
DINAMICA 1.0:

Automated Dynamical Analysis

Ilya Potapov

1

Contents

1 Introduction 3

1.1 Interface . 3
1.2 Disclaimer . 4
1.3 Where To Get . 4
1.4 Acknowledgements . 5
1.5 Installation . 5

1.5.1 Prerequisites . 5
1.5.2 Main Steps of Installation Process 5
1.5.3 Important to Know Before Configuring the Package . 6

1.6 Running DINAMICA . 7

2 Input Files 10

2.1 ODE Files . 10
2.1.1 Two Start-off Examples 10
2.1.2 The Syntax in Details 13

3 Simulation Methods 20

3.1 Deterministic Methods . 20
3.2 Stochastic Methods . 20
3.3 Complex Method . 21

4 Trajectory System 21

4.1 The Slope Concept . 22
4.2 1D Dynamical Analysis . 23

4.2.1 Dynamical Regimes of 1D Systems 24
4.2.2 The slope algorithm 25
4.2.3 General Comments on Slope Algorithm 28

4.3 ND Dynamical Analysis . 30
4.3.1 System lag . 31
4.3.2 Phase test . 33
4.3.3 Homogeneity test . 33
4.3.4 Report on the Overall Dynamics 33

5 Other Dynamical Analysis Methods 34

6 Examples 34

6.1 Single Gene Expression . 34
6.2 Brusselator . 36
6.3 Repressilator . 38
6.4 Two coupled Brusselators . 39
6.5 Three coupled Brusselators 47
6.6 Two coupled genetic Repressilators 49

2

1 Introduction

DINAMICA is a tool for automated analysis of the multi-stable dynam-
ics. For this, it uses the differential equation tools supplied with various
stochastic validation algorithms. Consequently, DINAMICA can be used
as a tool for the comparative analysis between the deterministic and the
corresponding stochastic systems.

Simple systems usually do not have very complex dynamics. On the
other hand, as the complexity of the system grows the number of possible
dynamical regimes increase, leading inevitably to the co-existing of some of
the regimes. In rigid terms, for the same parameter set the system demon-
strates several possible regimes and, as usual rule for the deterministic sys-
tems, different initial conditions lead to the different dynamics.

The usual assumption in physics, chemistry and biology is that the whole
system consists of the equal elements of smaller size. Thus, DINAMICA
considers the equation supplied by the user to be divided into sub-systems of
smaller size. In principle, these sub-systems must be of the same dimension
and all equal in other respects (the latter is not required though). Such a
system is called a Symmetrically Coupled System.

1.1 Interface

DINAMICA has a primitive interface with no graphics carried out by the
program itself. It is easy expandable for using the Gnuplot for visualization
of results. The installation process can be done with or without support of
the Gnuplot utility. The Gnuplot is freely available from the Internet.

DINAMICA also uses the external library (Gnu Scientific Library, GSL)
to perform some basic calculations like integration of the system of differ-
ential equations, performing statistics etc. The library can be easily found
and downloaded from the Web and subsequently installed.

These two are the main dependencies of DINAMICA which require the
user to have them pre-installed. Although the Gnuplot is optional, the GSL
is mandatory to have installed on the user’s computer.

DINAMICA has been successfully tested on Unix-like OS: Linux, Mac
OS X etc. No testing was performed in the Windows environment, though
the Windows use of the program is NOT prohibited. Any tests for imple-
mentation of the software on the new platforms are much appreciated and
all needed help will be provided by the original author.

The most updated information regarding the interface as well as the
installation and prerequisites instructions can be found in the README file of
DINAMICA package.

3

1.2 Disclaimer

DINAMICA is distributed as is. The author has no responsibility for the
performance of the software nor for any possible harm or damage the soft-
ware might cause to the platform it is run upon. All the details of the
disclaimer are explained and further clarified in the Gnu General Public
License.

DINAMICA is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

DINAMICA is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

The License can be found at http://www.gnu.org/licenses or in COPYING
file of the package. All the source files of DINAMICA have the Disclaimer
in the beginning along with the copyright information and contact details
of the original author(s).

1.3 Where To Get

DINAMICA is a part of the free-software community. The description and
all source files needed for the end-user utilization and the development are
located in the main software forge of the Free Software Foundation — Sa-
vannah (http://savannah.gnu.org). All the latest updates of the program
get uploaded to the Savannah pages dedicated to DINAMICA:

http://savannah.nongnu.org/projects/din

No special registration is needed, the software is available right there. Vari-
ous information about the package and the course of its development can be
found on those pages. For example, the download area contains all public
releases of the software:

http://download.savannah.gnu.org/releases/din/

There is also possibility to become a member of the developers’ team if
someone is interested in introducing the new features to DINAMICA. All
such efforts are appreciated. In this regard, the package file TODO is a good
opportunity to see all the new features and capabilities waiting to be realized.

All the changes and updates are recorded in the ChangeLog and NEWS file
of the package. ChangeLog files are also organized by year, i.e. all updates
introduced in 2012 are in ChangeLog2012. The most recent updates are in
ChangeLog.

4

1.4 Acknowledgements

The author is thankful to all his teachers in the area of dynamical systems
and stochastic processes, whom he met during the fulfillment of the Masters
and Doctoral thesis. Especially, Prof. Evgenii Volkov (Lebedev Physical
Institute, Moscow) and Andre Ribeiro, PhD (Tampere University of Tech-
nology).

The special thanks go to N.Devillard, who has developed the interface
for using the Gnuplot utility from within a C-program
(see http://ndevilla.free.fr/gnuplot/). DINAMICA uses this inter-
face.

1.5 Installation

NOTE: the most recent instructions for the installation process and all
dependent procedures are located in the package README file.

DINAMICA uses AutoConf and AutoMake systems for configuration.
The general information on how to configure the package administrated by
these two systems is located in the INSTALL file of the package.

1.5.1 Prerequisites

1. Unix/Linux OS.

2. gcc compatible C compiler, needed for Dinamica functioning (not only
compilation).

3. GNU Scientific Library (GSL) installed.

4. Gnuplot plotting utility installed (optional, but advisable).

1.5.2 Main Steps of Installation Process

1. Download the archive (usually .zip or .tar.gz) and uncompress it.

2. Configure the system by typing ./configure. This will check for all
the requirements and complain if any of those is not found. You may
consider CPPFLAGS and LDFLAGS variables, as well as --prefix option
to ./configure, before configuring the system (see below).

3. Type ”make” to compile the libdin.a and the dinamica itself. The
two must appear under the src/ directory in the root, i.e. where you
uncompressed the archive. (It is also important to know why we need
these two files for the software to work.)

4. Type make install to install dinamica executable and libdin.a li-
brary to the usual destinations (/usr/local/bin and /usr/local/lib,

5

respectively). This might require the root password. You may unin-
stall the program later by typing make uninstall to remove those
two files from the system. After the installation one might want to
remove all the files extracted from the archive.

1.5.3 Important to Know Before Configuring the Package

DINAMICA processes the input from the user (equations, parameters, vari-
ables, constants etc.) in the form of the file having .ode extension (ode-file,
for short). The result of the processing is the output .c file with C language
definitions and functions for the user system and the binary configuration
.bcf file. This output .c file is then compiled with the DINAMICA library
(libdin.*) generating the final executable .din. This executable is then in-
voked to read the .bcf file and, finally, the program fires up. Schematically
this process is shown in Fig. 1.

starts

.ode file

User supplied

System in C

(.c file)

Configuration

.bcf file

.din file

Executable

converter

.ode −> .c

DINAMICA

DINAMICA

configuration

creator

libdin.so(.a)

against

C−compiler:

compilation

Program

Figure 1: The general scheme representing the DINAMICA preparation
procedures before it starts.

It is important to understand that the compilation and linking of the
libraries take place during the functioning of DINAMICA. Thus, the com-
piler and the right path for the required libraries are needed to be properly
set when DINAMICA is first compiled. One should take care of this before
the configuration starts.

The way DINAMICA can obtain the full set of the paths is to specify
CPPFLAGS, LDFLAGS and --prefix option, together or one by one when
needed. These three variables are passed to the DINAMICA compilation
command, so they are crucial. The current directory where DINAMICA is
invoked is always checked for the dinamica library (libdin.so or libdin.a).

6

CPPFLAGS. This variable is important for the preprocessor, a program
checking the included, so called header, files. During the configuration pro-
cess the ./configure script checks for several .h files from the GSL and the
standard C libraries whether they are available. Sometimes it fails to find
them in the standard locations. In this case, the CPPFLAGS is needed. The
usage is simple: if one knows that the GSL headers are located, for example,
in /usr/local/include/, e.g. the full path to gsl odeiv2.h file is
/usr/local/include/gsl/gsl odeiv2.h (similarly for all other gsl *.h

files), then one could type at the shell prompt:

CPPFLAGS=/usr/local/include ./configure

This sets the environment variable for the ./configure script. Next, in
DINAMICA this variable will be set after the -I flag of the compiler, i.e.
will also be used as a path to the header files to find (since DINAMICA
uses the same set of header files to compile the user-defined .c file). Note,
that the path to the GSL header files is always gsl/*.h, so omit the gsl/

directory when specifying the CPPFLAGS like in the example provided.

LDFLAGS. This variable shows the path to the GSL library (and possi-
bly the standard C libraries). If the gsl library files are located in /usr/local/lib
then combining with CPPFLAGS one could type

CPPFLAGS=/usr/local/include LDFLAGS=/usr/local/lib ./configure

which should do the trick. Additionally, DINAMICA will compile the out-
put .c file against the libdin.so/libdin.a using this variable or the one
specified by --prefix (see below) to find the libdin.so/libdin.a library.
This value will go to the -L flag of the compiler, which specifies the path to
the libraries to be used in the compilation.

- - prefix. ./configure script accepts the --prefix option, which spec-
ifies the installation directory for make install command. Namely,

./configure --prefix=/usr/local

would install all the files produced by the package to the corresponding
subdirectories of /usr/local. For example, binary files, i.e dinamica, would
go into /usr/local/bin and libraries, i.e. libdin.a, — into /usr/local/lib.
This variable is set after the -L flag to the compiler in DINAMICA.

1.6 Running DINAMICA

The most simple invocation of DINAMICA is to type at the command line:

7

dinamica <your_ode_file>.ode

This will fire up the program, if the configuration and installation processes
went well. <your ode file>.ode is the .ode file containing the system to
be analyzed. This file should be prepared by the user.

The program starts by showing some information about the system it has
read from the .ode file, a little report on the compilation of the transformed
.c file against the DINAMICA library (libdin.so) and some miscellaneous
information. A typical output looks like:

<here is your prompt>$ dinamica bruss2.ode

Starting to check system’s specification:

Rebuilding the function:

f(x,y)=a-(b+1)*x+y*x^2

Rebuilding the function:

g(x,y)=b*x-y*x^2

u1’ = f(u1,v1)

v1’ = g(u1,v1)+dv*(v2-v1)

u2’ = f(u2,v2)

v2’ = g(u2,v2)+dv*(v1-v2)

Starting transfer to ‘bruss2.c’...

Done.

Active parameters: ‘b’, ‘a’, ‘dv’,

Writing ‘bruss2.bcf’...Done.

Preparing for ‘bruss2.c’ compiling...

Compiling with: ‘gcc -Wall bruss2.c

-I/opt/local/include -L/opt/local/lib -L./

-o bruss2.din -ldin -lgsl -lgslcblas -lm ’

Starting bruss2.din...

./bruss2.din bruss2.bcf

DINAMICA Ver. 1.0 (<dl.sv.nongnu.org/releases/din/>)

Copyright 2008, 2009, 2010, 2011, 2012, 2013, 2014 Elias Potapov

Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,

2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team

This software uses the gnuplot_i library written by N.Devillard

(see <http://ndevilla.free.fr/gnuplot/>).

This program comes with ABSOLUTELY NO WARRANTY;

for details type ‘warranty’ or simply ‘w’

This is free software, and you are welcome to redistribute it

under certain conditions; see GNU General Public License for details.

8

Report bugs to <elias.potapov@gmail.com>

Reading ‘bruss2.bcf’...Done.

>

Then the DINAMICA’s own command line (>) is shown up.
DINAMICA is organized in menus, which have a certain hierarchy that

does not go deeper than 2-3 levels starting from the main menu and ending at
submenus. The ubiquitous commands are ls and sh/show (not everywhere).
The former shows the list of possible menu items and the command shortcuts
to access them, while the latter shows the information corresponding to a
certain type of menu.

The menu items are shown such that the shortest command abbrevia-
tion for invocation of this particular menu is surrounded with parentheses.
For example, menu item (N)umerics can be accessed by typing n at the
DINAMICA prompt. The main menu look like:

>ls

MAIN menu:

(R)un*

(R)un (t)ransient*

(R)un (i)nitial*

(C)alculate*/

(F)ile/

(N)umerics/

(P)arameters*

(V)ariables*

P(e)riodics/

(G)raphics/

(I)nitials*

(T)rajectory/

C(o)ntinue/

R(a)ndom/

(Er)rors/

(S)ingularity/

(L)yapunov/

(R)un (l)inear*

Some more examples to clarify the concept, to access File menu one should
type in f at the prompt, to run system for the transient amount of time
type in rt etc.

9

The main menu also has the sign showing the type of the submenu. A
slash ’/’ at the end of menu item tells a user that this is a regular menu,
while an asterisk ’*’ tells about a command to be invoked.

Every command released at the prompt needs an ’Enter’ key hit at the
end to be accepted by the DINAMICA interpreter. One can use several
commands in a row to access more items in the submenus. For example, to
show the numerics information of the systems one could type in n, ’Enter’,
sh which will first bring the user to the Numerics submenu and then in that
particular submenu the show command is invoked. Alternatively, the same
result in a rather faster way can be achieved by typing n sh at the prompt.
This is quite self-explanatory.

>n sh

* Dimension: 4

* Number of systems: 2

* Number of parameters: 3

* Number of user functions: 2

* Number of auxillary entities: 0

Total time: 50

Transient time: 50

Step: 0.02

Writing step: 1

Sampling frequency: 1.00

Method: rkf45

Langevin flag: false

2 Input Files

2.1 ODE Files

This type of files is the main source for DINAMICA. Certainly, men must tell
software what to do, that is why .ode files preparation mostly lies upon the
user’s shoulders. First, we will present some general examples of using .ode

files, which will provide one with a good basis to start his/her own research
almost immediately once the examples are understood. Next, we will try
to draw the detailed explanation on how the .ode files are constructed and
what is the main syntax and usual pitfalls one might encounter during the
declaration of his/her own system.

2.1.1 Two Start-off Examples

Let’s start from the simple example we used before for invocation of DI-
NAMICA:

10

bruss2.ode

two Brusselator coupled by the diffusion equations

%system 2

du1/dt=f(u1,v1)

dv1/dt=g(u1,v1)+dv*(v2-v1)

du2/dt=f(u2,v2)

dv2/dt=g(u2,v2)+dv*(v1-v2)

f(x,y)=a-(b+1)*x+y*x^2

g(x,y)=b*x-y*x^2

jac u1=-(b+1)+2*v1*u1-du,u1^2,du,0

jac v1=b-2*v1*u1,-u1^2-dv,0,dv

jac u2=-(b+1)+2*v2*u2+du,u1^2,-du,0

jac v2=b-2*v2*u2,-u1^2-dv,0,dv

par b=2.5,a=1,dv=.57

init u1=10,u2=1,v1=1.5,v2=15

@ total = 50,yax=v1,yax2=v2

done

This file specifies the systems of two diffusively coupled Brusselators. The
system of Ordinary Differential Equations (ODE’s) is written down in a
self-explanatory way. The variables of the system are u1, v1, u2 and v2.
Everything that is not a variable in the ODE’s is either parameter or func-
tion/auxillary entity. Thus, dv is a parameter, while f and g are the func-
tions whose definition follows the ODE specification. The function decla-
ration introduce new parameters: a and b. The function arguments list is
within the parentheses, hence (x,y) denotes two arguments to the functions.

There is a possibility to include Jacobian into the system declaration.
This is used by several solvers. However, it is not necessary since DINAM-
ICA has a capability of calculating the Jacobian numerically. That is done
automatically, when the program cannot find the user-supplied Jacobian.
The Jacobian is included through jac statement followed by a variable name
whose differential equation is going to be subject for differentiation. All dif-
ferent derivatives are separated by commas ’,’ . Thus, the Jacobian matrix
is formed.

par statement specifies the initial values of the parameters of the system.
If some of the parameters are omitted here, their values equal to zero by
default.

init statement does the same job as par, but for the initial values of
the variables. Again, omitted variable values default to zero.

11

@ sign denotes the line with internal parameters for DINAMICA. In the
above example, total means the total time of integration, yax denotes the
variable to be plotted on the Y-axis, yax2 denotes the second variable to be
plotted along with the first one on the Y-axis.

done statement is not necessary, but shows the hereditary connection
of DINAMICA to the Bard Ermentrout’s XPPAUT software. Actually, the
ODE syntax is mainly like in XPPAUT
(see http://www.math.pitt.edu/∼bard/xpp/xpp.html).

As you might have noted the # sign starts the comments. The very im-
portant DINAMICA directive is %system which defines number of physical
sub-systems that the whole system has. In the example above, this number
is 2, meaning that there are 2 Brusselators coupled with each other.

This example must provide a start-off principles of defining the ODE
systems through the .ode file.

The next example include the definition of the discrete stochastic system
whose dynamics is going to be compared against the deterministic system
of ODE’s.

Toggle Switch example

two mutually inhibiting proteins x and y

x’=alpha/(1+y^n)-d*x

y’=alpha/(1+x^n)-d*y

init x=10,y=0

par alpha=1,n=2,d=0.1

g:alpha/(1+x^n);+y

g:alpha/(1+y^n);+x

g:d*x;-x

g:d*y;-y

@method=complex,method2=rkf45,sf=1,total=10000

done

This system has tow ODE’s describing the dynamics of two protein species in
a Genetic Toggle Switch. This systems is characterized with the two stable
states and possibility to switch between them. Here you can find another
type of variables/ODE definition — through x’ notation. This totally equals
the dx/dt notation.

The main difference as compared to the first example in this section is
the ’g:’s statements closer to the end of the file. These statements de-
fine the Gillespie procedure for solving systems possessing the discrete and
stochastic dynamics. The syntax goes as follows: g is a keyword, everything

12

between ’:’ and the following ’;’ is known as the propensity of the chem-
ical reaction and, finally, everything after ’;’ is the update vector, i.e. the
vector (whose elements are separated by commas ’,’) containing the infor-
mation on how the numbers of the species involved in the reaction change
after the reaction takes place. In our example, first reaction produces (+y)
one molecule y, while the third one removes (-x) one x molecule from the
reaction space.

Under the section of internal parameters (after @) you can find method=complex
directive which tells DINAMICA to use both stochastic discrete and normal
ODE integration methods altogether and compare the results. Addition-
ally, sf=1 statement tells DINAMICA to use sampling frequency for the
stochastic simulation equal to 1 (depending on the units used in the system,
it could be seconds, years or ages).

Finally, done finishes the input.

2.1.2 The Syntax in Details

The ode files are the main source for DINAMICA running. The program
cannot start without an appropriate ode file supplied to it. In this section
we discuss the syntax of the ode files in some greater detail. The general
rule for ode file syntax is the every new statement line is separated from
others by a newline symbol.

Comments. Comments in the ode files are marked by # sign and every-
thing that follows the sign until the end of line is ignored by the DINAMICA
parser.

Differential equations. The Ordinary Differential Equations (ODE) de-
termine the list of all variables of the system as well as the law governing
its dynamics. The main syntax for defining ODE’s is:

dx/dt = ...

y’ = ...

Thus, x and y are declared as variables and the corresponding Right
Hand Sides (RHS) of the ODE’s are determined.

The RHS’s are transferred as they are to the corresponding .c file for
further compilation (see Fig. 1). So the operator precedence is determined
exactly the same way it is determined for C-language mathematical expres-
sions. The C-language principles can be found elsewhere, e.g. [1].

For example, the following system

dx/dt = 1 + x^2 - y*x

y’ = (x+1)*y - y^2*x

will be converted to the corresponding C-function:

13

f[0] = 1 + pow(x[0],2) - x[1]*x[0];

f[1] = (x[0]+1)*x[1] - pow(x[1],2)*x[0];

where f is an array of the RHS functions, while x is an array of variables
in standard C language notation and indexing, starting from 0 for the 1st
equation, 1 for the 2nd and so on. Note also that the pow function from the
math C library is used for the power sign ^. The math library is included
into DINAMICA automatically.

Importantly, DINAMICA first checks the derivatives and extracts the
variable names. Then the actual transferring of the RHS equations starts.
All unknown symbols at this moment are set to be the parameters that can
be freely varied from within the program.

Physical systems. DINAMICA deals only with symmetrical dynamical
systems or, at least, those having the same number of variables. Here, we
call a sub-system, defined by a subset of variables of the whole system, a
physical system. For example, there can be two oscillators coupled to each
other. Importantly, these sub-systems are mathematically inside a single
system, however, physically they connote different systems.

Number of physical systems is defined by the %system directive that cab
appear anywhere in the text. For example,

%system 2

defines 2 physical sub-systems.
There is no way to define physical sub-systems in the iteration style.

This should be fixed in the future releases. In contrast, DINAMICA given
N sub-systems divides the whole systems into N equal parts starting from
the first variable and finishing by the last. If one has defined 6 variables
x1, x2, x3, x4, x5, and x6 and N = 2, then variables x1, x2, and x3 denote
sub-system 1, whereas x4, x5, and x6 belong to the sub-system 2. Similarly,
the same system can be divided into N = 3 sub-systems. However, N = 4
will not work and DINAMICA will report the error in this case, since the
sub-systems must contain the same number of variables.

Parameters. Parameter values are set through par statements:

par a=1,b=5

The above sets value for the parameter a to 1 and that of b to 5.
All undeclared alpha-numeric entities in the ODE declarations are set

to be parameters. The only way to assign a parameter value is via the par

statement. Thus, any parameter that did not appear under the statement
will be assigned a value of zero.

14

Initial conditions. The initial conditions for the deterministic simula-
tions can be set with init statement. The line has to be of the form:

init x=0,y=0

specifying the initial conditions for x and y, respectively. Several init

statements can be on different lines.
The initial condition can be a parameter. In this case the variable’s

initial condition and parameter receive a link, which is preserved throughout
the running session of DINAMICA. If the user simulate a trajectory from
the initial condition the link tells which parameter value to take for which
variable. This has the preference over other methods of setting the initial
conditions, for example, from a file.

Functions. Functions can be defined in the ode file facilitating a simpler
and more structured way of representing the system.

f(x) = ...

g(x,y) = ...

w(x,y,z) = ...

The above examples set the functions for the subsequent use in ODE equa-
tions. The syntax includes the function name followed by the list of ar-
guments (in parenthesis), separated with comma. Consider the following
self-explanatory example:

f(x) = x^2

u’ = v*f(u)

v’ = u

The expression f(u) is expanded to u^2 at the moment of the transfer to
the C-file. Note, that the argument list can contain similar names as those
used in the ODE specification, i.e. the name space of variables of a function
is separate from that of the system. For instance, the following is the same
as previous with u = y and v = x:

f(x) = x^2

y’ = x*f(y)

x’ = y

Auxillary entities. DINAMICA allows for using auxillary entities that
are some constant expressions. The auxillary functions can be used in the
equations and other mathematical expressions. The main purpose of using
the auxillary entities is to provide a capability to track certain mathemat-
ical relations during the simulations. However, this capability is not fully
supported yet and general advice is to avoid using auxiliaries.

The main syntax for the auxillary entity is:

15

aux R=x*y/(1+a)

The keyword aux signifies the beginning of the auxillary statement.

Jacobian. Some of the numerical methods require calculation of Jaco-
bian matrix. This can be done numerically (by default). However, if the
user doubts the correct numerical estimates of the Jacobian and if the RHS
derivatives are virtually easy to calculate analytically, it is possible to supply
the Jacobian matrix to DINAMICA.

The general form of the Jacobian matrix is:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

.

.

.
∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where fi is a RHS function of i-th variable xi. There are total n number of
ODE’s and, obviously, the same number of variables.

The keyword for entering the Jacobian is jac. After the keyword the
variable name, whose differential equation derivatives to be considered on
the line. Then, after the variable name, the equal sign ’=’ goes, followed by
the expressions of the derivatives separated by comma ’,’. For example,

jac u = 2*u-1,v*u-1

determines the Jacobian entry for the u variable.
IMPORTANT: jac statement MUST be put in the ode file after ALL

ODE declarations. Since for the very first entry the system parser must
know how many variables are in the system, in other terms, what is the
dimension of the system.

In the considered above example, we do not know what is the number of
the variable u and hence cannot determine derivatives over which variables
are presented. All we know is that there is a variable u in the system and
the dimension of the system is 2 (two entries separated by the comma).

Here is the full functional example of Jacobian statement use:

u’=a-(b+1)*u+v*u^2

dv/dt=b*u-v*u^2

jac u = -(b+1)+2*v*u,u^2

jac v = b-2*v*u, -u^2

The entries jac u and jac v can be put in any order, since the variable
name after jac determines the equation.

16

Noise terms. The so called Ito differential equations can be studied in DI-
NAMICA. For this one has to specify the noise terms in the RHS functions.
The Ito differential equations (sometimes referred to as Langevin equations)
has a specific form of the noise term, that is, some amplitude times the
white noise = standard normal distribution (with 0 mean and variance of
1) multiplied by square root of the time step, namely:

Noise = A×
√
dt×N(0, 1) ,

where A is the amplitude, dt is a time step and N(0, 1) is the standard
normal distribution. The amplitude can be set in DINAMICA using the
keyword lang:

lang u=0.1,v=0.01

The variable name signifies the ODE equation to add the noise term to.
The expressions right to the equal sign can contain normal mathematical
operators and parameters.

In order to simulate the stochastic trajectory defined by Langevin equa-
tions one has to enable the corresponding simulation methods: simple Euler
method or Milstein method (both are fixed step size algorithms). Addition-
ally, the so called Langevin flag must be turned on. All these options can
be found under the Numerics menu.

Stochastic discrete algorithm. DINAMICA allows for using the dis-
crete stochastic algorithm when simulating the trajectories [2]. The algo-
rithm was formulated by D. Gillespie and is of great use for the systems
with small number of molecules. Generally, the algorithm requires the so
called propensity functions to be defined and the update vector of the
chemical reactions. The propensity is analog of the chemical reaction rate.
The update vector defines which chemicals are consumed and which are
produced as a result of the reaction. DINAMICA has the straightforward
algorithm (referred to in [2] as “Direct” method) for simulating the discrete
stochastic trajectory.

For example, a chemical reaction A+B
k−→ C will be written in DINAM-

ICA ode file as:

gill:k*A*B;-A,-B,+C

The keyword for the Gillespie algorithm instruction is gill, or simply g,
followed by the colon ’:’. Then the propensity is defined as in the example
above k*A*B, followed by the semicolon ’;’. Finally, the update vector is
specified, showing how many molecules were removed (-) from the reaction
space and how many were added (+, the plus sign can be omitted) for each
chemical species involved in the reaction.

17

NOTE: the variable name space used in this approach is global, that is
the same as for the ODE equations. Thus, to define a variable to use for the
discrete method one needs to define the corresponding ODE. This way DI-
NAMICA becomes an excellent tool for qualitative and quantitative analysis
and comparison of both discrete and continuous deterministic trajectories.
If the ODE system being compared with the corresponding discrete stochas-
tic system does not contain a variable to be used one can always write an
“empty” ODE to declare a variable to the program:

dx/dt = 0

NOTE also, that DINAMICA does not prepare the propensity functions
for the user. Thus, for example, for the chemical equation A+ A

c−→ B the
propensity must be equal to c× A× (A− 1)/2 and be set explicitly by the
user:

g:c*A*(A-1)/2;-2A,B

Additionally, the update vector should not contain mathematical expres-
sions, i.e. in the example above two molecules of A are consumed, which is
set by -2A and NOT -2*A.

Technical parameters. Technical parameters are those you specify when
dealing with the numerical simulations (time of simulation, step etc.), graph-
ics (what to plot, type of the plots) and some other. This list can be extended
significantly, since DINAMICA contains a lot of different technical parame-
ters related to many analysis procedures. Every new release of the software
should extend the list significantly. Though not all the parameters can be
defined from within an ode file, almost all of them can be set from within
the running program.

The technical parameters to DINAMICA are usually presented in a form
<par>=<val> after @ sign beginning a line, where <par> is a name of the
parameter and <val> is its value. The pairs can be separated by comma
inside a single line. For example,

@total=100,dt=.2

total defines the total time of integration/simulation for the trajectories.
dt defines the time step for numerical integrators. The adaptive step

size algorithms take this as an initial guess for the step.
trans determines so called transient time, that is a time interval that

can be run without producing any output. This is usually used for getting
the final attractor of the system.

method/m defines the method of integration. The possible options can
be: eu (simple Euler fixed step size procedure), run-kut4 (Runge-Kutta
(4,5) fixed step size method), rkf45 (embedded Runge-Kutta-Fehlberg (4,5)

18

adaptive size method), rk8pd (embedded Runge-Kutta Prince-Dormand
(8,9) adaptive step method), rkck (embedded Runge-Kutta Cash-Karp (4,5)
adaptive step method), bsimp (Implicit Bulirsch-Stoer method, requiring
Jacobian calculation), discrete (Stochastic Discrete Algorithm from [2]),
milst (Milstein method for stochastic ODE’s, langevin flag (see below) must
be turned on), complex (complex method calculating deterministic trajec-
tory and one or several stochastic ones combining them into a single output).

method2 defines the method for the deterministic run if method=complex.
ws defines the writing step to the output trajectory file. For example,

ws=100 will force the integrator to put every 100-th point into the output
file.

sf is sampling frequency for the stochastic discrete algorithm [2]. De-
termines how often to write the output. For example, sf=5 will force the
simulator to produce output every 5 sec/min/hours or any other time units
implicitly assumed in the model under study.

lf/lang is a Langevin flag. If set to non-zero value, tells the program to
augment the ODE equations with the noise terms, whose amplitudes must
be defined in the ode file or inside the program.

graph/gf is a graphics flag. Non-zero value indicates that the user
wants to use the Gnuplot output. If the program was compiled with Gnuplot
support this option is by default true. Usually used to suppress the output.

xaxis/xax is a variable name or index for plotting at the X-axis. O
indicates time (default), 1,2,3 etc indicate 1st, 2nd, 3rd etc variable.

yaxis/yax/yaxis1/yax1 is a variable name or index for plotting at the
Y-axis. First variable is taken by default.

yaxis2/yax2 is an additional variable to plot at the Y-axis.
yaxis3/yax3 is yet another additional variable to plot at the Y-axis.

Three is the maximum number of plotted variables at Y-axis.
permeth/pm is either 1 or 0 determining the way the periods are cal-

culated from the simulated trajectory. 0 indicates the default method of
Poincare sections, 1 indicates the autocorrelation method. The former pro-
duces set of values for period, whereas the latter produces a single value for
a trajectory.

pervar/pv is a variable name or index telling which variable to use to
assess the system’s period.

cross/c is a Poincare section level. This value determines the fraction
between the max and min of the trajectory. Namely, the section level is
determined by the formula: Poincare section = (max(X) − min(X))/C +
min(X), where X is an array of points defining the trajectory and C is the
cross value defined by cross.

Finishing input. The keyword done is reserved for the final statement in
the ode file. This is optional and kept for the backwards compatibility as

19

well as compatibility with XPPAUT ode files [3].

3 Simulation Methods

The simulation methods in DINAMICA can be divided roughly into two big
classes: deterministic and stochastic.

3.1 Deterministic Methods

These methods are primarily obtained from the GNU Scientific Library (GSL) [4].
The methods are intended for the numerical simulation of the system of
ODE’s. Although there are a plenty of methods for the purpose in the GSL
library, we have opted to use several methods. For the very same reason,
the DINAMICA set of algorithms can be easily extended using the GSL.

Euler 2-nd order. The simplest fixed step size approach to solve the
system of ODE’s. The routine for the procedure is not from the GSL library.

Runge-Kutta 4-th order. Explicit (classical) 4-th order Runge-Kutta
algorithm. Own routine.

Runge-Kutta-Fehlberg 4-th order. Explicit embedded Runge-Kutta-
Fehlberg (4,5) method. This method is a good general-purpose integrator.
This is from GSL: gsl odeiv2 step rkf45 step function (see GSL reference
available at [4]).

Runge-Kutta Prince-Dormand 8-th order. Explicit embedded Runge-
Kutta Prince-Dormand (8, 9) method. From GSL: gsl odeiv2 step rk8pd.

Runge-Kutta Cash-Karp 4-th order. Explicit embedded Runge-Kutta
Cash-Karp (4,5) method. From GSL: gsl odeiv2 step rkck step function.

Implicit Bulirsch-Stoer method. Implicit Bulirsch-Stoer method of
Bader and Deuflhard. The method is generally suitable for stiff problems.
This stepper requires the Jacobian. From GSL: gsl odeiv2 step bsimp.

3.2 Stochastic Methods

These methods can be both continuous and discrete in nature.

Discrete. The discrete stochastic simulation follows the algorithm de-
scribed by D. Gillespie in [2] (“Direct” method for the Monte-Carlo step).

20

Continuous. This option refers to the Ito stochastic differential equations,
also known as Langevin equations. The general form of the equation of this
type is:

dx

dt
= f(x) + g(x) × dW , (1)

where f(x) is a normal RHS of an ODE, g(x) is the function determining
the amplitude of the noise and dW is a Wiener process.

For solving this type of a problem one can choose either the Euler pro-
cedure or the special Milstein method for solving Ito differential equations.
For both toggling of the Langevin flag (see manual on Numerics menu) is
required.

3.3 Complex Method

Complex method is a special feature of DINAMICA, which allows for simul-
taneous simulation of both stochastic and deterministic counterparts of a
system, further facilitating the comparative analysis of them. This method
is designed so that it first simulates the deterministic part of the system and
then several times the stochastic part, be it discrete or continuous.

The complex methods requires specifying the deterministic algorithm.
The stochastic algorithm is chosen automatically based on whether the
langevin flag or the discrete algorithm are set.

4 Dynamical Analysis Methods:

Trajectory System

For the analysis of the dynamics DINAMICA uses the simulated time series.
At the moment, all methodology described in this section refers only to the
deterministic time series that is obtained from the simulation of a system
described in terms of Ordinary Differential Equations (ODE’s). However,
the actual core algorithms for the dynamical analysis do not need a special
means for trajectory generation, only the deterministic property is required.

Note, that the analysis can be applied to any system de-
scribed in terms of ODE’s, hence, it is irrelevant what is the
independent variable of the system is. Throughout this manual
we use term “time” as the independent variable when describing
the algorithms, however, it can be a spatial variable, for exam-
ple, for some specific systems. Moreover, we assume that the
independent variable is increasing from the beginning to the end
of the simulated trajectory as, usually, happens with time vari-
able. Thus, for example, the point i of the trajectory takes place
for the larger value of time (or other independent variable) than
the point i− 1.

21

The set of ODE’s represents the system under study mathematically.
The system, however, can be further divided into physical sub-systems repre-
senting the actual coupled physical elements. Although indiscernible math-
ematically such systems as a whole may produce a significant differences in
the dynamics of the physical sub-systems (see e.g. [10]).

First, DINAMICA analyzes the dynamics of 1D system: either the
whole system, if the system’s physical dimension is equal to 1, or every
sub-system (number of physical sub-systems is determined in the %system

directive in the .ode file). Next, the whole system analysis is fulfilled pro-
ducing the overall dynamics report.

The analysis is based upon the concept of slope. The next section ex-
plains in detail the concept. Then, we present the slope algorithm for 1D
systems (meaning systems with the only physical dimension) and, finally,
the procedure for ND systems.

4.1 The Slope Concept

Once the deterministic time series is simulated it can be analyzed through
the DINAMICA TRAJECTORY-system (or T-system). The elementary unit
the whole analysis relies upon is slope . The slope is a part of the calculated
trajectory (or the time series) from the beginning of section, where the
trajectory’s points start to decline over time, up to the beginning of section,
where the points start to ascend over time, or vice versa. The concept is
illustrated in Fig. 2.

Time0 t 1 t 2

P0

P1

P2

t

Figure 2: The graphical representation of the slope concept

The set of calculated points belonging to the trajectory has turning

points , at which the trajectory changes its direction from pointing upwards

22

to pointing downwards, or vice versa. Strictly speaking in terms of continu-
ous trajectory and infinitesimal time step, at those points the corresponding
variable’s derivative becomes equal zero.

In Fig. 2 these points are depicted in red and blue (P0, P1 and P2)
demarcating two slopes: the first contains all the points from point P0 up
to P1 inclusively and the second — from P1 to P2.

Practically speaking, all kinds of trajectories contain the slopes, since
in the most cases the calculated points have at least small discrepancies
in their values caused by the computer representation of the real numbers.
Nevertheless, in those really rare cases, when two adjacent points have values
that are the same (up to the all representation bits of the numbers), the T-
system determines the plateau, and the beginning and/or end of the slope is
calculated as the point in the center of plateau (if the plateau contains even
number of points the ceiling operation is taken).

Thus, one can distinguish between ascending and descending slopes. In
Fig. 2 the first slope is descending (from P0 to P1), while the second one
(from P1 to P2) is ascending. For the obvious reasons, the ascending and
descending slopes alternate over time. Additionally, the end of each slope is
the beginning of the next one. For this reason, for example, the T-system of
DINAMICA stores only the time that the slope starts at. Using the example
depicted in Fig. 2, only t0 and t1 are stored for the two slopes shown.

There are three entities that describe a slope in DINAMICA. The slope
amplitude SA is the difference between the variable values at the beginning
and at the end of the slope. The slope base SB is the lowest point of the
slope. The beginning of the slope in time ST is the third entity.

Continuing with the example of Fig. 2, the slope appearing earlier in
time has amplitude equal to (P0 −P1), base — P1 and the start time — t0,
while the later appearing slope has amplitude equal to (P2−P1), base — P1

and the start time — t1. As a result, two adjacent slopes (descending and
then ascending) have the common base.

4.2 1D Dynamical Analysis

DINAMICA processes the simulated time series of a single variable within
the first physical dimension of the system. All dynamics detection is based
on the slope analysis of the simulated trajectory. The process could be
virtually divided into the preparation stage and actual slope algorithm.

The preparation process starts with the calculation of the peaks and
troughs of the simulated trajectory (in Fig. 2 points P0 and P2 are peaks
and point P1 is a trough). Then, based on the peak and trough information
the slopes of the trajectory are calculated. Next, the slopes are checked
to represent real slopes of the trajectory and not small “fluctuations” of it.
These small fluctuations appear in systems with very different timescales,
e.g. when there are very slow and very fast equations in the system. The

23

“fluctuations” appear due to this difference of the time scales and not due
to any stochastic forces applied to the system. Perhaps, a suitable integra-
tion algorithm accounting for the stiffness of the system might resolve this
problem. In any case, this “sanity” checking of the slopes does not hamper
the whole analysis and, hence, is included in the preliminary preparation
stage of the process.

Before moving to the section explaining the slope algorithm we need to
take a look at the dynamical regimes and the definitions used in DINAMICA
for the dynamical processing.

4.2.1 Dynamical Regimes of 1D Systems

1D (here we refer to the physical dimension) systems can in principle have
two types of dynamics: stationary and non-stationary behavior. The former
refers to so called steady state of a dynamical system, at which the system
eventually ends up at a stationary point. The latter, oppositely, connotes
a behavior that does not rest at any particular point. The non-stationary
behavior contains many sub-classes of behaviors, ranging from pure oscil-
latory dynamics with distinguished period and amplitude to chaos with no
certainty in the period and amplitude.

NOTE #1: the DINAMICA slope algorithm determines the genuine

dynamics of a system in a sense of the realized (really appearing) behavior.
For example, there is no way in the slope algorithm to distinguish between
oscillations induced by the harmonic oscillator and the limit cycle oscillations
(the first one is the linear system possessing the “center” fixed point with
pure imaginary Lyapunov numbers, while the second is the non-linear system
containing the Hopf bifurcation).

NOTE #2: DINAMICA is capable of determining the chaotic behav-
ior — a dynamical regime in which the deterministic laws of motion produce
unpredictable behavior. But this capability of the program goes beyond the
slope algorithm, which most likely would produce the “unknown” or period-
n oscillatory regime (see below), where n is very large, in the case of chaos.

Thus, the non-stationary dynamical behavior is either oscillations with
some predictable periodicity or chaos. The oscillatory regime can be char-
acterized with its amplitude and period. While the amplitude value is not
qualitatively useful, the period might be composed of several sub-periods,
denoting, if they are present, the additional frequency of oscillations. This
takes place, for instance, in case of the torus attractor.

Here, we define period-n oscillations referring to the oscillatory trajectory
with every oscillation being of the same amplitude and the same level as
those of the n-th oscillation prior or next to the given one. For example,
Fig. 3 shows two sinusoidal oscillation trends. The first one is described by
the expression sin(x) and the second one — by sin(x)+sin(x/2). The former
has one frequency of oscillations and the latter one has a period composed

24

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

sin(x)

sin(x)+sin(x/2)

Figure 3: Sinusoidal oscillations as an example of period-1 (blue) and period-
2 (red) oscillatory dynamics.

of two sub-periods. The sin(x) oscillatory regime is period-1 oscillations,
the sin(x) + sin(x/2) oscillatory regime is period-2 oscillations.

The summary of all dynamical regimes detectable within the frame of
the slope algorithm goes in Tab. 1. Here we also present the numerical
codes for each possible regimes: 0 means stationary dynamics, 1 . . . n means
period-1. . .period-n oscillatory regime and −1 stands for the unknown or
undetermined regime.

Regime Name(numerical code)

Stationary state SS(0)

Period-n oscillations OS(n)

Unknown/undetermined –(−1)

Table 1: 1D dynamical regimes detected by the slope algorithm.

4.2.2 The slope algorithm

Note that the dynamics of a system cannot be stationary and non-stationary
at the same time. Thus, these two pathways of analysis are separated from
each other in the slope algorithm (SA).

Stationary dynamics. The stationary dynamics can be easily detected
when the system is already at the rest state, meaning it does not deviate
from the state significantly. This can be checked by comparing the very last
slope’s amplitude to the system-wide absolute error level (which is defined

25

by the user). If the amplitude is so small (less than the error level), then the
decision is made right away — SS(0) (see Tab. 1). This can be expressed
by the formula:

SA
last < ǫabs , (2)

where SA
last is the amplitude of the last slope in the trajectory, i.e. contain-

ing the largest value for the time (ST) of the slope. The value of ǫabs is
highly system-dependent and changes, for example, with different units of
the system. Thus, it is highly recommended to check this value before any
serious studies of the dynamics of the system of interest.

The more complex situation of the stationary dynamics detection takes
place, when the algorithm receives the time series where the system does not
appear to be in its final resting state. But, since the system has it, it must
converge to it. The convergence is manifested in the consistent decrease in
the slope amplitudes when moving from the first slopes to the last ones.
So the slopes successively demonstrate a decrease in their amplitudes as
time goes on (or any other independent variable). In this case, the SA
checks the slope amplitudes moving from the last to the first slope. If,
starting from the last slope, at least 50% (default value) of all the amplitudes
increase sequentially (in the reversed direction), then SA detects the SS(0)
regime (Tab. 1). This increase must not be interrupted anywhere, in other
words, approximately the last half of the trajectory shows the monotonic
decay in the slope amplitudes in direct time (or other independent variable).

The tolerance ǫrel determining the criterion for the descending of the
slope amplitudes is relative and also specified by the user. Thus, the (i +
1) amplitude is considered to be decreasing compared to the previous i-th
amplitude, if the following condition is fulfilled:

(SA
i − SA

i+1) > ǫrel · SA
i (3)

This means, that from slope i to slope i + 1 the amplitude decreases for
more than 100 × ǫrel%. The usual value for ǫrel is 0.01 (1%). Note that for
the increasing amplitudes the condition cannot be ever fulfilled, since the
left hand difference of the amplitudes becomes negative in this case, while
the right hand product is always positive.

Let M be the following:

M = max
(

i | (SA
i − SA

i+1) ≤ ǫrel · SA
i

)

|
(

(ST
i < ST

i+1) | (i < i+ 1)
)

, (4)

i.e. the maximum index of the slope where the condition (3) for the slope
decrease is violated, given that the time is always increasing in the time
series (this must be applied to any other independent variable too) and the
smaller slope index corresponds to its smaller time value.

26

Finally, given the total number of slope amplitudes in the simulated time
series is equal N , the criterion for the stationary dynamical regime is:

N −M

N
> ǫthr , (5)

where the ǫthr = 0.5 (50%) by default and N−M gives the number of slopes
sequentially decreasing at the end of the simulated time series.

Summarizing, the stationary (resting) regimes get detected in two cases:

1. The last amplitude is smaller than the absolute tolerance (error) given
by the user.

2. At least, 100 × ǫthr% (50%) of the slope amplitudes sequentially in-

crease as calculated from the end to the beginning of the trajectory.

For the examples of the SS detection look, for instance, into Sections 6.1
and 6.2.

Non-Stationary dynamics. There are two ways in DINAMICA to de-
termine the oscillatory regime of any periodicity given the period (return
time) is constructed in a constant number of subperiods (see Sec. 4.2.1).

The first way to detect OS dynamics is when the system of interest is
on the attractor, that is one can find the similar slopes in the trajectory. The
algorithm here tries to find a slope that is similar (in amplitude and base)
to the very last slope of the trajectory. The comparison is made with the
relative tolerance level ǫrel that is used in the SS detection (by decreasing
slope amplitudes). Therefore, the error level ǫrel is somewhat a demarcation
threshold between similar and different slopes. That is, the slopes are similar
if the following two criteria are fulfilled:

∣

∣SA
i − SA

k

∣

∣ < ǫrel · SA
k

∣

∣SB
i − SB

k

∣

∣ < ǫrel · SA
k

(6)

Note, that here we use the absolute difference between the amplitude and
base values, since the approaching of the oscillatory attractor can be both
from higher slope amplitudes and lower slope amplitudes to the last one.
Additionally, we use slope bases for the comparison, since the amplitudes
are not enough for the purpose. For example, the amplitudes can be similar,
but the slopes are located in different parts of the phase space.

For the first trial of finding similar slope k (see eq. (6)) takes the value
of N (the number of slopes in the trajectory), while i moves from N − 1 to
1 with step 2 (since a period is composed with 2 consecutive slopes) until
the conditions (6) are met. Once the conditions are satisfied the algorithm
proposes the lag (i.e. number of slopes in the period, see more on the system

27

lag in Sec. 4.3.1) and decreases k by one. For every new value of k algorithm
tries to find the lag again to support the proposal found for the previous
value of k. The algorithm continues decreasing k until the newly proposed
lag is not equal to the one determined for the previous k. The algorithm
reports how many k iterations supported the first proposal of the lag, which
is the relevant information for the user.

When the lag is zero for the first value of k, the second procedure is
to be carried out. It checks for monotonic increase in the slope amplitudes
as the time goes on, in a similar way (but with inverted conditions) the
algorithm checks the monotonic decrease in the case of SS detection.

The following condition determines the increase in the slope amplitudes:

SA
i+1 − SA

i > ǫrel · SA
i (7)

The algorithm calculates the fraction of slopes satisfying the condi-
tion (7) at the end of the trajectory. The fraction must be larger than
the predefined error level ǫthr that is equal 0.5 by default. Note, that this
threshold error can be different from that used in the SS detection. This is
fulfilled with the set of expressions (8), where M denotes the max index of a
slope where the condition (7) is violated, then the number of the increasing
slope amplitudes at the end of the trajectory equals N − M , where N is
total number of the slopes in the trajectory. Finally, the comparison with
the threshold value is done.

M = max
(

i | (SA
i+1

− SA
i) ≤ ǫrel · SA

i

)

|
(

(ST
i < ST

i+1
) | (i < i+ 1)

)

,

N −M

N
> ǫthr

(8)
Summarizing, the non-stationary (oscillatory) regimes get detected in

two cases:

1. One can find a slope similar (in amplitude and base) to the very last
slope anywhere in the given trajectory.

2. At least, 100 × ǫthr% (50%) of the slope amplitudes sequentially de-

crease as calculated from the end to the beginning of the trajectory.

The examples of the OS detection can be found, for instance, in Sec-
tions 6.2 and 6.3.

4.2.3 General Comments on Slope Algorithm

Here we list all the characteristics of the slope algorithm, common pitfalls
in the analysis, known problems, limitations and assumptions behind the
algorithm. Users of DINAMICA are assumed to be familiar with these
notes.

28

1. The piece of the trajectory supplied to the T-system must be sufficient
for the analysis. It also must represent the dynamics of the system
under study at the most relevant scale.

2. The slope algorithm is a heuristic procedure, that is it detects the
actual realized dynamics as it is provided by the user. It does not
calculate any analytical characteristics from the rigid and solid theory
to make a decision on the dynamics. Thus, the scope and scale of
the supplied trajectories and the system-wide constants must be con-
trolled by the user of the program. For example, the error level for
the stationary dynamics detection is fully dependent on the system
under analysis: it can be 100 or 0.0001 and only units of the model
and common sense tell what the appropriate level is. Moreover, the
part of the trajectory presented to the algorithm could be just a tiny
piece of a larger picture: what if the trajectory will go extremely high
with increasing slope amplitudes right after the time window with con-
sistent decrease in the amplitudes? Such regimes do exist. This is a
philosophical issue, which can be partially overcome with the analyt-
ical knowledge like Lyapunov exponents and linear stability analysis
in the case of steady states. DINAMICA does NOT do this kind of
analysis. However, the core slope algorithm can be easily extended to
calculate analytical characteristics (like Lyapunov exponents or Floque
multipliers) to further support the made decision. Thus, the user can
do the analytical assessments on the steady state solutions in a sepa-
rate algorithm, implemented in DINAMICA (see the (S)ingularity

menu).

3. 1D detection of the dynamics is represented with 4 distinct procedures:
two for SS and two for OS. Given the error levels supplied by the
user are set in correspondence with the scale of the model, the first
procedures for both SS and OS detection methods are the most precise
or, in other words, trustworthy. The second procedures for both SS
and OS detection predict the most probable dynamical outcome of
the model. For this reason, they produce many numerical assessment
entities to be analyzed by the user.

4. The slope algorithm proceeds as follows. First, it tries to identify SS
regime by the absolute tolerance way (1st procedure). If that fails, it
goes for the rest three procedures (2nd SS and 1st and 2nd OS). The
next goes the 1st OS procedure. If that fails, the SA proceeds to the
2nd SS procedure (identification of the amplitude decrease). If this
does not produce any result, the algorithm proceeds to the 2nd OS
detection procedure (monotonic increase in amplitudes).

5. OS detection relies only upon the monotonic increase (2nd procedure)

29

in the slope amplitudes and not upon the decrease. However, ap-
proaching the oscillatory attractor can be both from the space lying
outside the closed curve of the attractor in the phase space and from
within. Thus, the decrease in the slope amplitudes can signify the
approaching to the oscillatory attractor, but can be detected with 2nd
SS procedure checking for the monotonic decrease in the amplitudes.
The workaround here is the appropriate absolute error level for the SS
detection and longer time series, since the longer time series can reveal
either further decrease of the amplitudes or arriving to the oscillatory
attractor. The ration between the last slope and the absolute error
level is shown when SS is detected via the 2nd procedure. This indi-
cates how close the final trajectory amplitude to the actual stationary
state.

6. It is possible, given the time of the slopes, to calculate approximate
rate of changing of the slope amplitude over time. Hence, the addi-
tional integration might be invoked from within the T-system to fur-
ther clarify the regime, if the user has supplied a non-sufficient piece
of the trajectory.

4.3 ND Dynamical Analysis

Once the slope information about each subsystem is gathered, it is supplied
to the N-dimensional algorithm. ND analysis is based on the comparison
of some entities of each system one with another so that all systems are
compared. For example, if one has three subsystems and an entity A is
compared, then A1 is compared with A2, A2 compared with A3 and A3

compared with A1 (where Ai stands for A entity in the subsystem i). In
other words, the entity undergoes all possible pairwise comparisons. In the
system with M subsystems the number of comparisons is M · (M − 1)/2.

The comparison is made by taking the ratio between two entities being
compared. The maximal ratio out of all M · (M −1)/2 comparisons is called
gain. Gain is always ≥ 1 since the larger value is divided by the smaller
one in all comparisons unless the two comparable entities are equal.

Overall, there are two test in the ND algorithm: homogeneity and phase

tests. The former checks the levels of the variables in different subsystems,
whereas the latter checks the time moments of the slopes in order to under-
stand the phase shift of the subsystems in respect to each other.

The overall dynamics has its numerical code. The code is a simple av-
erage of numerical codes of the subsystems (see the codes in Sec. 4.2.1).
Thus, if all subsystems possess the same dynamics and, hence, the same
dynamical numerical code, the overall dynamical code will be the same. If,
for some reason, the numerical codes in the subsystems do not match each
other the final overall numerical code will be non-integer number indicating

30

the mixed regime. This is, in general, considered to be the error in the
dynamics checking. However, there are certain meaningful exceptions.

The preliminary test checks whether all sub-systems possess the simi-
lar dynamics. The mixed regimes, i.e. when some sub-systems have one
behavior, whereas others have other behavior, are possible. In general, the
mixed regimes are indicators of a strange behavior, however, some particular
examples show this type of dynamical regime, for example, when there are
two limit cycles in a systems separated in the phase space and one of them
having extremely small amplitude, thus, getting detected as a steady state.

4.3.1 System lag

If all sub-systems are detected to be in one dynamical regime and this regime
is not SS, the system lag needs to be determined. The system lag is a shift
between the sub-systems as measured by the number of slopes. Practically,
there are M ·(M−1)/2 comparisons in a system with M sub-systems. Here,
we refer to the system lag as a maximal lag between sub-systems.

The SA utilizes the iteration procedure to go through all sub-systems. In
a single iteration, every sub-system’s last slope is compared with the slopes
of another sub-system starting with the last and proceeding backwards to
the first slope until the equal amplitude slopes are found. Additionally,
the equal amplitude slopes must have the same direction, pointing either
downwards (descending slope) or upwards (ascending slope). Once these
two conditions are satisfied the system lag is reported in a number of slopes
from the current one to the one having similar slope characteristics.

The concept is further clarified by Fig. 4. The red system j runs in
synchrony with the black system i. So the first comparison of the amplitudes
∣

∣

∣
Aj

0
−Ai

0

∣

∣

∣
< ǫrel · Ai

0 and slopes’ direction give the positive outcome, thus,

the amplitudes and directions are equal. Hence, the lag is equal 0 and there
is no need to compare other amplitudes of these two sub-systems. The
iteration switch to the next pair of sub-systems.

j

A

A

j

i

0

0A

A j

i

−2

−2

A i

−1

A−1

Figure 4: Zero system lag.

31

If the comparison fails, the further comparisons are carried out, i.e.
∣

∣

∣
Aj

−1
−Ai

0

∣

∣

∣
< ǫrel ·Ai

0,
∣

∣

∣
Aj

−2
−Ai

0

∣

∣

∣
< ǫrel ·Ai

0 etc., accompanied with similar

slope direction comparisons, until the conditions are satisfied. Note the lag
is reported as a number of slopes.

Consider the next figure (Fig. 5), which depicts a hypothetical system

with the system lag of 2 slopes. The inequality
∣

∣

∣
Aj

−2
−Ai

0

∣

∣

∣
< ǫrel · Ai

0 is

fulfilled and the directions of the last slope of the system i and the slope -2
of the system j coincide (both descending).

j

A i

0A i

−2

A i

−1

A j

0A j

−2

A−1

Figure 5: The system lag equals 2.

There is an important difference between the system lag and the phase of
non-stationary dynamical regime. The phase refers to the actual time shift
between the sub-systems and determined further in the T-system using the
system lag. In order to stress the difference consider the following Fig. 6. The
figure clearly shows the non-zero time shift between the systems, however,
the system lag is still zero.

−1

A j

0A j

−2

A−1

j

A i

0A i

−2

A i

Figure 6: The zero lag and non-zero phase (shifted sub-systems).

32

Once the system lag is determined, the phase and the amplitude/base
gains can be correctly computed, since now the T-system is aware of what
slopes to compare, when calculating these entities.

4.3.2 Phase test

Phase is an actual time shift between the sub-systems. In DINAMICA it is
reported as the fraction of the period of any OS-regime. Note, that the SS
regimes do not have phase.

Given the system lag, the phase can be simply calculated as the differ-
ence of the corresponding slopes time moments ST . The maximal phase is
reported.

If the phase shift is not zero, solution is considered to be out-of-phase
oscillations. Otherwise, solution is in-phase, meaning the synchronous os-
cillations in all subsystems.

The examples shown in Figs. 4, 5, 6 have 0T, 0.5T, and 0.5T phase
shifts (T is a period), respectively.

4.3.3 Homogeneity test

For the homogeneity test the maximal gains of the base and amplitude
are calculated. If the base gain OR the amplitude gain is larger than 1 +
ǫrel, then the in-homogeneous solution is detected. Otherwise, solution is
homogeneous. Note that the same ǫrel was used in the comparisons of 1D
dynamical checking algorithms.

For OS type regime the base and amplitude gains are calculated account-
ing for the system lag information. For other types of dynamical behavior
these gains are calculated on the last slope amplitudes of all sub-systems.

4.3.4 Report on the Overall Dynamics

The report of the overall dynamics of the multi-component system contains
much useful information. First, the code name for the regime comes: SS, OS,
mixed or - (undetermined) and some additional information about the de-
tected regimes. At the end of the report the information about homogeneity
comes. Moreover, OS regime has additional information about phase and
period of oscillations.

Here is the example of global SS detected:

SS(0)/IH(bg=1.12,ag=3.54)

This means that the solution was in-homogeneous with base gain equal 1.12
and amplitude gain equal to 3.54.

Homogeneous SS solution gets detected with the following:

SS(0)/H(bg=1,ag=1)

33

Oscillatory regime (OS) gets detected with the following information:

OS-1(T=35.4)/IP(0T)/H(bg=1,ag=1)

This indicates that the OS-1 regimes was detected with period 35.4, as
determined by simply subtracting the corresponding slopes’ time moments
accounting for the system lag information. The regime happened to be the
in-phase regime (IP) with maximal phase shift of 0 periods T (0T). Finally,
the homogeneity information is given.

Another type of OS detection might be:

OS-2(T=5.32)/OP(0.5T)/H(bg=1,ag=1)

This means that period-2 oscillations were detected with period 5.32. The
solution is out-of-phase with the phase shift of half of the period. It is a
homogeneous solution.

