=rule(b*log(x + a) - b*log(- x - a) == b*log(-1))
 --R
 --I   (6)  b log(x + a) - b log(- x - a) + %M == b log(- 1) + %M
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 19     14:165 Schaums and Axiom differ by a constant
+--S 19 of 99     14:165 Schaums and Axiom differ by a constant
 ee:=logminusa dd
 --R
 --R        a log(- 1)
@@ -216,7 +216,7 @@ $$\int{\frac{x^3}{a^2-x^2}}=-\frac{x^2}{2}-\frac{a^2}{2}\ln(a^2-x^2)$$
 <<*>>=
 )clear all
 
---S 20
+--S 20 of 99
 aa:=integrate(x^3/(a^2-x^2),x)
 --R 
 --R
@@ -227,7 +227,7 @@ aa:=integrate(x^3/(a^2-x^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 21
+--S 21 of 99
 bb:=-x^2/2-a^2/2*log(a^2-x^2)
 --R
 --R           2       2    2     2
@@ -237,7 +237,7 @@ bb:=-x^2/2-a^2/2*log(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 22
+--S 22 of 99
 cc:=aa-bb
 --R
 --R           2     2    2     2       2    2
@@ -247,7 +247,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 23
+--S 23 of 99
 logminus1b:=rule(-b*log(x^2-a^2)+b*log(-x^2+a^2) == b*log(-1))
 --R
 --R                 2    2             2    2
@@ -255,7 +255,7 @@ logminus1b:=rule(-b*log(x^2-a^2)+b*log(-x^2+a^2) == b*log(-1))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 24     14:166 Schaums and Axiom differ by a constant
+--S 24 of 99     14:166 Schaums and Axiom differ by a constant
 dd:=logminus1b cc
 --R
 --R         2
@@ -274,7 +274,7 @@ $$
 <<*>>=
 )clear all
 
---S 25
+--S 25 of 99
 aa:=integrate(1/(x*(a^2-x^2)),x)
 --R 
 --R
@@ -286,7 +286,7 @@ aa:=integrate(1/(x*(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 26
+--S 26 of 99
 bb:=1/(2*a^2)*log(x^2/(a^2-x^2))
 --R
 --R                  2
@@ -300,7 +300,7 @@ bb:=1/(2*a^2)*log(x^2/(a^2-x^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 99
 cc:=aa-bb
 --R
 --R                                             2
@@ -314,7 +314,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 28
+--S 28 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -323,7 +323,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 29
+--S 29 of 99
 dd:=divlog cc
 --R
 --R                         2
@@ -334,7 +334,7 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 30
+--S 30 of 99
 logpowminus:=rule(log(-a^n) == n*log(a)+log(-1))
 --R
 --R               n
@@ -342,7 +342,7 @@ logpowminus:=rule(log(-a^n) == n*log(a)+log(-1))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 31     14:167 Schaums and Axiom differ by a constant
+--S 31 of 99     14:167 Schaums and Axiom differ by a constant
 ee:=logpowminus dd
 --R
 --R          log(- 1)
@@ -360,7 +360,7 @@ $$
 <<*>>=
 )clear all
 
---S 32
+--S 32 of 99
 aa:=integrate(1/(x^2*(a^2-x^2)),x)
 --R 
 --R
@@ -371,7 +371,7 @@ aa:=integrate(1/(x^2*(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 33
+--S 33 of 99
 bb:=-1/(a^2*x)+1/(2*a^3)*log((a+x)/(a-x))
 --R
 --R              - x - a
@@ -383,7 +383,7 @@ bb:=-1/(a^2*x)+1/(2*a^3)*log((a+x)/(a-x))
 --R                                                     Type: Expression Integer
 --E
 
---S 34
+--S 34 of 99
 cc:=aa-bb
 --R
 --R                                      - x - a
@@ -395,7 +395,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 35
+--S 35 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -404,7 +404,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 36
+--S 36 of 99
 dd:=divlog cc
 --R
 --R        log(x + a) - log(- x - a)
@@ -414,14 +414,14 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 37
+--S 37 of 99
 logminus:=rule(log(x + a) - log(- x - a) == log(-1))
 --R
 --I   (6)  log(x + a) - log(- x - a) + %O == log(- 1) + %O
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 38     14:168 Schaums and Axiom differ by a constant
+--S 38 of 99     14:168 Schaums and Axiom differ by a constant
 ee:=logminus dd
 --R
 --R        log(- 1)
@@ -440,7 +440,7 @@ $$
 <<*>>=
 )clear all
 
---S 39
+--S 39 of 99
 aa:=integrate(1/(x^3*(a^2-x^2)),x)
 --R 
 --R
@@ -452,7 +452,7 @@ aa:=integrate(1/(x^3*(a^2-x^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 40
+--S 40 of 99
 bb:=-1/(2*a^2*x^2)+1/(2*a^4)*log(x^2/(a^2-x^2))
 --R
 --R                    2
@@ -466,7 +466,7 @@ bb:=-1/(2*a^2*x^2)+1/(2*a^4)*log(x^2/(a^2-x^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 41
+--S 41 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -475,7 +475,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 42
+--S 42 of 99
 bb1:=divlog bb
 --R
 --R           2     2    2     2       2     2
@@ -486,7 +486,7 @@ bb1:=divlog bb
 --R                                                     Type: Expression Integer
 --E
 
---S 43
+--S 43 of 99
 cc:=aa-bb1
 --R
 --R                         2
@@ -497,7 +497,7 @@ cc:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 44
+--S 44 of 99
 logminuspow:=rule(log(-x^n) == n*log(x)+log(-1))
 --R
 --R               n
@@ -505,7 +505,7 @@ logminuspow:=rule(log(-x^n) == n*log(x)+log(-1))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 45     14:169 Schaums and Axiom differ by a constant
+--S 45 of 99     14:169 Schaums and Axiom differ by a constant
 dd:=logminuspow cc
 --R
 --R          log(- 1)
@@ -524,7 +524,7 @@ $$
 <<*>>=
 )clear all
 
---S 46
+--S 46 of 99
 aa:=integrate(1/((a^2-x^2)^2),x)
 --R 
 --R
@@ -536,7 +536,7 @@ aa:=integrate(1/((a^2-x^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 47
+--S 47 of 99
 bb:=x/(2*a^2*(a^2-x^2))+1/(4*a^3)*log((a+x)/(a-x))
 --R
 --R          2    2     - x - a
@@ -548,7 +548,7 @@ bb:=x/(2*a^2*(a^2-x^2))+1/(4*a^3)*log((a+x)/(a-x))
 --R                                                     Type: Expression Integer
 --E
 
---S 48
+--S 48 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -557,7 +557,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 49
+--S 49 of 99
 bb1:=divlog bb
 --R
 --R            2    2                2    2
@@ -568,7 +568,7 @@ bb1:=divlog bb
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 99
 cc:=aa-bb1
 --R
 --R        log(x + a) - log(- x - a)
@@ -578,14 +578,14 @@ cc:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 51
+--S 51 of 99
 logminus:=rule(log(x + a) - log(- x - a) == log(-1))
 --R
 --I   (6)  log(x + a) - log(- x - a) + %P == log(- 1) + %P
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 52     14:170 Schaums and Axiom differ by a constant
+--S 52 of 99     14:170 Schaums and Axiom differ by a constant
 dd:=logminus cc
 --R
 --R        log(- 1)
@@ -604,7 +604,7 @@ $$
 <<*>>=
 )clear all
 
---S 53
+--S 53 of 99
 aa:=integrate(x/((a^2-x^2)^2),x)
 --R 
 --R
@@ -615,7 +615,7 @@ aa:=integrate(x/((a^2-x^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 54
+--S 54 of 99
 bb:=1/(2*(a^2-x^2))
 --R
 --R              1
@@ -625,7 +625,7 @@ bb:=1/(2*(a^2-x^2))
 --R                                            Type: Fraction Polynomial Integer
 --E
 
---S 55     14:171 Schaums and Axiom agree
+--S 55 of 99     14:171 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -641,7 +641,7 @@ $$
 <<*>>=
 )clear all
 
---S 56
+--S 56 of 99
 aa:=integrate(x^2/((a^2-x^2)^2),x)
 --R 
 --R
@@ -653,7 +653,7 @@ aa:=integrate(x^2/((a^2-x^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 57
+--S 57 of 99
 bb:=x/(2*(a^2-x^2))-1/(4*a)*log((a+x)/(a-x))
 --R
 --R            2    2     - x - a
@@ -665,7 +665,7 @@ bb:=x/(2*(a^2-x^2))-1/(4*a)*log((a+x)/(a-x))
 --R                                                     Type: Expression Integer
 --E
 
---S 58
+--S 58 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -674,7 +674,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 59
+--S 59 of 99
 bb1:=divlog bb
 --R
 --R          2    2                  2    2
@@ -685,7 +685,7 @@ bb1:=divlog bb
 --R                                                     Type: Expression Integer
 --E
 
---S 60
+--S 60 of 99
 cc:=aa-bb1
 --R
 --R        - log(x + a) + log(- x - a)
@@ -694,14 +694,14 @@ cc:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 61
+--S 61 of 99
 logminus2:=rule(-log(x + a) + log(- x - a) == log(-1))
 --R
 --I   (6)  - log(x + a) + log(- x - a) + %S == log(- 1) + %S
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 62     14:172 Schaums and Axiom differ by a constant
+--S 62 of 99     14:172 Schaums and Axiom differ by a constant
 dd:=logminus2 cc
 --R
 --R        log(- 1)
@@ -718,7 +718,7 @@ $$
 <<*>>=
 )clear all
 
---S 63
+--S 63 of 99
 aa:=integrate(x^3/((a^2-x^2)^2),x)
 --R 
 --R
@@ -730,7 +730,7 @@ aa:=integrate(x^3/((a^2-x^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 64
+--S 64 of 99
 bb:=a^2/(2*(a^2-x^2))+1/2*log(a^2-x^2)
 --R
 --R          2    2        2    2     2
@@ -741,7 +741,7 @@ bb:=a^2/(2*(a^2-x^2))+1/2*log(a^2-x^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 65
+--S 65 of 99
 cc:=aa-bb
 --R
 --R             2    2           2    2
@@ -751,7 +751,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 66
+--S 66 of 99
 logminus3:=rule(log(x^2-a^2)-log(-x^2+a^2) == log(-1))
 --R
 --R             2    2           2    2
@@ -759,7 +759,7 @@ logminus3:=rule(log(x^2-a^2)-log(-x^2+a^2) == log(-1))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 67     14:173 Schaums and Axiom differ by a constant
+--S 67 of 99     14:173 Schaums and Axiom differ by a constant
 dd:=logminus3 cc
 --R
 --R        log(- 1)
@@ -777,7 +777,7 @@ $$
 <<*>>=
 )clear all
 
---S 68
+--S 68 of 99
 aa:=integrate(1/(x*(a^2-x^2)^2),x)
 --R 
 --R
@@ -789,7 +789,7 @@ aa:=integrate(1/(x*(a^2-x^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 69
+--S 69 of 99
 bb:=1/(2*a^2*(a^2-x^2))+1/(2*a^4)*log(x^2/(a^2-x^2))
 --R
 --R                           2
@@ -803,7 +803,7 @@ bb:=1/(2*a^2*(a^2-x^2))+1/(2*a^4)*log(x^2/(a^2-x^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 70
+--S 70 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -812,7 +812,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 71
+--S 71 of 99
 bb1:=divlog bb
 --R
 --R            2    2      2    2      2    2        2     2
@@ -823,7 +823,7 @@ bb1:=divlog bb
 --R                                                     Type: Expression Integer
 --E
 
---S 72
+--S 72 of 99
 cc:=aa-bb1
 --R
 --R                         2
@@ -834,7 +834,7 @@ cc:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 73
+--S 73 of 99
 logpowminus:=rule(log(-a^n) == n*log(a)+log(-1))
 --R
 --R               n
@@ -842,7 +842,7 @@ logpowminus:=rule(log(-a^n) == n*log(a)+log(-1))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 74     14:174 Schaums and Axiom differ by a constant
+--S 74 of 99     14:174 Schaums and Axiom differ by a constant
 dd:=logpowminus cc
 --R
 --R          log(- 1)
@@ -862,7 +862,7 @@ $$
 <<*>>=
 )clear all
 
---S 75
+--S 75 of 99
 aa:=integrate(1/(x^2*(a^2-x^2)^2),x)
 --R
 --R           3     2                    3     2                   2     3
@@ -873,7 +873,7 @@ aa:=integrate(1/(x^2*(a^2-x^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 76
+--S 76 of 99
 bb:=-1/(a^4*x)+x/(2*a^4*(a^2-x^2))+3/(4*a^5)*log((a+x)/(a-x))
 --R
 --R           3     2      - x - a        2     3
@@ -885,7 +885,7 @@ bb:=-1/(a^4*x)+x/(2*a^4*(a^2-x^2))+3/(4*a^5)*log((a+x)/(a-x))
 --R                                                     Type: Expression Integer
 --E
 
---S 77
+--S 77 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -894,7 +894,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 78
+--S 78 of 99
 bb1:=divlog bb
 --R
 --R             3     2                  3     2                     2     3
@@ -905,7 +905,7 @@ bb1:=divlog bb
 --R                                                     Type: Expression Integer
 --E
 
---S 79
+--S 79 of 99
 cc:=aa-bb
 --R
 --R                                         - x - a
@@ -917,7 +917,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 80
+--S 80 of 99
 dd:=divlog cc
 --R
 --R        3log(x + a) - 3log(- x - a)
@@ -927,14 +927,14 @@ dd:=divlog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 81
+--S 81 of 99
 logminusb:=rule(b*log(x + a) - b*log(- x - a) == b*log(-1))
 --R
 --I   (7)  b log(x + a) - b log(- x - a) + %U == b log(- 1) + %U
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 82     14:175 Schaums and Axiom differ by a constant
+--S 82 of 99     14:175 Schaums and Axiom differ by a constant
 ee:=logminusb dd
 --R
 --R        3log(- 1)
@@ -954,7 +954,7 @@ $$
 <<*>>=
 )clear all
 
---S 83
+--S 83 of 99
 aa:=integrate(1/(x^3*(a^2-x^2)^2),x)
 --R 
 --R
@@ -966,7 +966,7 @@ aa:=integrate(1/(x^3*(a^2-x^2)^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 84
+--S 84 of 99
 bb:=-1/(2*a^4*x^2)+1/(2*a^4*(a^2-x^2))+1/a^6*log(x^2/(a^2-x^2))
 --R
 --R                               2
@@ -980,7 +980,7 @@ bb:=-1/(2*a^4*x^2)+1/(2*a^4*(a^2-x^2))+1/a^6*log(x^2/(a^2-x^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 85
+--S 85 of 99
 divlog:=rule(log(a/b) == log(a) - log(b))
 --R
 --R            a
@@ -989,7 +989,7 @@ divlog:=rule(log(a/b) == log(a) - log(b))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 86
+--S 86 of 99
 bb1:=divlog bb
 --R
 --R             4     2 2      2    2       4     2 2        2      2 2    4
@@ -1000,7 +1000,7 @@ bb1:=divlog bb
 --R                                                     Type: Expression Integer
 --E
 
---S 87
+--S 87 of 99
 cc:=aa-bb1
 --R
 --R                         2
@@ -1011,7 +1011,7 @@ cc:=aa-bb1
 --R                                                     Type: Expression Integer
 --E
 
---S 88
+--S 88 of 99
 logpowminus:=rule(log(-a^n) == n*log(a)+log(-1))
 --R
 --R               n
@@ -1019,7 +1019,7 @@ logpowminus:=rule(log(-a^n) == n*log(a)+log(-1))
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 89     14:176 Schaums and Axiom differ by a constant
+--S 89 of 99     14:176 Schaums and Axiom differ by a constant
 dd:=logpowminus cc
 --R
 --R          log(- 1)
@@ -1039,7 +1039,7 @@ $$
 <<*>>=
 )clear all
 
---S 90     14:177 Axiom cannot do this integration
+--S 90 of 99     14:177 Axiom cannot do this integration
 aa:=integrate(1/((a^2-x^2)^n),x)
 --R 
 --R
@@ -1059,7 +1059,7 @@ $$
 <<*>>=
 )clear all
 
---S 91
+--S 91 of 99
 aa:=integrate(x/((a^2-x^2)^n),x)
 --R 
 --R
@@ -1072,7 +1072,7 @@ aa:=integrate(x/((a^2-x^2)^n),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 92
+--S 92 of 99
 bb:=1/(2*(n-1)*(a^2-x^2)^(n-1))
 --R
 --R                    1
@@ -1082,7 +1082,7 @@ bb:=1/(2*(n-1)*(a^2-x^2)^(n-1))
 --R                                                     Type: Expression Integer
 --E
 
---S 93
+--S 93 of 99
 cc:=aa-bb
 --R
 --R                     2    2
@@ -1095,7 +1095,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 94
+--S 94 of 99
 explog:=rule(%e^(n*log(x)) == x^n)
 --R
 --R          n log(x)     n
@@ -1103,7 +1103,7 @@ explog:=rule(%e^(n*log(x)) == x^n)
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 95
+--S 95 of 99
 dd:=explog cc
 --R
 --R              2    2 n       2    2     2    2 n - 1
@@ -1114,7 +1114,7 @@ dd:=explog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 96     14:178 Schaums and Axiom agree
+--S 96 of 99     14:178 Schaums and Axiom agree
 ee:=complexNormalize dd
 --R
 --R   (6)  0
@@ -1131,7 +1131,7 @@ $$
 <<*>>=
 )clear all
 
---S 97     14:179 Axiom cannot integrate this expression
+--S 97 of 99     14:179 Axiom cannot integrate this expression
 aa:=integrate(1/(x*(a^2-x^2)^n),x)
 --R 
 --R
@@ -1152,7 +1152,7 @@ $$
 <<*>>=
 )clear all
 
---S 98     14:180 Axiom cannot integrate this expression
+--S 98 of 99     14:180 Axiom cannot integrate this expression
 aa:=integrate(x^m/((a^2-x^2)^n),x)
 --R 
 --R
@@ -1173,7 +1173,7 @@ $$
 <<*>>=
 )clear all
 
---S 99     14:181 Axiom cannot integrate this expression
+--S 99 of 99     14:181 Axiom cannot integrate this expression
 aa:=integrate(1/(x^m*(a^2-x^2)^n),x)
 --R 
 --R
diff --git a/src/input/schaum9.input.pamphlet b/src/input/schaum9.input.pamphlet
index fa7d4f2..79f959b 100644
--- a/src/input/schaum9.input.pamphlet
+++ b/src/input/schaum9.input.pamphlet
@@ -16,7 +16,7 @@ $$\int{\frac{1}{\sqrt{x^2+a^2}}}=\sinh^{-1}\frac{x}{a}$$
 )set message auto off
 )clear all
 
---S 1
+--S 1 of 110
 aa:=integrate(1/(sqrt(x^2+a^2)),x)
 --R 
 --R
@@ -26,7 +26,7 @@ aa:=integrate(1/(sqrt(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 2
+--S 2 of 110
 bb:=log(x+sqrt(x^2+a^2))
 --R
 --R             +-------+
@@ -35,7 +35,7 @@ bb:=log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 3
+--S 3 of 110
 cc:=aa-bb
 --R
 --R               +-------+             +-------+
@@ -44,7 +44,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 4      14:182 Schaums and Axiom differ by a constant
+--S 4 of 110      14:182 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R               2
@@ -60,7 +60,7 @@ $$\int{\frac{x}{\sqrt{x^2+a^2}}}=\sqrt{x^2+a^2}$$
 <<*>>=
 )clear all
 
---S 5
+--S 5 of 110
 aa:=integrate(x/(sqrt(x^2+a^2)),x)
 --R 
 --R
@@ -74,7 +74,7 @@ aa:=integrate(x/(sqrt(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 6
+--S 6 of 110
 bb:=sqrt(x^2+a^2)
 --R
 --R         +-------+
@@ -83,7 +83,7 @@ bb:=sqrt(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 7      14:183 Schaums and Axiom agree
+--S 7 of 110      14:183 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -99,7 +99,7 @@ $$
 <<*>>=
 )clear all
 
---S 8
+--S 8 of 110
 aa:=integrate(x^2/sqrt(x^2+a^2),x)
 --R 
 --R
@@ -118,7 +118,7 @@ aa:=integrate(x^2/sqrt(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 9
+--S 9 of 110
 bb:=(x*sqrt(x^2+a^2))/2-a^2/2*log(x+sqrt(x^2+a^2))
 --R
 --R                 +-------+          +-------+
@@ -129,7 +129,7 @@ bb:=(x*sqrt(x^2+a^2))/2-a^2/2*log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 10
+--S 10 of 110
 cc:=aa-bb
 --R
 --R               +-------+               +-------+
@@ -140,14 +140,14 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 11
+--S 11 of 110
 logmul1:=rule(c*log(a)+c*log(b) == c*log(a*b))
 --R
 --I   (4)  c log(b) + c log(a) + %K == c log(a b) + %K
 --R                        Type: RewriteRule(Integer,Integer,Expression Integer)
 --E
 
---S 12     14:184 Schaums and Axiom differ by a constant
+--S 12 of 110     14:184 Schaums and Axiom differ by a constant
 dd:=logmul1 cc
 --R
 --R         2     2
@@ -167,7 +167,7 @@ $$
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 110
 aa:=integrate(x^3/sqrt(x^2+a^2),x)
 --R 
 --R
@@ -181,7 +181,7 @@ aa:=integrate(x^3/sqrt(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 14
+--S 14 of 110
 bb:=(x^2+a^2)^(3/2)/3-a^2*sqrt(x^2+a^2)
 --R
 --R                   +-------+
@@ -192,7 +192,7 @@ bb:=(x^2+a^2)^(3/2)/3-a^2*sqrt(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 15     14:185 Schaums and Axiom agree
+--S 15 of 110     14:185 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -207,7 +207,7 @@ $$
 <<*>>=
 )clear all
 
---S 16
+--S 16 of 110
 aa:=integrate(1/(x*sqrt(x^2+a^2)),x)
 --R 
 --R
@@ -219,7 +219,7 @@ aa:=integrate(1/(x*sqrt(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 17
+--S 17 of 110
 bb:=-1/a*log((a+sqrt(x^2+a^2))/x)
 --R
 --R               +-------+
@@ -232,7 +232,7 @@ bb:=-1/a*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 18
+--S 18 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -246,7 +246,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 19
+--S 19 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -260,7 +260,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 20     14:186 Schaums and Axiom differ by a constant
+--S 20 of 110     14:186 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R          log(- 1)
@@ -279,7 +279,7 @@ $$
 <<*>>=
 )clear all
 
---S 21
+--S 21 of 110
 aa:=integrate(1/(x^2*sqrt(x^2+a^2)),x)
 --R 
 --R
@@ -291,7 +291,7 @@ aa:=integrate(1/(x^2*sqrt(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 22
+--S 22 of 110
 bb:=-sqrt(x^2+a^2)/(a^2*x)
 --R
 --R           +-------+
@@ -303,7 +303,7 @@ bb:=-sqrt(x^2+a^2)/(a^2*x)
 --R                                                     Type: Expression Integer
 --E
 
---S 23     14:187 Schaums and Axiom differ by a constant
+--S 23 of 110     14:187 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R           1
@@ -323,7 +323,7 @@ $$
 <<*>>=
 )clear all
 
---S 24
+--S 24 of 110
 aa:=integrate(1/(x^3*sqrt(x^2+a^2)),x)
 --R 
 --R
@@ -346,7 +346,7 @@ aa:=integrate(1/(x^3*sqrt(x^2+a^2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 25
+--S 25 of 110
 bb:=-sqrt(x^2+a^2)/(2*a^2*x^2)+1/(2*a^3)*log((a+sqrt(x^2+a^2))/x)
 --R
 --R               +-------+
@@ -360,7 +360,7 @@ bb:=-sqrt(x^2+a^2)/(2*a^2*x^2)+1/(2*a^3)*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 26
+--S 26 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -375,7 +375,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 27
+--S 27 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -390,7 +390,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 28     14:188 Schaums and Axiom differ by a constant
+--S 28 of 110     14:188 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        log(- 1)
@@ -409,7 +409,7 @@ $$
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 110
 aa:=integrate(sqrt(x^2+a^2),x)
 --R 
 --R
@@ -428,7 +428,7 @@ aa:=integrate(sqrt(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 30
+--S 30 of 110
 bb:=(x*sqrt(x^2+a^2))/2+a^2/2*log(x+sqrt(x^2+a^2))
 --R
 --R               +-------+          +-------+
@@ -439,7 +439,7 @@ bb:=(x*sqrt(x^2+a^2))/2+a^2/2*log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 31
+--S 31 of 110
 cc:=aa-bb
 --R
 --R                 +-------+               +-------+
@@ -450,7 +450,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 32     14:189 Schaums and Axiom differ by a constant
+--S 32 of 110     14:189 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R           2     2
@@ -469,7 +469,7 @@ $$
 <<*>>=
 )clear all
 
---S 33
+--S 33 of 110
 aa:=integrate(x*sqrt(x^2+a^2),x)
 --R 
 --R
@@ -483,7 +483,7 @@ aa:=integrate(x*sqrt(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 34
+--S 34 of 110
 bb:=(x^2+a^2)^(3/2)/3
 --R
 --R                  +-------+
@@ -494,7 +494,7 @@ bb:=(x^2+a^2)^(3/2)/3
 --R                                                     Type: Expression Integer
 --E
 
---S 35     14:190 Schaums and Axiom agree
+--S 35 of 110     14:190 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -511,7 +511,7 @@ $$
 <<*>>=
 )clear all
 
---S 36
+--S 36 of 110
 aa:=integrate(x^2*sqrt(x^2+a^2),x)
 --R 
 --R
@@ -530,7 +530,7 @@ aa:=integrate(x^2*sqrt(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 37
+--S 37 of 110
 bb:=(x*(x^2+a^2)^(3/2))/4-(a^2*x*sqrt(x^2+a^2))/8-a^4/8*log(x+sqrt(x^2+a^2))
 --R
 --R                 +-------+                    +-------+
@@ -541,7 +541,7 @@ bb:=(x*(x^2+a^2)^(3/2))/4-(a^2*x*sqrt(x^2+a^2))/8-a^4/8*log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 38
+--S 38 of 110
 cc:=aa-bb
 --R
 --R               +-------+               +-------+
@@ -552,7 +552,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 39     14:191 Schaums and Axiom differ by a constant
+--S 39 of 110     14:191 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R         4     2
@@ -571,7 +571,7 @@ $$
 <<*>>=
 )clear all
 
---S 40
+--S 40 of 110
 aa:=integrate(x^3*sqrt(x^2+a^2),x)
 --R 
 --R
@@ -589,7 +589,7 @@ aa:=integrate(x^3*sqrt(x^2+a^2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 41
+--S 41 of 110
 bb:=(x^2+a^2)^(5/2)/5-(a^2*(x^2+a^2)^(3/2))/3
 --R
 --R                           +-------+
@@ -600,7 +600,7 @@ bb:=(x^2+a^2)^(5/2)/5-(a^2*(x^2+a^2)^(3/2))/3
 --R                                                     Type: Expression Integer
 --E
 
---S 42     14:192 Schaums and Axiom agree
+--S 42 of 110     14:192 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -616,7 +616,7 @@ $$
 <<*>>=
 )clear all
 
---S 43
+--S 43 of 110
 aa:=integrate(sqrt(x^2+a^2)/x,x)
 --R 
 --R
@@ -635,7 +635,7 @@ aa:=integrate(sqrt(x^2+a^2)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 44
+--S 44 of 110
 bb:=sqrt(x^2+a^2)-a*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                 +-------+
@@ -646,7 +646,7 @@ bb:=sqrt(x^2+a^2)-a*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 45
+--S 45 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -662,7 +662,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 46
+--S 46 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -676,7 +676,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 47     14:193 Schaums and Axiom differ by a constant
+--S 47 of 110     14:193 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R   (5)  - a log(- 1)
@@ -692,7 +692,7 @@ $$
 <<*>>=
 )clear all
 
---S 48
+--S 48 of 110
 aa:=integrate(sqrt(x^2+a^2)/x^2,x)
 --R 
 --R
@@ -706,7 +706,7 @@ aa:=integrate(sqrt(x^2+a^2)/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 49
+--S 49 of 110
 bb:=-sqrt(x^2+a^2)/x+log(x+sqrt(x^2+a^2))
 --R
 --R               +-------+         +-------+
@@ -717,7 +717,7 @@ bb:=-sqrt(x^2+a^2)/x+log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 50
+--S 50 of 110
 cc:=aa-bb
 --R
 --R               +-------+             +-------+
@@ -726,7 +726,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 51     14:194 Schaums and Axiom differ by a constant
+--S 51 of 110     14:194 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R               2
@@ -745,7 +745,7 @@ $$
 <<*>>=
 )clear all
 
---S 52
+--S 52 of 110
 aa:=integrate(sqrt(x^2+a^2)/x^3,x)
 --R 
 --R
@@ -768,7 +768,7 @@ aa:=integrate(sqrt(x^2+a^2)/x^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 53
+--S 53 of 110
 bb:=-sqrt(x^2+a^2)/(2*x^2)-1/(2*a)*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                 +-------+
@@ -782,7 +782,7 @@ bb:=-sqrt(x^2+a^2)/(2*x^2)-1/(2*a)*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 54
+--S 54 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -796,7 +796,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 55
+--S 55 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -810,7 +810,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 56     14:195 Schaums and Axiom differ by a constant
+--S 56 of 110     14:195 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R          log(- 1)
@@ -827,7 +827,7 @@ $$
 <<*>>=
 )clear all
 
---S 57
+--S 57 of 110
 aa:=integrate(1/(x^2+a^2)^(3/2),x)
 --R 
 --R
@@ -839,7 +839,7 @@ aa:=integrate(1/(x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 58
+--S 58 of 110
 bb:=x/(a^2*sqrt(x^2+a^2))
 --R
 --R              x
@@ -850,7 +850,7 @@ bb:=x/(a^2*sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 59     14:196 Schaums and Axiom differ by a constant
+--S 59 of 110     14:196 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R         1
@@ -869,7 +869,7 @@ $$
 <<*>>=
 )clear all
 
---S 60
+--S 60 of 110
 aa:=integrate(x/(x^2+a^2)^(3/2),x)
 --R 
 --R
@@ -883,7 +883,7 @@ aa:=integrate(x/(x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 61
+--S 61 of 110
 bb:=-1/sqrt(x^2+a^2)
 --R
 --R               1
@@ -894,7 +894,7 @@ bb:=-1/sqrt(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 62     14:197 Schaums and Axiom agree
+--S 62 of 110     14:197 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -911,7 +911,7 @@ $$
 <<*>>=
 )clear all
 
---S 63
+--S 63 of 110
 aa:=integrate(x^2/(x^2+a^2)^(3/2),x)
 --R 
 --R
@@ -925,7 +925,7 @@ aa:=integrate(x^2/(x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 64
+--S 64 of 110
 bb:=-x/sqrt(x^2+a^2)+log(x+sqrt(x^2+a^2))
 --R
 --R         +-------+     +-------+
@@ -938,7 +938,7 @@ bb:=-x/sqrt(x^2+a^2)+log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 65
+--S 65 of 110
 cc:=aa-bb
 --R
 --R               +-------+             +-------+
@@ -947,7 +947,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 66     14:198 Schaums and Axiom differ by a constant
+--S 66 of 110     14:198 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R               2
@@ -964,7 +964,7 @@ $$
 <<*>>=
 )clear all
 
---S 67
+--S 67 of 110
 aa:=integrate(x^3/(x^2+a^2)^(3/2),x)
 --R 
 --R
@@ -978,7 +978,7 @@ aa:=integrate(x^3/(x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 68
+--S 68 of 110
 bb:=sqrt(x^2+a^2)+a^2/sqrt(x^2+a^2)
 --R
 --R          2     2
@@ -990,7 +990,7 @@ bb:=sqrt(x^2+a^2)+a^2/sqrt(x^2+a^2)
 --R                                                     Type: Expression Integer
 --E
 
---S 69     14:199 Schaums and Axiom agree
+--S 69 of 110     14:199 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1007,7 +1007,7 @@ $$
 <<*>>=
 )clear all
 
---S 70
+--S 70 of 110
 aa:=integrate(1/(x*(x^2+a^2)^(3/2)),x)
 --R 
 --R
@@ -1026,7 +1026,7 @@ aa:=integrate(1/(x*(x^2+a^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 71
+--S 71 of 110
 bb:=1/(a^2*sqrt(x^2+a^2))-1/a^3*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                         +-------+
@@ -1041,7 +1041,7 @@ bb:=1/(a^2*sqrt(x^2+a^2))-1/a^3*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 72
+--S 72 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -1056,7 +1056,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 73
+--S 73 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -1071,7 +1071,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 74     14:200 Schaums and Axiom differ by a constant
+--S 74 of 110     14:200 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R          log(- 1)
@@ -1091,7 +1091,7 @@ $$
 <<*>>=
 )clear all
 
