org.apache.spark.graphx.util

GraphGenerators

object GraphGenerators

A collection of graph generating functions.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GraphGenerators
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val RMATa: Double

  7. val RMATb: Double

  8. val RMATc: Double

  9. val RMATd: Double

  10. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  11. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  12. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  14. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def generateRandomEdges(src: Int, numEdges: Int, maxVertexId: Int, seed: Long = 1): Array[Edge[Int]]

  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. def gridGraph(sc: SparkContext, rows: Int, cols: Int): Graph[(Int, Int), Double]

    Create rows by cols grid graph with each vertex connected to its row+1 and col+1 neighbors.

    Create rows by cols grid graph with each vertex connected to its row+1 and col+1 neighbors. Vertex ids are assigned in row major order.

    sc

    the spark context in which to construct the graph

    rows

    the number of rows

    cols

    the number of columns

    returns

    A graph containing vertices with the row and column ids as their attributes and edge values as 1.0.

  18. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  19. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  20. def logNormalGraph(sc: SparkContext, numVertices: Int, numEParts: Int = 0, mu: Double = 4.0, sigma: Double = 1.3, seed: Long = 1): Graph[Long, Int]

    Generate a graph whose vertex out degree distribution is log normal.

    Generate a graph whose vertex out degree distribution is log normal.

    The default values for mu and sigma are taken from the Pregel paper:

    Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale graph processing. SIGMOD '10.

    If the seed is -1 (default), a random seed is chosen. Otherwise, use the user-specified seed.

    sc

    Spark Context

    numVertices

    number of vertices in generated graph

    numEParts

    (optional) number of partitions

    mu

    (optional, default: 4.0) mean of out-degree distribution

    sigma

    (optional, default: 1.3) standard deviation of out-degree distribution

    seed

    (optional, default: -1) seed for RNGs, -1 causes a random seed to be chosen

    returns

    Graph object

  21. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  22. final def notify(): Unit

    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  24. def rmatGraph(sc: SparkContext, requestedNumVertices: Int, numEdges: Int): Graph[Int, Int]

    A random graph generator using the R-MAT model, proposed in "R-MAT: A Recursive Model for Graph Mining" by Chakrabarti et al.

    A random graph generator using the R-MAT model, proposed in "R-MAT: A Recursive Model for Graph Mining" by Chakrabarti et al.

    See http://www.cs.cmu.edu/~christos/PUBLICATIONS/siam04.pdf.

  25. def starGraph(sc: SparkContext, nverts: Int): Graph[Int, Int]

    Create a star graph with vertex 0 being the center.

    Create a star graph with vertex 0 being the center.

    sc

    the spark context in which to construct the graph

    nverts

    the number of vertices in the star

    returns

    A star graph containing nverts vertices with vertex 0 being the center vertex.

  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped