org.apache.spark.ml.classification
Returns the documentation of all params.
Returns the documentation of all params.
param for features column name
param for features column name
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
input dataset
parameter map
fitted model
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters.
input dataset
an array of parameter maps
fitted models, matching the input parameter maps
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
input dataset
parameter map
fitted model
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
input dataset
optional list of param pairs (overwrite embedded params)
fitted model
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could overwrite this to optimize multi-model training.
input dataset
an array of parameter maps
fitted models, matching the input parameter maps
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
input dataset
optional list of param pairs (overwrite embedded params)
fitted model
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
param for label column name
param for label column name
param for max number of iterations
param for max number of iterations
Internal param map.
Internal param map.
Returns all params.
Returns all params.
param for prediction column name
param for prediction column name
param for regularization parameter
param for regularization parameter
param for score column name
param for score column name
param for threshold in (binary) prediction
param for threshold in (binary) prediction
Derives the output schema from the input schema and parameters, optionally with logging.
Derives the output schema from the input schema and parameters, optionally with logging.
Validates parameter values stored internally.
Validates parameter values stored internally. Raise an exception if any parameter value is invalid.
Validates parameter values stored internally plus the input parameter map.
Validates parameter values stored internally plus the input parameter map. Raises an exception if any parameter is invalid.
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
input schema
additional parameters
whether this is in fitting
output schema
Logistic regression.