---S 75
+--S 75 of 110
 aa:=integrate(1/(x^2*(x^2+a^2)^(3/2)),x)
 --R 
 --R
@@ -1103,7 +1103,7 @@ aa:=integrate(1/(x^2*(x^2+a^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 76
+--S 76 of 110
 bb:=-sqrt(x^2+a^2)/(a^4*x)-x/(a^4*sqrt(x^2+a^2))
 --R
 --R              2    2
@@ -1115,7 +1115,7 @@ bb:=-sqrt(x^2+a^2)/(a^4*x)-x/(a^4*sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 77     14:201 Schaums and Axiom differ by a constant
+--S 77 of 110     14:201 Schaums and Axiom differ by a constant
 cc:=aa-bb
 --R
 --R           2
@@ -1136,7 +1136,7 @@ $$
 <<*>>=
 )clear all
 
---S 78
+--S 78 of 110
 aa:=integrate(1/(x^3*(x^2+a^2)^(3/2)),x)
 --R 
 --R
@@ -1163,7 +1163,7 @@ aa:=integrate(1/(x^3*(x^2+a^2)^(3/2)),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 79
+--S 79 of 110
 bb:=-1/(2*a^2*x^2*sqrt(x^2+a^2))-3/(2*a^4*sqrt(x^2+a^2))+3/(2*a^5)*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                          +-------+
@@ -1178,7 +1178,7 @@ bb:=-1/(2*a^2*x^2*sqrt(x^2+a^2))-3/(2*a^4*sqrt(x^2+a^2))+3/(2*a^5)*log((a+sqrt(x
 --R                                                     Type: Expression Integer
 --E
 
---S 80
+--S 80 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -1193,7 +1193,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 81
+--S 81 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -1210,7 +1210,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 82     14:202 Schaums and Axiom differ by a constant
+--S 82 of 110     14:202 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R        3log(- 1)
@@ -1229,7 +1229,7 @@ $$
 <<*>>=
 )clear all
 
---S 83
+--S 83 of 110
 aa:=integrate((x^2+a^2)^(3/2),x)
 --R
 --R   (1)
@@ -1250,7 +1250,7 @@ aa:=integrate((x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 84
+--S 84 of 110
 bb:=(x*(x^2+a^2)^(3/2))/4+(3*a^2*x*sqrt(x^2+a^2))/8+3/8*a^4*log(x+sqrt(x^2+a^2))
 --R
 --R                +-------+                     +-------+
@@ -1261,7 +1261,7 @@ bb:=(x*(x^2+a^2)^(3/2))/4+(3*a^2*x*sqrt(x^2+a^2))/8+3/8*a^4*log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 85
+--S 85 of 110
 cc:=aa-bb
 --R
 --R                  +-------+                +-------+
@@ -1272,7 +1272,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 86     14:203 Schaums and Axiom differ by a constant
+--S 86 of 110     14:203 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R            4     2
@@ -1288,7 +1288,7 @@ $$\int{x(x^2+a^2)^{3/2}}=\frac{(x^2+a^2)^{5/2}}{5}$$
 <<*>>=
 )clear all
 
---S 87
+--S 87 of 110
 aa:=integrate(x*(x^2+a^2)^(3/2),x)
 --R 
 --R
@@ -1306,7 +1306,7 @@ aa:=integrate(x*(x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 88
+--S 88 of 110
 bb:=(x^2+a^2)^(5/2)/5
 --R
 --R                          +-------+
@@ -1317,7 +1317,7 @@ bb:=(x^2+a^2)^(5/2)/5
 --R                                                     Type: Expression Integer
 --E
 
---S 89     14:204 Schaums and Axiom agree
+--S 89 of 110     14:204 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1334,7 +1334,7 @@ $$
 <<*>>=
 )clear all
 
---S 90
+--S 90 of 110
 aa:=integrate(x^2*(x^2+a^2)^(3/2),x)
 --R 
 --R
@@ -1363,7 +1363,7 @@ aa:=integrate(x^2*(x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 91
+--S 91 of 110
 bb:=(x*(x^2+a^2)^(5/2))/6-(a^2*x*(x^2+a^2)^(3/2))/24-(a^4*x*sqrt(x^2+a^2))/16-a^6/16*log(x+sqrt(x^2+a^2))
 --R
 --R                  +-------+                              +-------+
@@ -1374,7 +1374,7 @@ bb:=(x*(x^2+a^2)^(5/2))/6-(a^2*x*(x^2+a^2)^(3/2))/24-(a^4*x*sqrt(x^2+a^2))/16-a^
 --R                                                     Type: Expression Integer
 --E
 
---S 92
+--S 92 of 110
 cc:=aa-bb
 --R
 --R               +-------+               +-------+
@@ -1385,7 +1385,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 93     14:205 Schaums and Axiom differ by a constant
+--S 93 of 110     14:205 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R         6     2
@@ -1403,7 +1403,7 @@ $$
 <<*>>=
 )clear all
 
---S 94
+--S 94 of 110
 aa:=integrate(x^3*(x^2+a^2)^(3/2),x)
 --R 
 --R
@@ -1433,7 +1433,7 @@ aa:=integrate(x^3*(x^2+a^2)^(3/2),x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 95
+--S 95 of 110
 bb:=(x^2+a^2)^(7/2)/7-(a^2*(x^2+a^2)^(5/2))/5
 --R
 --R                                   +-------+
@@ -1444,7 +1444,7 @@ bb:=(x^2+a^2)^(7/2)/7-(a^2*(x^2+a^2)^(5/2))/5
 --R                                                     Type: Expression Integer
 --E
 
---S 96     14:206 Schaums and Axiom agree
+--S 96 of 110     14:206 Schaums and Axiom agree
 cc:=aa-bb
 --R
 --R   (3)  0
@@ -1461,7 +1461,7 @@ $$
 <<*>>=
 )clear all
 
---S 97
+--S 97 of 110
 aa:=integrate((x^2+a^2)^(3/2)/x,x)
 --R 
 --R
@@ -1484,7 +1484,7 @@ aa:=integrate((x^2+a^2)^(3/2)/x,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 98
+--S 98 of 110
 bb:=(x^2+a^2)^(3/2)/3+a^2*sqrt(x^2+a^2)-a^3*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                  +-------+
@@ -1497,7 +1497,7 @@ bb:=(x^2+a^2)^(3/2)/3+a^2*sqrt(x^2+a^2)-a^3*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 99
+--S 99 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -1513,7 +1513,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 100
+--S 100 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -1527,7 +1527,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 101    14:207 Schaums and Axiom differ by a constant
+--S 101 of 110    14:207 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R           3
@@ -1545,7 +1545,7 @@ $$
 <<*>>=
 )clear all
 
---S 102
+--S 102 of 110
 aa:=integrate((x^2+a^2)^{3/2}/x^2,x)
 --R 
 --R
@@ -1564,7 +1564,7 @@ aa:=integrate((x^2+a^2)^{3/2}/x^2,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 103
+--S 103 of 110
 bb:=-(x^2+a^2)^(3/2)/x+(3*x*sqrt(x^2+a^2))/2+3/2*a^2*log(x+sqrt(x^2+a^2))
 --R
 --R                  +-------+                   +-------+
@@ -1575,7 +1575,7 @@ bb:=-(x^2+a^2)^(3/2)/x+(3*x*sqrt(x^2+a^2))/2+3/2*a^2*log(x+sqrt(x^2+a^2))
 --R                                                     Type: Expression Integer
 --E
 
---S 104
+--S 104 of 110
 cc:=aa-bb
 --R
 --R                  +-------+                +-------+
@@ -1586,7 +1586,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 105    14:208 Schaums and Axiom differ by a constant
+--S 105 of 110    14:208 Schaums and Axiom differ by a constant
 dd:=complexNormalize cc
 --R
 --R            2     2      2
@@ -1607,7 +1607,7 @@ $$
 <<*>>=
 )clear all
 
---S 106
+--S 106 of 110
 aa:=integrate((x^2+a^2)^(3/2)/x^3,x)
 --R 
 --R
@@ -1630,7 +1630,7 @@ aa:=integrate((x^2+a^2)^(3/2)/x^3,x)
 --R                                          Type: Union(Expression Integer,...)
 --E 
 
---S 107
+--S 107 of 110
 bb:=-(x^2+a^2)^(3/2)/(2*x^2)+3/2*sqrt(x^2+a^2)-3/2*a*log((a+sqrt(x^2+a^2))/x)
 --R
 --R                    +-------+
@@ -1644,7 +1644,7 @@ bb:=-(x^2+a^2)^(3/2)/(2*x^2)+3/2*sqrt(x^2+a^2)-3/2*a*log((a+sqrt(x^2+a^2))/x)
 --R                                                     Type: Expression Integer
 --E
 
---S 108
+--S 108 of 110
 cc:=aa-bb
 --R
 --R   (3)
@@ -1662,7 +1662,7 @@ cc:=aa-bb
 --R                                                     Type: Expression Integer
 --E
 
---S 109
+--S 109 of 110
 dd:=expandLog cc
 --R
 --R   (4)
@@ -1678,7 +1678,7 @@ dd:=expandLog cc
 --R                                                     Type: Expression Integer
 --E
 
---S 110    14:209 Schaums and Axiom differ by a constant
+--S 110 of 110    14:209 Schaums and Axiom differ by a constant
 ee:=complexNormalize dd
 --R
 --R          3a log(- 1)
diff --git a/src/input/series.input.pamphlet b/src/input/series.input.pamphlet
index 8636c41..bd53d23 100644
--- a/src/input/series.input.pamphlet
+++ b/src/input/series.input.pamphlet
@@ -18,7 +18,7 @@
 )set message test on
 )set message auto off
 )clear all
---S 1
+--S 1 of 17
 \section{Expression To Power Series}
 We compute series expansions of various functions using EXPR2UPS.
 
diff --git a/src/input/sersolve.input.pamphlet b/src/input/sersolve.input.pamphlet
index 1f910b7..993bb36 100644
--- a/src/input/sersolve.input.pamphlet
+++ b/src/input/sersolve.input.pamphlet
@@ -55,7 +55,7 @@ seriesSolve(eq,y,x=0,y(0) = 0)
 
 )set streams calculate 10
 
---S 4  of 10
+--S 4 of 10
 R := EXPR INT
 --R 
 --R
diff --git a/src/input/stream2.input.pamphlet b/src/input/stream2.input.pamphlet
index 11adb23..514a99f 100644
--- a/src/input/stream2.input.pamphlet
+++ b/src/input/stream2.input.pamphlet
@@ -22,7 +22,7 @@
 )set functions cache all
 )set functions compile on
 
---S 1  of 55
+--S 1 of 55
 u==[i+j for i in (-4)..10 | i < 5 for j in 4.. | j < 10]
 --R 
 --R                                                                   Type: Void
@@ -198,7 +198,7 @@ u==[i for i in m..n]
 
 )set mes test off
 
---S 21  of 55
+--S 21 of 55
 u
 --R 
 --R 
@@ -207,7 +207,7 @@ u
 
 )set mes test on
 
---S 22  of 55
+--S 22 of 55
 n:=7
 --R 
 --R
@@ -303,7 +303,7 @@ u==[[i+j for i in 0..j] for j in 0..n]
 
 )set mes test off
 
---S 33  of 55
+--S 33 of 55
 u
 --R 
 --R 
@@ -312,7 +312,7 @@ u
 
 )set mes test on
 
---S 34  of 55
+--S 34 of 55
 n:=5
 --R 
 --R
@@ -406,7 +406,7 @@ u
 
 )set streams calculate 10
 
---S 44  of 55
+--S 44 of 55
 u==[[i+j for i in 0..] for j in 0..]
 --R 
 --R                                                                   Type: Void
@@ -486,7 +486,7 @@ u(3,6)
 
 )set streams calculate 3
 
---S 51  of 55
+--S 51 of 55
 [[[i+j+k for i in 0..] for j in 0..] for k in 0..]
 --R 
 --R
diff --git a/src/input/test.input.pamphlet b/src/input/test.input.pamphlet
index 7ffe5b8..1706da0 100644
--- a/src/input/test.input.pamphlet
+++ b/src/input/test.input.pamphlet
@@ -26,7 +26,7 @@ Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 1
+--S 1 of 188
 eq1:= A*x**2 + B*x*y + C*y**2 +D*x + E*y + F
 --R 
 --R
@@ -35,7 +35,7 @@ eq1:= A*x**2 + B*x*y + C*y**2 +D*x + E*y + F
 --R                                                     Type: Polynomial Integer
 --E 1
 
---S 2
+--S 2 of 188
 eq2:= eval(eq1,[x= xdot*cos(t) - ydot*sin(t), y=xdot*sin(t) + ydot*cos(t)])
 --R 
 --R
@@ -56,7 +56,7 @@ UTS coercions.  Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 3
+--S 3 of 188
 taylor exp x
 --R 
 --R
@@ -71,7 +71,7 @@ taylor exp x
 --R                         Type: UnivariateTaylorSeries(Expression Integer,x,0)
 --E 3
 
---S 4
+--S 4 of 188
 s := %
 --R 
 --R
@@ -86,7 +86,7 @@ s := %
 --R                         Type: UnivariateTaylorSeries(Expression Integer,x,0)
 --E 4
 
---S 5
+--S 5 of 188
 s::(UTS(EXPR FLOAT, x, 0))
 --R 
 --R
@@ -108,7 +108,7 @@ s::(UTS(EXPR FLOAT, x, 0))
 --R                         Type: UnivariateTaylorSeries(Expression Float,x,0.0)
 --E 5
 
---S 6
+--S 6 of 188
 s::(UTS(FLOAT, x, 0))
 --R 
 --R
@@ -130,7 +130,7 @@ s::(UTS(FLOAT, x, 0))
 --R                                    Type: UnivariateTaylorSeries(Float,x,0.0)
 --E 6
 
---S 7
+--S 7 of 188
 eval(s,1)
 --R 
 --R
@@ -140,7 +140,7 @@ eval(s,1)
 --R                                              Type: Stream Expression Integer
 --E 7
 
---S 8
+--S 8 of 188
 %::(Stream Float)
 --R 
 --R
@@ -156,7 +156,7 @@ Another bug, fixed by adding UPXS2 package,
 <<*>>=
 )clear all
 
---S 9
+--S 9 of 188
 s := series(sin(a*x),x=0)
 --R 
 --R
@@ -167,7 +167,7 @@ s := series(sin(a*x),x=0)
 --R                        Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
 --E 9
 
---S 10
+--S 10 of 188
 eval(s, 1.0)
 --R 
 --R
@@ -205,7 +205,7 @@ eval(s, 1.0)
 --R                                                Type: Stream Expression Float
 --E 10
 
---S 11
+--S 11 of 188
 s - a*x
 --R 
 --R
@@ -224,7 +224,7 @@ s - a*x
 Grand finale, just fixed on 3/23/91
 <<*>>=
 
---S 12
+--S 12 of 188
 eval(s, 1.0)
 --R 
 --R
@@ -267,7 +267,7 @@ Generalized resolve. Fixed (enhanced) by SCM in 3/23/91
 <<*>>=
 )clear all
 
---S 13
+--S 13 of 188
 v := vector [1,2,3]
 --R 
 --R
@@ -275,7 +275,7 @@ v := vector [1,2,3]
 --R                                                 Type: Vector PositiveInteger
 --E 13
 
---S 14
+--S 14 of 188
 (1/2)*v
 --R 
 --R
@@ -285,7 +285,7 @@ v := vector [1,2,3]
 --R                                                Type: Vector Fraction Integer
 --E 14
 
---S 15
+--S 15 of 188
 eval(x**2, x=1/2)
 --R 
 --R
@@ -295,7 +295,7 @@ eval(x**2, x=1/2)
 --R                                            Type: Polynomial Fraction Integer
 --E 15
 
---S 16
+--S 16 of 188
 eval(x**2, x=0.5)
 --R 
 --R
@@ -303,7 +303,7 @@ eval(x**2, x=0.5)
 --R                                                       Type: Polynomial Float
 --E 16
 
---S 17
+--S 17 of 188
 eval(3**x, x=0.5)
 --R 
 --R
@@ -316,19 +316,19 @@ Overloading interpreter maps on arity. Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 18
+--S 18 of 188
 f(x) == x+1
 --R 
 --R                                                                   Type: Void
 --E 18
 
---S 19
+--S 19 of 188
 f(x,y) == x+y
 --R 
 --R                                                                   Type: Void
 --E 19
 
---S 20
+--S 20 of 188
 f 3
 --R 
 --R   Compiling function f with type PositiveInteger -> PositiveInteger 
@@ -337,7 +337,7 @@ f 3
 --R                                                        Type: PositiveInteger
 --E 20
 
---S 21
+--S 21 of 188
 f(3,4)
 --R 
 --R   Compiling function f with type (PositiveInteger,PositiveInteger) -> 
@@ -347,7 +347,7 @@ f(3,4)
 --R                                                        Type: PositiveInteger
 --E 21
 
---S 22
+--S 22 of 188
 f(5)
 --R 
 --R
@@ -355,7 +355,7 @@ f(5)
 --R                                                        Type: PositiveInteger
 --E 22
 
---S 23
+--S 23 of 188
 f(1,x)
 --R 
 --R   Compiling function f with type (PositiveInteger,Variable x) -> 
@@ -370,7 +370,7 @@ Targetted function requiring a coercion. Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 24
+--S 24 of 188
 series(n +-> bernoulli(n)/factorial(n), t=0)
 --R 
 --R
@@ -386,7 +386,7 @@ In-homogeneous list mapping. Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 25
+--S 25 of 188
 l := [1,2,-1]
 --R 
 --R
@@ -394,19 +394,19 @@ l := [1,2,-1]
 --R                                                           Type: List Integer
 --E 25
 
---S 26
+--S 26 of 188
 f : INT -> FRAC INT
 --R 
 --R                                                                   Type: Void
 --E 26
 
---S 27
+--S 27 of 188
 f x == x
 --R 
 --R                                                                   Type: Void
 --E 27
 
---S 28
+--S 28 of 188
 map(f, l)
 --R 
 --R   Compiling function f with type Integer -> Fraction Integer 
@@ -420,25 +420,25 @@ Function args to interpreter functions. Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 29
+--S 29 of 188
 f: INT -> INT
 --R 
 --R                                                                   Type: Void
 --E 29
 
---S 30
+--S 30 of 188
 f x == x+1
 --R 
 --R                                                                   Type: Void
 --E 30
 
---S 31
+--S 31 of 188
 u g == g 3
 --R 
 --R                                                                   Type: Void
 --E 31
 
---S 32
+--S 32 of 188
 u f
 --R 
 --R   Compiling function u with type (Integer -> Integer) -> Integer 
@@ -454,7 +454,7 @@ Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 33
+--S 33 of 188
 groebner [x**2 - y, y**3+1]
 --R 
 --R
@@ -469,7 +469,7 @@ Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 34
+--S 34 of 188
 factor x
 --R 
 --R
@@ -484,28 +484,28 @@ Bracket parsing and empty-set types. Fixed by SCM, verified on 10/30/90
 <<*>>=
 )clear all
 
---S 35
+--S 35 of 188
 {}$(List INT)
 --R 
 --RDaly Bug
 --R   The function SEQ is not implemented in List Integer .
 --E 35
 
---S 36
+--S 36 of 188
 brace []  -- {}
 --R
 --R   (1)  {}
 --R                                                               Type: Set None
 --E 36
 
---S 37
+--S 37 of 188
 brace [1] -- {1}
 --R
 --R   (2)  {1}
 --R                                                    Type: Set PositiveInteger
 --E 37
 
---S 38
+--S 38 of 188
 union(brace [], brace [1,2])   -- union({}, {1,2})
 --R
 --R   (3)  {1,2}
@@ -520,7 +520,7 @@ Fixed by SCM, verified on 10/30/90
 
 )set mes test off
 
---S 39
+--S 39 of 188
 map(variable, [x,y])
 --R 
 --R
@@ -537,19 +537,19 @@ Recursive map type analysis bug. Fixed by SCM, verified on 10/30/90
 
 )set fun recur off
 
---S 40
+--S 40 of 188
 p(n,x) == if n=0 then 1 else (x+n-1)*p(n-1,x)
 --R 
 --R                                                                   Type: Void
 --E 40
 
---S 41
+--S 41 of 188
 pp(n,x) == if n=0 then 1 else if n<0 then (-1)**n/p(-n,1-x) else p(n,x)
 --R 
 --R                                                                   Type: Void
 --E 41
 
---S 42
+--S 42 of 188
 pp(-1,x) -- should be 1/(x-1)
 --R 
 --R   Compiling function p with type (Integer,Polynomial Integer) -> 
@@ -570,7 +570,7 @@ Interpret-code mode for iterators is broken
 <<*>>=
 )clear all
 
---S 43
+--S 43 of 188
 f n ==
   for i in 1..n repeat
     j:=2*i
@@ -580,7 +580,7 @@ f n ==
 --R                                                                   Type: Void
 --E 43
 
---S 44
+--S 44 of 188
 g n ==
     j:=2*n
     m:SQMATRIX(j,?):=1
@@ -589,7 +589,7 @@ g n ==
 --R                                                                   Type: Void
 --E 44
 
---S 45
+--S 45 of 188
 g 3
 --R 
 --R   Cannot compile the declaration for m because its (possible partial) 
@@ -609,7 +609,7 @@ g 3
 --R                                                                   Type: Void
 --E 45
 
---S 46
+--S 46 of 188
 f 3
 --R 
 --R   Cannot compile the declaration for m because its (possible partial) 
@@ -644,7 +644,7 @@ Test interpreter list destructuring
 <<*>>=
 )clear all
 
---S 47
+--S 47 of 188
 mp(x,l) ==
   l is [a,:b] =>
     a*x**(#b)+ mp(x,b)
@@ -653,7 +653,7 @@ mp(x,l) ==
 --R                                                                   Type: Void
 --E 47
 
---S 48
+--S 48 of 188
 mp(x, [1,3,4, 2])
 --R 
 --R   Compiling function mp with type (Variable x,List PositiveInteger)
@@ -664,7 +664,7 @@ mp(x, [1,3,4, 2])
 --R                                                     Type: Polynomial Integer
 --E 48
 
---S 49
+--S 49 of 188
 mp(x, [1,2,-3, 4])
 --R 
 --R   Compiling function mp with type (Variable x,List Integer) -> 
@@ -680,14 +680,14 @@ Tests compilation of recursive functions
 <<*>>=
 )clear all
 
---S 50
+--S 50 of 188
 f1 n ==
   if n=0 then 1 else if n=1 then 1 else f1(n-1)+f1(n-2)
 --R 
 --R                                                                   Type: Void
 --E 50
 
---S 51
+--S 51 of 188
 f2 n ==
   m:=n
   if n=0 then 1 else if n=1 then 1 else f2(n-1)+f2(n-2)
@@ -695,7 +695,7 @@ f2 n ==
 --R                                                                   Type: Void
 --E 51
 
---S 52
+--S 52 of 188
 f3 n ==
   n=0 => 1
   n=1 => 1
@@ -704,7 +704,7 @@ f3 n ==
 --R                                                                   Type: Void
 --E 52
 
---S 53
+--S 53 of 188
 f4 n ==
   m:=n
   n=0 => 1
@@ -715,13 +715,13 @@ f4 n ==
 --R                                                                   Type: Void
 --E 53
 
---S 54
+--S 54 of 188
 f5 n == if n=0 or n=1 then 1 else f5(n-1)+f5(n-2)
 --R 
 --R                                                                   Type: Void
 --E 54
 
---S 55
+--S 55 of 188
 [f1 3,f2 3, f3 3,f4 3,f5 3]
 --R 
 --R   Compiling function f1 with type Integer -> PositiveInteger 
@@ -739,7 +739,7 @@ Input of GDMP types. Fixed by SCM on 1/22/91
 <<*>>=
 )clear all
 
---S 56
+--S 56 of 188
 g: GDMP([x,y], INT, DIRPROD(2, NNI)) := x**2 + y
 --R 
 --R
@@ -753,7 +753,7 @@ Has test with variables. Fixed by SCM on 1/22/91
 <<*>>=
 )clear all
 
---S 57
+--S 57 of 188
 i := INT
 --R 
 --R
@@ -761,7 +761,7 @@ i := INT
 --R                                                                 Type: Domain
 --E 57
 
---S 58
+--S 58 of 188
 i has Algebra(i)
 --R 
 --R
@@ -774,13 +774,13 @@ Returns in functions. Fixed by SCM on 1/22/91
 <<*>>=
 )clear all
 
---S 59
+--S 59 of 188
 f x == if x<0 then return x else x+1
 --R 
 --R                                                                   Type: Void
 --E 59
 
---S 60
+--S 60 of 188
 f 2 -- should be 3
 --R 
 --R   Compiling function f with type PositiveInteger -> PositiveInteger 
@@ -789,7 +789,7 @@ f 2 -- should be 3
 --R                                                        Type: PositiveInteger
 --E 60
 
---S 61
+--S 61 of 188
 f(-2) -- should be -2
 --R 
 --R   Compiling function f with type Integer -> Integer 
@@ -803,7 +803,7 @@ resolveTT not returning Any. Fixed by SCM 1/30/91
 <<*>>=
 )clear all
 
---S 62
+--S 62 of 188
 m = [[1,2],[2,3]]  -- Should return type EQ POLY SQMATRIX(2, INT)
 --R 
 --R
@@ -813,7 +813,7 @@ m = [[1,2],[2,3]]  -- Should return type EQ POLY SQMATRIX(2, INT)
 --R                            Type: Equation Polynomial SquareMatrix(2,Integer)
 --E 62
 
---S 63
+--S 63 of 188
 [1, "asd"]   -- Should be of type List Any
 --R 
 --R
@@ -823,7 +823,7 @@ m = [[1,2],[2,3]]  -- Should return type EQ POLY SQMATRIX(2, INT)
 
 )set mes test off
 
---S 64
+--S 64 of 188
 1+"asd"  -- These should both fail in the same way
 --R 
 --R   There are 12 exposed and 5 unexposed library operations named + 
@@ -843,7 +843,7 @@ m = [[1,2],[2,3]]  -- Should return type EQ POLY SQMATRIX(2, INT)
 --R      or "$" to specify which version of the function you need.
 --E 64
 
---S 65
+--S 65 of 188
 1/"asd"
 --R 
 --R   There are 13 exposed and 12 unexposed library operations named / 
@@ -870,7 +870,7 @@ Passing type variables to )show
 <<*>>=
 )clear all
 
---S 66
+--S 66 of 188
 t := MPOLY([x,y], INT)
 --R 
 --R
@@ -878,7 +878,7 @@ t := MPOLY([x,y], INT)
 --R                                                                 Type: Domain
 --E 66
 
---S 67
+--S 67 of 188
 )show t
 --R 
 --R MultivariatePolynomial([x,y],Integer) is a domain constructor.
@@ -998,19 +998,19 @@ Caching nullary functions
 <<*>>=
 )clear all
 
---S 68
+--S 68 of 188
 )set fun cache all
 --R 
 --R   In general, interpreter functions will cache all values.
 --E 68
 
---S 69
+--S 69 of 188
 u == 1
 --R 
 --R                                                                   Type: Void
 --E 69
 
---S 70
+--S 70 of 188
 u
 --R 
 --R   Compiling body of rule u to compute value of type PositiveInteger 
@@ -1020,7 +1020,7 @@ u
 --R                                                        Type: PositiveInteger
 --E 70
 
---S 71
+--S 71 of 188
 )set fun cache 0
 --R 
 --R In general, functions will cache no returned values.
@@ -1031,13 +1031,13 @@ Interpreter Only mode on collects. Fixed by SCM on 3/1/91
 <<*>>=
 )clear all
 
---S 72
+--S 72 of 188
 factorp: (UP(x,INT),PositiveInteger,PositiveInteger) -> List(UP(x,INT))
 --R 
 --R                                                                   Type: Void
 --E 72
 
---S 73
+--S 73 of 188
 factorp(poly,p,e) ==
    ppoly:UP(x,PF p):=poly
    pl := [rec.factor for rec in factors factor ppoly]
@@ -1046,7 +1046,7 @@ factorp(poly,p,e) ==
 --R                                                                   Type: Void
 --E 73
 
---S 74
+--S 74 of 188
 factorp(x**2+x+5,7,1)
 --R 
 --R   Cannot compile the declaration for ppoly because its (possible 
@@ -1065,7 +1065,7 @@ Using "by" with segments. Fixed by SCM on 2/14/91
 <<*>>=
 )clear all
 
---S 75
+--S 75 of 188
 b:= 1..10
 --R 
 --R
@@ -1073,7 +1073,7 @@ b:= 1..10
 --R                                                Type: Segment PositiveInteger
 --E 75
 
---S 76
+--S 76 of 188
 for i in b by 2 repeat output i
 --R 
 --R   1
@@ -1089,55 +1089,55 @@ DMP resolve bug. Fixed by SCM 3/7/91
 <<*>>=
 )clear all
 
---S 77
+--S 77 of 188
 macro RN == FRAC INT
 --R 
 --R                                                                   Type: Void
 --E 77
 
---S 78
+--S 78 of 188
 a51:=x+y+z+t+u;
 --R 
 --R
 --R                                                     Type: Polynomial Integer
 --E 78
 
---S 79
+--S 79 of 188
 a52:=x*y+y*z+z*t+x*u+t*u;
 --R 
 --R
 --R                                                     Type: Polynomial Integer
 --E 79
 
---S 80
+--S 80 of 188
 a53:=x*y*z+y*z*t+x*y*u+x*t*u+z*t*u;
 --R 
 --R
 --R                                                     Type: Polynomial Integer
 --E 80
 
---S 81
+--S 81 of 188
 a54:=x*y*z*t+x*y*z*u+x*y*t*u+x*z*t*u+y*z*t*u;
 --R 
 --R
 --R                                                     Type: Polynomial Integer
 --E 81
 
---S 82
+--S 82 of 188
 a55:=x*y*z*t*u-1;
 --R 
 --R
 --R                                                     Type: Polynomial Integer
 --E 82
 
---S 83
+--S 83 of 188
 arnborg5: List HDMP([x,y,z,t,u],RN):=[a51,a52,a53,a54,a55];
 --R 
 --R
 --RType: List HomogeneousDistributedMultivariatePolynomial([x,y,z,t,u],Fraction Integer)
 --E 83
 
---S 84
+--S 84 of 188
 arnborg5l: List DMP([x,y,z,t,u],RN):=[a51,a52,a53,a54,a55];
 --R 
 --R
@@ -1149,14 +1149,14 @@ Construct in interpret-only mode. Fixed by SCM on 3/7/91
 <<*>>=
 )clear all
 
---S 85
+--S 85 of 188
 factorp(poly,p,e) ==
    [rec.factor for rec in factors factor (poly::UP(x, PF p))]::List UP(x, INT)
 --R 
 --R                                                                   Type: Void
 --E 85
 
---S 86
+--S 86 of 188
 factorp(x**2+x+5,7,1)
 --R 
 --R   Cannot compile conversion for types involving local variables. In 
@@ -1173,7 +1173,7 @@ Return in interpret-only mode. fixed by SCM 3/11/91
 <<*>>=
 )clear all
 
---S 87
+--S 87 of 188
 f (x) ==
   y: PF x := 1
   x = 3 => return x
@@ -1183,7 +1183,7 @@ f (x) ==
 --R                                                                   Type: Void
 --E 87
 
---S 88
+--S 88 of 188
 f 3
 --R 
 --R   Cannot compile the declaration for y because its (possible partial) 
@@ -1199,7 +1199,7 @@ Incorrect handling of type of returns. fixed by SCM 3/11/91
 <<*>>=
 )clear all
 
---S 89
+--S 89 of 188
 f (x) ==
   x = 3 => return x
   x = 4 => return(-x)
@@ -1208,7 +1208,7 @@ f (x) ==
 --R                                                                   Type: Void
 --E 89
 
---S 90
+--S 90 of 188
 f 3
 --R 
 --R   Compiling function f with type PositiveInteger -> Integer 
@@ -1222,7 +1222,7 @@ SquareMatrix coercion bug. Fixed by SCM on 4/3/91
 <<*>>=
 )clear all
 
---S 91
+--S 91 of 188
 s:SQMATRIX(2, INT) := matrix [[1,2],[2,3]]
 --R 
 --R
@@ -1232,7 +1232,7 @@ s:SQMATRIX(2, INT) := matrix [[1,2],[2,3]]
 --R                                                Type: SquareMatrix(2,Integer)
 --E 91
 
---S 92
+--S 92 of 188
 s::SQMATRIX(2, FRAC INT)
 --R 
 --R
@@ -1247,7 +1247,7 @@ SquareMatric resolve bug
 <<*>>=
 )clear all
 
---S 93
+--S 93 of 188
 Mat := SquareMatrix(2, Polynomial Integer)
 --R 
 --R
@@ -1255,7 +1255,7 @@ Mat := SquareMatrix(2, Polynomial Integer)
 --R                                                                 Type: Domain
 --E 93
 
---S 94
+--S 94 of 188
 s:Mat := matrix [[ 2*x + 1, x], [x, 1]]
 --R 
 --R
@@ -1265,7 +1265,7 @@ s:Mat := matrix [[ 2*x + 1, x], [x, 1]]
 --R                                     Type: SquareMatrix(2,Polynomial Integer)
 --E 94
 
---S 95
+--S 95 of 188
 s**3
 --R 
 --R
@@ -1277,7 +1277,7 @@ s**3
 --R                                     Type: SquareMatrix(2,Polynomial Integer)
 --E 95
 
---S 96
+--S 96 of 188
 %::Polynomial(?)
 --R 
 --R
@@ -1292,7 +1292,7 @@ Parsing bug. Fixed by BURGE on 4/18/91
 <<*>>=
 )clear all
 
---S 97
+--S 97 of 188
 -2**2  -- Should return -4
 --R 
 --R
@@ -1305,7 +1305,7 @@ Parsing bug. Fixed by BURGE on 4/18/91
 <<*>>=
 )clear all
 
---S 98
+--S 98 of 188
 f: DMP([x,y], INT) := x**2-y**2
 --R 
 --R
@@ -1314,7 +1314,7 @@ f: DMP([x,y], INT) := x**2-y**2
 --R                       Type: DistributedMultivariatePolynomial([x,y],Integer)
 --E 98
 
---S 99
+--S 99 of 188
 coefficient(f, degree f)
 --R 
 --R
@@ -1327,7 +1327,7 @@ Retract from EXPR to POLY. fixed by SCM and SUTOR on 5/1/91
 <<*>>=
 )clear all
 
---S 100
+--S 100 of 188
 x+1::EXPR INT
 --R 
 --R
@@ -1335,7 +1335,7 @@ x+1::EXPR INT
 --R                                                     Type: Expression Integer
 --E 100
 
---S 101
+--S 101 of 188
 %::POLY INT
 --R 
 --R
@@ -1348,7 +1348,7 @@ Fixed by SCM in May
 <<*>>=
 )clear all
 
---S 102
+--S 102 of 188
 solve([[1,2],[2,3]],[-2,3])
 --R 
 --R
@@ -1361,7 +1361,7 @@ Fixed by several people over a period of time
 <<*>>=
 )clear all
 
---S 103
+--S 103 of 188
 eval(m**2, m=[[1,2],[2,3]])
 --R 
 --R
@@ -1378,14 +1378,14 @@ Filtering various illegal declarations
 
 )set mes test off
 
---S 104
+--S 104 of 188
 r: Ring
 --R 
 --R 
 --R   Ring is a category, not a domain, and declarations require domains.
 --E 104
 
---S 105
+--S 105 of 188
 w: RF INT
 --R 
 --R 
@@ -1400,7 +1400,7 @@ Correct representation of length 1 records
 <<*>>=
 )clear all
 
---S 106
+--S 106 of 188
 r:Record(a: INT) := [1]
 --R 
 --R
@@ -1413,7 +1413,7 @@ Fast generation of POLY FLOAT graphics code
 <<*>>=
 )clear all
 
---S 107
+--S 107 of 188
 p: POLY FLOAT := (x-1)**30
 --R 
 --R
@@ -1448,7 +1448,7 @@ Case broken in interpreter. fixed by SCM in early 1991
 <<*>>=
 )clear all
 
---S 108
+--S 108 of 188
 sayBranch x == _
  if x case INT then output "Integer Branch" _
  else if x case STRING then output "String Branch" _
@@ -1458,13 +1458,13 @@ sayBranch x == _
 --R                                                                   Type: Void
 --E 108
 
---S 109
+--S 109 of 188
 x:Union(INT,STRING,FLOAT)
 --R 
 --R                                                                   Type: Void
 --E 109
 
---S 110
+--S 110 of 188
 x:=3
 --R 
 --R
@@ -1472,7 +1472,7 @@ x:=3
 --R                                                     Type: Union(Integer,...)
 --E 110
 
---S 111
+--S 111 of 188
 sayBranch(x)
 --R 
 --R 
@@ -1486,7 +1486,7 @@ Bug in evaluateType. fixed by SCM in May 1991
 <<*>>=
 )clear all
 
---S 112
+--S 112 of 188
 RFI := FRAC POLY INT
 --R 
 --R
@@ -1494,7 +1494,7 @@ RFI := FRAC POLY INT
 --R                                                                 Type: Domain
 --E 112
 
---S 113
+--S 113 of 188
 g:DMP([x,y], RFI) := a**2*x**2/b**2 - c**2*y**2/d**2
 --R 
 --R
@@ -1506,7 +1506,7 @@ g:DMP([x,y], RFI) := a**2*x**2/b**2 - c**2*y**2/d**2
 --R   Type: DistributedMultivariatePolynomial([x,y],Fraction Polynomial Integer)
 --E 113
 
---S 114
+--S 114 of 188
 factor g
 --R 
 --R
@@ -1523,7 +1523,7 @@ Bug in resolveTTSpecial. Fixed by SCM 6/2/91
 <<*>>=
 )clear all
 
---S 115
+--S 115 of 188
 f(u:DoubleFloat, v:DoubleFloat):DoubleFloat == u+v
 --R 
 --R   Function declaration f : (DoubleFloat,DoubleFloat) -> DoubleFloat 
@@ -1531,7 +1531,7 @@ f(u:DoubleFloat, v:DoubleFloat):DoubleFloat == u+v
 --R                                                                   Type: Void
 --E 115
 
---S 116
+--S 116 of 188
 g(u:DoubleFloat, v:DoubleFloat):DoubleFloat == sin(u+v)
 --R 
 --R   Function declaration g : (DoubleFloat,DoubleFloat) -> DoubleFloat 
@@ -1539,7 +1539,7 @@ g(u:DoubleFloat, v:DoubleFloat):DoubleFloat == sin(u+v)
 --R                                                                   Type: Void
 --E 116
 
---S 117
+--S 117 of 188
 h(u:DoubleFloat, v:DoubleFloat):DoubleFloat == u+cos(v)
 --R 
 --R   Function declaration h : (DoubleFloat,DoubleFloat) -> DoubleFloat 
@@ -1556,7 +1556,7 @@ Check for package calling from categories. fixed by SCM 6/4/91
 
 )set mes test off
 
---S 118
+--S 118 of 188
 (1+1)$Ring
 --R 
 --R 
@@ -1571,7 +1571,7 @@ UnivariateSeries coercions. Fixed by SCM 6/20/91
 <<*>>=
 )clear all
 
---S 119
+--S 119 of 188
 s := series(sin(a*x), x=0)
 --R 
 --R
@@ -1582,7 +1582,7 @@ s := series(sin(a*x), x=0)
 --R                        Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
 --E 119
 
---S 120
+--S 120 of 188
 s - a*x
 --R 
 --R
@@ -1597,7 +1597,7 @@ s - a*x
 --R                        Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
 --E 120
 
---S 121
+--S 121 of 188
 s - sin(a*x)
 --R 
 --R
@@ -1611,7 +1611,7 @@ Complex \& AlgebraicNumber coercions. fixed by SCM 6/91
 <<*>>=
 )clear all
 
---S 122
+--S 122 of 188
 sin %i
 --R 
 --R
@@ -1619,7 +1619,7 @@ sin %i
 --R                                             Type: Expression Complex Integer
 --E 122
 
---S 123
+--S 123 of 188
 sin sqrt 2
 --R 
 --R
@@ -1628,7 +1628,7 @@ sin sqrt 2
 --R                                                     Type: Expression Integer
 --E 123
 
---S 124
+--S 124 of 188
 %i*sqrt(2)
 --R 
 --R
@@ -1637,7 +1637,7 @@ sin sqrt 2
 --R                                             Type: Expression Complex Integer
 --E 124
 
---S 125
+--S 125 of 188
 sin(%i*sqrt 2)
 --R 
 --R
@@ -1646,7 +1646,7 @@ sin(%i*sqrt 2)
 --R                                             Type: Expression Complex Integer
 --E 125
 
---S 126
+--S 126 of 188
 %i * sin(x)
 --R 
 --R
@@ -1654,7 +1654,7 @@ sin(%i*sqrt 2)
 --R                                             Type: Expression Complex Integer
 --E 126
 
---S 127
+--S 127 of 188
 sin(x/sqrt(2))
 --R 
 --R
@@ -1672,7 +1672,7 @@ Bug in resolve. fixed by SCM 8/12/91
 
 )set msg test off
 
---S 128
+--S 128 of 188
 primaryDecomp xx
 --R 
 --R   There are 1 exposed and 0 unexposed library operations named 
@@ -1699,14 +1699,14 @@ Functions with ADEFs were broken. fixed by SCM 8/9/91
 <<*>>=
 )clear all
 
---S 129
+--S 129 of 188
 f l ==
   reduce((x,y) +-> l.1 + x + y, l)
 --R 
 --R                                                                   Type: Void
 --E 129
 
---S 130
+--S 130 of 188
 f [10,2,53]
 --R 
 --R   Compiling function f with type List PositiveInteger -> 
@@ -1716,14 +1716,14 @@ f [10,2,53]
 --R                                                        Type: PositiveInteger
 --E 130
 
---S 131
+--S 131 of 188
 g l ==
   (x:INT):INT +-> l.x
 --R 
 --R                                                                   Type: Void
 --E 131
 
---S 132
+--S 132 of 188
 w := g [23,1,341,12] ;
 --R 
 --R   Compiling function g with type List PositiveInteger -> (Integer -> 
@@ -1732,7 +1732,7 @@ w := g [23,1,341,12] ;
 --R                                                   Type: (Integer -> Integer)
 --E 132
 
---S 133
+--S 133 of 188
 w(1) + w(3)
 --R 
 --R
@@ -1740,7 +1740,7 @@ w(1) + w(3)
 --R                                                        Type: PositiveInteger
 --E 133
 
---S 134
+--S 134 of 188
 w(-1) 
 --R 
 --R 
@@ -1757,7 +1757,7 @@ Coerces RN to PF and POLY to EXPR. fixed by SCM 8/9/91
 <<*>>=
 )clear all
 
---S 135
+--S 135 of 188
 a := 2/3
 --R 
 --R
@@ -1769,7 +1769,7 @@ a := 2/3
 
 )set mes test off
 
---S 136
+--S 136 of 188
 a::PF 3
 --R 
 --R 
@@ -1778,7 +1778,7 @@ a::PF 3
 
 )set mes test on
 
---S 137
+--S 137 of 188
 b := x+1
 --R 
 --R
@@ -1786,7 +1786,7 @@ b := x+1
 --R                                                     Type: Polynomial Integer
 --E 137
 
---S 138
+--S 138 of 188
 b:: EXPR FLOAT
 --R 
 --R
@@ -1799,7 +1799,7 @@ Minivector use in coercion functions.
 <<*>>=
 )clear all
  
---S 139
+--S 139 of 188
 symbol(s:Symbol,i:Integer):Symbol ==
   st0:String:= convert(i)
   st0:= concat(string(s),st0)
@@ -1810,13 +1810,13 @@ symbol(s:Symbol,i:Integer):Symbol ==
 --R                                                                   Type: Void
 --E 139
 
---S 140
+--S 140 of 188
 f(a,b) == symbol(a,b)
 --R 
 --R                                                                   Type: Void
 --E 140
 
---S 141
+--S 141 of 188
 f('abc,3)
 --R 
 --R   Compiling function symbol with type (Symbol,Integer) -> Symbol 
@@ -1832,7 +1832,7 @@ Coercing undeclared maps to Mapping types. fixed by SCM 9/3/91
 <<*>>=
 )clear all
 
---S 142
+--S 142 of 188
 f := operator 'f
 --R 
 --R
@@ -1840,7 +1840,7 @@ f := operator 'f
 --R                                                          Type: BasicOperator
 --E 412
 