The OS solution, of course, can be non-homogeneous as well. In this
case, the report would show IH mark with larger than 1 values of bg (base
gain) and/or ag (amplitude gain).

5 Other Dynamical Analysis Methods

6 Examples

6.1 Single Gene Expression

(NOTE: the ode-file of the system can be found in the package ode/ folder
under the name single.ode)

Here we present the simplest model representing a gene producing mRNA
and, finally, protein, which then represses its own synthesis. Formally,
mRNA and protein numbers are the only variables of the model. The ODE’s
representing the system are:

dA/dt =
α

1 +
(

B
Kh

)n − dmA

dB/dt = gA− dpB

(9)

This system is merely representing self-repressing gene. The repression is
carried out through the Hill-function with a Hill-coefficient n. Kh is affinity
of the repressor protein to the corresponding operator site of its own gene,
which is expressed as ratio between the rate constants of binding and un-
binding reactions of the repressor to/from the operator site.The mRNA and
protein are degraded linearly with rate constants dm and dp, respectively.
The translation process, synthesis of the protein with the mRNA, is also
linearly modelled with rate constant g.

34

For some set of the parameters one can find a stable steady state in the
system. The kinetics of the two variables of the system is depicted in Fig. 7.
Being run on the trajectory, the T-system of DINAMICA reports:

***Checking variable a

SS(0): abs.tol = 0.001.

This reads as follows. The T-system checked variable a and made a
decision on the dynamics regime — the steady state (SS), as determined
by the final slope amplitude that happened to be less than the user-defined
error level abs.tol=0.001.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

Time

A
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1000 2000 3000 4000 5000

Time

Figure 7: The time series of mRNA (A) and protein (B) of the system of a
single self-repressing gene (left) and the corresponding slope amplitudes as
calculated from A’s trajectory (right). Parameters used for the simulations:
α = 0.05, Kh = 20, n = 2.6, dm = 0.0033, g = 0.1, dp = 0.0033

The result shown in Fig. 7 and the dynamics detected can be further
supported with the stability analysis of the fixed points of the system. This
can be done under the Singularity menu.

1) iter = 5 F(x) = -2.640e-08 0.000e+00

Solution N 1

U(1)=1.530145

U(2)=46.368037

Analytical J=

-0.003300 -0.000255

0.100000 -0.003300

L_1=-0.0033 + 0.00504524i

L_2=-0.0033 + -0.00504524i

Stable

The first line of the output shows the iteration of the algorithm at which
the solution was found and the RHS function values at the found point. It
is clear that the RHS functions are practically zeros. Thus, the algorithm
indicates one solution to be U(1) = A = 1.53 and U(2) = B = 46.37. Real

35

parts of the linearized system’s eigenvalues L 1 and L 2 are negative indicat-
ing the stable steady state. The Jacobian is also shown: Analytical means
that the user has supplied the Jacobian in the ode-file, while Numerical

means that it was computed numerically.

6.2 Brusselator

(NOTE: the system analyzed here is located in the package ode/ directory
under the name bruss.ode)

The Brusselator system is a model corresponding to a non-existing chem-
ical system of interaction of two molecules. Its major dynamical regime is
limit-cycle oscillations. The system of equations of the Brusselator is the
following:

dU

dt
= A− (B + 1)U + V U2

dV

dt
= BU − V U2

(10)

Analytically, the Hopf bifurcation at which the oscillations emerge takes
place for B > A2+1, that is in this parameter region the fixed point becomes
unstable. We have shown the results of the dynamics test for parameter set:
A = 1 and B = 1.9. This allows having the system slowly approaching the
steady state Fig. 8.

Fig. 8 clearly demonstrates the consistent decrease in the slope ampli-
tudes leading to the steady state point of the Brusselator, which has started
from a non-resting state. The two criteria for the detection of the station-
ary dynamics can be fulfilled together or one by one. Namely, the last
amplitude can be lower than the user-defined error level ǫabs, indicating the
steady state or, alternatively, since all the amplitudes decrease over time,
the steady state can be detected through the second method by calculating
the decrease of the slope amplitudes.

If we make the dynamics test on the trajectory obtained from the initial
conditions U(0) = 1 and V (0) = 1 and total time of integration 100 (see
Fig. 8), the DINAMICA output would be:

***Checking variable u

Last ampl. (0.005568) / Abs. tol. (0.001) = 5.568

SS(0): 31 of 31(100%) slopes demonstrate monotonical decrease

SS(0): total decrease=99.4198%,rel.tol=0.01

This reads as follows. The program detected the monotonic decrease in
the slope amplitudes of the trajectory of the variable u. All 31 slopes demon-
strate the decrease as determined with the relative error level rel.tol=0.01
(1%). Total decrease from the first slope to the last is 99.42%. The last

36

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 0 10 20 30 40 50 60 70 80 90 100

Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

S
lo

p
e
 A

m
p
lit

u
d
e
s

Time

Figure 8: The stationary dynamics of U variable (see eq. (10)) of the Brus-
selator (left) and the corresponding slope amplitudes (right) over time. The
parameter set for the Brusselator equations: A = 1 and B = 1.9

slope shows only 5.6 times higher amplitude than the absolute error level
abs.tol=0.001.

This means that the trajectory is almost at the final resting state. The
SS(0) regime is determined based on the monotonic decrease of the slope
amplitudes (the second way). However, the ratio of the last amplitude and
the absolute tolerance tells us that the first pathway of determining SS could
be reached if one had a slightly longer integration time or a larger absolute
error.

For example, if we make the absolute error at least 5.568 times larger
than the current value, e.g. abs.tol=0.006, then the SS(0) is determined by
this criterion only, like in the previous example of the single gene expression
model:

***Checking variable u

SS(0): abs.tol = 0.006.

Alternatively, the longer integration time would determine the SS(0) without
changing the absolute tolerance level. Since the bifurcation point leading to
the oscillatory regime is quite close to the point A = 1 and B = 1.9 in the
parameter space, the trajectory converge to the steady state for a quite long
time for the given system.

Finally, we could set the parameters of the Brusselator system to obtain
an oscillatory dynamics. For example, A = 1 and B = 3 make the fixed
point unstable and oscillations emerge. The trajectory is shown on Fig. 9.

The trajectory test being run on the time series shown in Fig. 9 gives
the following result:

***Checking variable u

Lag is 1: 24 of 25 (96%) comparisons support the conclusion.

OS(1): period-1,rel.tol=0.01.

37

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

u
,v

,

Time

rkf45(u)
rkf45(v)

 3.38

 3.39

 3.4

 3.41

 3.42

 3.43

 3.44

 3.45

 3.46

 3.47

 0 10 20 30 40 50 60 70 80 90 100

S
lo

p
e

 A
m

p
lit

u
d

e

Time

Figure 9: The time series of the variables of the Brusselator (left) for A = 1
and B = 3 and the corresponding slope amplitude values (right).

This reads as follows. The period-1 oscillations are detected and this
is supported by the mutual comparison of 24 out of 25 slope amplitudes
and slope bases. The decision is made with the relative tolerance equal to
0.01 (1%).

6.3 Repressilator

(NOTE: the file with the Repressilator system described in this section is
shipped with the package archive and located in the ode/ directory under
the name rep.ode)

The Repressilator is a synthetic genetic circuit consisting of three genes
and exhibiting an oscillatory behavior. The latter is possible due to the
circular arrangement of the three negative feedback loops introduced by the
proteins of the Repressilator genes. The first model of the Repressilator
was proposed by the authors who experimentally constructed the genetic
network [5, 6, 7]. The system of dimensionless ODE’s is the following:

da/dt =
α

1 + Cn
− a dA/dt = β(a−A)

db/dt =
α

1 +An
− b dB/dt = β(b−B)

dc/dt =
α

1 +Bn
− c dC/dt = β(c− C)

(11)

The system (11) represents the dynamics of mRNA (lowercase letters) and
protein (uppercase letters) species of three genes A, B, and C. The repression
of each gene’s mRNA is represented by the Hill function that is dependent on
the corresponding protein numbers. Additionally, each mRNA is degraded
that is represented by the negative terms of the equations. The proteins are
synthesized and degraded linearly.

The logic and the design behind the scheme imply the oscillatory behav-
ior of the circuit. However, there must be some steady state, which then
loses stability for the oscillations to emerge. This state appears for a small

38

value of the transcription rate α. The increase in α makes the system lose its
steady state stability via the Hopf bifurcation and the limit cycle oscillations
emerge Fig. 10.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60

d
,e

,f
,

Time

rkf45(d)
rkf45(e)
rkf45(f)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

d
,e

,f
,

Time

rkf45(d)
rkf45(e)
rkf45(f)

Figure 10: The stationary (left, α = 2) and oscillatory (right,α = 40) regime
of the Repressilator model. The variables A, B, and C, corresponding to the
proteins, are shown. Other parameters used in the simulation: n = 2, β = 1.

The T-system test being run on the trajectory shown in the left panel
of Fig. 10 shows SS with the absolute tolerance equal 0.001:

***Checking variable e

SS(0): abs.tol = 0.001.

T-system detects the OS being run on the trajectory shown in the right
panel of Fig. 10:

***Checking variable e

Lag is 1: 17 of 30 (56.6667%) comparisons support the conclusion.

OS(1): period-1,rel.tol=0.01.

The slope amplitudes course over time clearly demonstrate how the tra-
jectory settles down on the limit cycle attractor. First, the amplitudes are
small and then start increasing until they end up on the plateau (Fig. 11).
Thus, the T-system reports 17/30 amplitude comparisons to support period-
1 oscillation decision, which means that approximately half (56.7%) of the
trajectory demonstrates pure limit cycle oscillations. This is seen from
Fig. 11 where the slope amplitudes are equal from about time 60 onward.

6.4 Two coupled Brusselators

(NOTE: the ode file for the systems is called bruss2.ode and can be found
in the ode/ folder of the package.)

The system of two identical diffusively coupled Brusselators gives rise
to the whole set of various dynamical behaviors. We mostly rely in our
analysis on [8], which gives the extensive bifurcation analysis of the system.