---S 143
+--S 143 of 188
 y := f(x)
 --R 
 --R
@@ -1848,13 +1848,13 @@ y := f(x)
 --R                                                     Type: Expression Integer
 --E 143
 
---S 144
+--S 144 of 188
 foo(u) == sin(u)
 --R 
 --R                                                                   Type: Void
 --E 144
 
---S 145
+--S 145 of 188
 eval(y, 'f, foo)
 --R 
 --R   There are 2 exposed and 6 unexposed library operations named sin 
@@ -1876,7 +1876,7 @@ Package calling constants. fixed by SCM 9/3/91
 <<*>>=
 )clear all
 
---S 146
+--S 146 of 188
 init()$(PF 3)
 --R 
 --R
@@ -1896,7 +1896,7 @@ DP bug.  Don't know where this came from, but its fixed. DP makes problems:
 <<*>>=
 )clear all
 
---S 147
+--S 147 of 188
 dmp := DMP([u1,u2,u3],Fraction INT)
 --R 
 --R
@@ -1904,7 +1904,7 @@ dmp := DMP([u1,u2,u3],Fraction INT)
 --R                                                                 Type: Domain
 --E 147
 
---S 148
+--S 148 of 188
 p : dmp := 2*u1**4*u2*u3
 --R 
 --R
@@ -1913,7 +1913,7 @@ p : dmp := 2*u1**4*u2*u3
 --R         Type: DistributedMultivariatePolynomial([u1,u2,u3],Fraction Integer)
 --E 148
 
---S 149
+--S 149 of 188
 e1 := degree p
 --R 
 --R
@@ -1921,7 +1921,7 @@ e1 := degree p
 --R                                    Type: DirectProduct(3,NonNegativeInteger)
 --E 149
 
---S 150
+--S 150 of 188
 e2 : DirectProduct(3,NonNegativeInteger) := e1
 --R 
 --R
@@ -1929,7 +1929,7 @@ e2 : DirectProduct(3,NonNegativeInteger) := e1
 --R                                    Type: DirectProduct(3,NonNegativeInteger)
 --E 150
 
---S 151
+--S 151 of 188
 sup(e1,e1)
 --R 
 --R
@@ -1941,7 +1941,7 @@ sup(e1,e1)
 If you give to many infos to the Interpreter it has problems.
 <<*>>=
 
---S 152
+--S 152 of 188
 sup(e1,e1)$DirectProduct(3,NonNegativeInteger)
 --R 
 --R
@@ -1951,7 +1951,7 @@ sup(e1,e1)$DirectProduct(3,NonNegativeInteger)
 
 )clear all
 
---S 153
+--S 153 of 188
 sum:=0
 --R 
 --R
@@ -1959,7 +1959,7 @@ sum:=0
 --R                                                     Type: NonNegativeInteger
 --E 153
 
---S 154
+--S 154 of 188
 m:=matrix [[1,2],[3,4]]
 --R 
 --R
@@ -1969,7 +1969,7 @@ m:=matrix [[1,2],[3,4]]
 --R                                                         Type: Matrix Integer
 --E 154
 
---S 155
+--S 155 of 188
 lastcol:=ncols(m)
 --R 
 --R
@@ -1977,7 +1977,7 @@ lastcol:=ncols(m)
 --R                                                        Type: PositiveInteger
 --E 155
 
---S 156
+--S 156 of 188
 for r in 1..nrows(m) repeat
  -- interpreter having a value for "row" would cause it to hide
  -- the system function
@@ -1988,7 +1988,7 @@ for r in 1..nrows(m) repeat
 --R                                                                   Type: Void
 --E 156
 
---S 157
+--S 157 of 188
 sum
 --R 
 --R
@@ -2002,14 +2002,14 @@ fixed by SCM
 <<*>>=
 )clear all
 
---S 158
+--S 158 of 188
 splitPoly(f,var) ==
    map(g +-> multivariate(g,var),monomials univariate(f,var))
 --R 
 --R                                                                   Type: Void
 --E 158
 
---S 159
+--S 159 of 188
 g:=sin(x)+cos(x)
 --R 
 --R
@@ -2017,7 +2017,7 @@ g:=sin(x)+cos(x)
 --R                                                     Type: Expression Integer
 --E 159
 
---S 160
+--S 160 of 188
 k:=kernels(g).1
 --R 
 --R
@@ -2027,7 +2027,7 @@ k:=kernels(g).1
 
 )set mes test off
 
---S 161
+--S 161 of 188
 splitPoly([g],k) -- this is an incorrect call
 --R 
 --R   There are 4 exposed and 1 unexposed library operations named 
@@ -2064,7 +2064,7 @@ splitPoly([g],k) -- this is an incorrect call
 
 )set mes test on
 
---S 162
+--S 162 of 188
 splitPoly(numer g,k) -- this is a correct call
 --R 
 --R   Compiling function splitPoly with type (SparseMultivariatePolynomial
@@ -2081,7 +2081,7 @@ Scoping of lambda variables. fixed by SCM in March, 1992
 <<*>>=
 )clear all
 
---S 163
+--S 163 of 188
 f x ==
   g := (y:DoubleFloat):DoubleFloat +-> y+x
   output(y+1)
@@ -2090,7 +2090,7 @@ f x ==
 --R                                                                   Type: Void
 --E 163
 
---S 164
+--S 164 of 188
 f 3
 --R 
 --R   Compiling function f with type PositiveInteger -> DoubleFloat 
@@ -2107,13 +2107,13 @@ fixed by SCM in March, 1992
 <<*>>=
 )clear all
 
---S 165
+--S 165 of 188
 f x == 1/factorial(x)
 --R 
 --R                                                                   Type: Void
 --E 165
 
---S 166
+--S 166 of 188
 series(f, x=0)
 --R 
 --R   Compiling function f with type Integer -> Expression Integer 
@@ -2134,43 +2134,43 @@ Rule dependencies with dependencies on the operator position.
 <<*>>=
 )clear all
 
---S 167
+--S 167 of 188
 node_a == i1+i2+i3-i5+i6=0
 --R 
 --R                                                                   Type: Void
 --E 167
 
---S 168
+--S 168 of 188
 node_b == -i2-i3+i4-i6=0
 --R 
 --R                                                                   Type: Void
 --E 168
 
---S 169
+--S 169 of 188
 i1 == va/r1
 --R 
 --R                                                                   Type: Void
 --E 169
 
---S 170
+--S 170 of 188
 i2 == (va-vb)/r2
 --R 
 --R                                                                   Type: Void
 --E 170
 
---S 171
+--S 171 of 188
 i3 == (va-vb)/r3
 --R 
 --R                                                                   Type: Void
 --E 171
 
---S 172
+--S 172 of 188
 i4 == vb/r4
 --R 
 --R                                                                   Type: Void
 --E 172
 
---S 173
+--S 173 of 188
 node_a
 --R 
 --R   Compiling body of rule i1 to compute value of type Fraction 
@@ -2188,7 +2188,7 @@ node_a
 --R                                   Type: Equation Fraction Polynomial Integer
 --E 173
 
---S 174
+--S 174 of 188
 node_b
 --R 
 --R   Compiling body of rule i4 to compute value of type Fraction 
@@ -2202,25 +2202,25 @@ node_b
 --R                                   Type: Equation Fraction Polynomial Integer
 --E 174
 
---S 175
+--S 175 of 188
 ans == solve([node_a,node_b],[va,vb]) -- (*)
 --R 
 --R                                                                   Type: Void
 --E 175
 
---S 176
+--S 176 of 188
 x1 == rhs(ans.1.1)
 --R 
 --R                                                                   Type: Void
 --E 176
 
---S 177
+--S 177 of 188
 x2 == rhs(ans.1.2)
 --R 
 --R                                                                   Type: Void
 --E 177
 
---S 178
+--S 178 of 188
 x1       -- (**)
 --R 
 --R   Compiling body of rule ans to compute value of type List List 
@@ -2234,7 +2234,7 @@ x1       -- (**)
 --R                                            Type: Fraction Polynomial Integer
 --E 178
 
---S 179
+--S 179 of 188
 r1 == 2  -- (***)
 --R 
 --R   Compiled code for i1 has been cleared.
@@ -2244,7 +2244,7 @@ r1 == 2  -- (***)
 --R                                                                   Type: Void
 --E 179
 
---S 180
+--S 180 of 188
 x1       -- (****)
 --R 
 --R   Compiling body of rule r1 to compute value of type PositiveInteger 
@@ -2269,7 +2269,7 @@ fixed in March 1992 by SCM and RSS
 <<*>>=
 )clear all
 
---S 181
+--S 181 of 188
 "asd" "sdfsdf" "dfgdfg"
 --R 
 --R
@@ -2283,7 +2283,7 @@ fixed by SCM
 <<*>>=
 )clear all
 
---S 182
+--S 182 of 188
 s := 3.4
 --R 
 --R
@@ -2291,7 +2291,7 @@ s := 3.4
 --R                                                                  Type: Float
 --E 182
 
---S 183
+--S 183 of 188
 while s > 1.0 repeat (s := 1/2; print s)
 --R 
 --R   1
@@ -2300,7 +2300,7 @@ while s > 1.0 repeat (s := 1/2; print s)
 --R                                                                   Type: Void
 --E 183
 
---S 184
+--S 184 of 188
 s
 --R 
 --R
@@ -2312,7 +2312,7 @@ s
 
 )clear all
 
---S 185
+--S 185 of 188
 f x ==
   free s
   s := x
@@ -2322,7 +2322,7 @@ f x ==
 --R                                                                   Type: Void
 --E 185
 
---S 186
+--S 186 of 188
 f(3.4)
 --R 
 --R   Compiling function f with type Float -> Float 
@@ -2338,7 +2338,7 @@ Returns in sequences. fixed by SCM
 <<*>>=
 )clear all
 
---S 187
+--S 187 of 188
 t x ==
   if x = 1 then (1; return [x])
   return [2]
@@ -2346,7 +2346,7 @@ t x ==
 --R                                                                   Type: Void
 --E 187
 
---S 188
+--S 188 of 188
 t 1
 --R 
 --R   Compiling function t with type PositiveInteger -> List 
diff --git a/src/input/tutchap1.input.pamphlet b/src/input/tutchap1.input.pamphlet
index d0c41f9..7ad8065 100644
--- a/src/input/tutchap1.input.pamphlet
+++ b/src/input/tutchap1.input.pamphlet
@@ -152,7 +152,7 @@ c : PositiveInteger := 3
 
 )clear properties c i
 
---S 16  of 19
+--S 16 of 19
 %%(1)
 --R 
 --R
diff --git a/src/input/void.input.pamphlet b/src/input/void.input.pamphlet
index 928c5a6..dc1dc55 100644
--- a/src/input/void.input.pamphlet
+++ b/src/input/void.input.pamphlet
@@ -26,7 +26,7 @@ a : Integer
 
 )set message void on
 
---S 2  of 4
+--S 2 of 4
 b : Fraction Integer
 --R 
 --R
@@ -36,7 +36,7 @@ b : Fraction Integer
 
 )set message void off
 
---S 3  of 4
+--S 3 of 4
 3::Void
 --R 
 --R                                                                   Type: Void