39

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180 200

S
lo

p
e
 A

m
p
lit

u
d
e

Time

Figure 11: The slope amplitudes of the Repressilator system showing the
transition to the oscillatory dynamics. Parameter set: α = 40, n = 2,
β = 1 (eq. (11)).

The bifurcation diagrams and results of this work can serve as a guide for
finding dynamical behaviors of the system.

The system of equations describing the behavior of coupled Brusselators
is the following:

dx1
dt

= A− (B + 1)x1 + x21y1

dy1
dt

= Bx1 − x21y1 +D(y2 − y1)

dx2
dt

= A− (B + 1)x2 + x22y2

dy2
dt

= Bx2 − x22y2 +D(y1 − y2)

(12)

As one can see from the system (12) the coupling is realized through
one of the variables of the system yi. Here we can see the 2-dimensional
physical system, each consisting with 2 variables xi and yi, where i refers to
the number of the system.

Given that the single Brusselator demonstrates the steady state dynam-
ics and oscillations appearing through the Hopf bifurcation, we can assume
that the homogeneous solutions of the systems (12) that correspond to these
two regimes must exist.

Homogeneous Steady State. For some initial conditions and parame-
ters A = 1, B = 1.5, and D = 0.57 the system (12) converges to a steady
state Fig. 12.

The T-system of DINAMICA reports:

40

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

X
i

Time

X1
X2

Figure 12: The steady state of the system (12). Parameters: A = 1, B = 1.5,
D = 0.57. The initial condition for the simulation was: x1 = 10, y1 = 1.5,
x2 = 1, y2 = 15.

***Checking sub-system 1(u1):

SS(0): abs.tol = 0.001.

***Checking sub-system 2(u2):

SS(0): abs.tol = 0.001.

========

DYNAMICS:

SS(0)/H(bg=1,ag=1)

So, the both subsystems were determined to have SS(0) and the total
regime is homogeneous SS(0). The overall report on the system can be seen
under the title DYNAMICS:. Homogeneity is seen by amplitude (ag) and
base (bg) gains both equal to 1 (about the base and amplitude gains see the
Section 4.3).

Homogeneous In-Phase Oscillations. Increasing parameter B to 2.5
and starting from the steady state obtained in the previous section as the
initial condition, one can see the synchronous oscillatory dynamics of the
system (12). The solution is shown in Fig. 13.

The T-system of DINAMICA reports:

***Checking sub-system 1(u1):

Lag is 1: 25 of 27 (92.5926%) comparisons support the conclusion.

OS(1): period-1,rel.tol=0.01.

***Checking sub-system 2(u2):

Lag is 1: 25 of 27 (92.5926%) comparisons support the conclusion.

41

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

X
i

Time

X1
X2

Figure 13: The synchronous oscillatory solution of system of eqs. (12). Pa-
rameter used in simulation: A = 1, B = 2.5, D = 0.57. The initial condition
was the steady state obtained in the previous section.

OS(1): period-1,rel.tol=0.01.

========

DYNAMICS:

OS-1(T=6.591)/IP(0T)/H(bg=1,ag=1)

The report reads as follows. Each subsystem has been determined to
have period-1 oscillations, i.e. OS(1), with the relative error equal to 1%.
More than 92% of the slope comparisons support the period-1 conclusion for
both sub-systems. Thus, it is believed to be true single period oscillations.
The overall dynamics checking does not reject the subsystem’s conclusions
about the regime and furthermore shows that the solution is synchronous (in-
phase, IP) with period equal to 6.591 and 0 phase shift (0T) as measured
in the period units. Moreover, the regime is homogeneous: amplitude and
base gains are both equal to 1.

In-homogeneous Steady State. The work [8] reports that for the IP
solution parameter set we used in the previous section, i.e. A = 1, B = 2.5,
D = 0.57, there is another stable solution that is in-homogeneous steady
state.

Here, in order to find the unstable solution, we will use the random
initial condition approach, which is an additional technique utilized by the
T-system of DINAMICA. The random initial condition technique assigns
random initial conditions and tries out the trajectory. This method is avail-
able under the DINAMICA’s R(a)ndom menu.

Here, we opted to throw 10 random initial conditions for the system (12)
with the span equal to 10 (for more details about the random initial con-
ditions see the appropriate section of the DINAMICA’s manual) that was

42

found to be sufficient. For each initial condition T-system performs the dy-
namical test and reports the result for every such test as well as the overall
statistics at the end of the calculation. Additionally the analyzed trajecto-
ries are plotted. This example’s plot can be seen in Fig. 14.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

u
1

Time

frame-1
frame-2
frame-3
frame-4
frame-5
frame-6
frame-7
frame-8
frame-9

frame-10

Figure 14: The output of the random initial condition trials. 10 random
trials are plotted for the parameter set: A = 1, B = 2.5, and D = 0.57.

The report looks as following:

Dynamics report:

#1) OS-1(T=6.5894)/IP(0T)/H(bg=1,ag=1)

#2) SS(0)//IH(bg=1.53092,ag=2.38667)

#3) OS-1(T=6.5628)/IP(0T)/H(bg=1,ag=1)

#4) SS(0)//IH(bg=1.53091,ag=1.59574)

#5) OS-1(T=6.5888)/IP(0T)/H(bg=1,ag=1)

#6) OS-2(T=13.0331)/IP(0T)/H(bg=1,ag=1)

#7) OS-1(T=6.5762)/IP(0T)/H(bg=1,ag=1)

#8) OS-1(T=6.5635)/IP(0T)/H(bg=1,ag=1)

#9) SS(0)//IH(bg=1.53093,ag=2.63333)

#10) OS-1(T=6.6523)/IP(0T)/H(bg=1,ag=1)

Abs.tol = 0.001, rel.tol = 0.01

Regimes statistics:

Number of regimes: 10

Steady States: 3 (30%)

Oscillatory: 7 (70%)

Homogeneous: 7 (70%)

In-homogeneous: 3 (30%)

43

Homogeneous oscillatory: 7 (70%, 100% of homogeneous)

In-homogeneous oscillatory: 0 (0%, 0% of in-homogeneous)

In-phase oscillatory: 7 (70%, 100% of oscillatory)

Out-of-phase oscillatory: 0 (0%, 0% of oscillatory)

Mixed: 0 (0%)

Undetermined: 0 (0%)

One can see both from the report and from the output figure (Fig. 14)
that the system has determined two stable dynamical regimes: in-phase
oscillatory and in-homogeneous steady state. The latter is characterized
with different steady state levels of the subsystems in the phase space. For
example, the second solution in the report shows the base gain equal to
around 1.5 meaning that the levels of the last slopes in the two subsystems
differ: one level is 1.5 times higher than the other. Note, that the amplitude
gain for the SS comparisons is not important, since the steady state level
amplitudes eventually have to approach, by the definition, an infinitesimal
value. Finally, the statistics is shown, where different kinds of comparisons
are brought together to exemplify the diversity of behaviors of the system
under study.

Out-of-phase oscillations. According to [8] for A = 2, B = 7 and
D = 0.24 the system of two coupled Brusselators contain the out-of-phase
oscillation with half a period phase shift. In order to find the solution we
resort to the same random initial condition technique as in the previous sec-
tion, since the solution co-exist with the in-phase oscillations. The result is
shown in Fig. 15, where only three trial results are given: one in-phase and
two out-of-phase oscillatory regimes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100

X
1

Time

IP
OP
OP

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

Time

X1
X2

Figure 15: The random initial conditions to find the out-of-phase oscilla-
tions. Left: only three trials are shown giving in-phase (IP) and two out-of-
phase (OP) trajectories. Right: out-of-phase solution with half of the period
phase shift. Parameters for the system (12): A = 2, B = 7, and D = 0.24.

The dynamical test for the 10 random trials results in:

Dynamics report:

44

#1) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

#2) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

#3) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

#4) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

#5) OS-4(T=24.198)/OP(0.499959T)/H(bg=1,ag=1.00012)

#6) OS-4(T=24.198)/OP(0.499959T)/H(bg=1,ag=1.00008)

#7) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

#8) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

#9) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

#10) OS-1(T=5.86)/IP(0T)/H(bg=1,ag=1)

Abs.tol = 0.001, rel.tol = 0.01

Regimes statistics:

Number of regimes: 10

Steady States: 0 (0%)

Oscillatory: 10 (100%)

Homogeneous: 10 (100%)

In-homogeneous: 0 (0%)

Homogeneous oscillatory: 10 (100%, 100% of homogeneous)

In-homogeneous oscillatory: 0 (0%, NAN% of in-homogeneous)

In-phase oscillatory: 8 (80%, 80% of oscillatory)

Out-of-phase oscillatory: 2 (20%, 20% of oscillatory)

Mixed: 0 (0%)

Undetermined: 0 (0%)

From the reports it is easy to see that there were found 2 OS-4 dynam-
ical regimes (#5 and #6) with period of 24.2. These oscillatory behaviors
are classified as the homogeneous out-of-phase oscillations with phase shift
of approximately half of the period. All other 8 trials gave the normal
homogeneous in-phase oscillations.

Fig. 15 clearly shows the curly shape of the out-of-phase oscillations.
There are 4 subperiods for the oscillatory trend. Although it cannot be
clearly discerned from the figure, the 4-th subperiod contains practically
small slopes in it.

In-homogeneous oscillations. The system (12) of two coupled Brussela-
tors comprise one more interesting dynamical regime, that is in-homogeneous
oscillations. The general characteristic of the behavior is the different levels
of oscillations in the sub-systems. It usually takes place when the Hopf bifur-
cation appears on the in-homogeneous steady state solutions. The waveform
of the in-homogeneous OS for the system (12) is shown in Fig. 16.

The trajectory shown in Fig. 16 is analyzed by T-system of DINAMICA
giving the following output:

45

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70 80 90 100

Time

Y1
Y2

Figure 16: The in-homogeneous oscillatory solution of two coupled Brusse-
lators. Parameters: A = 1, B = 3.2, D = 0.57.

***Checking sub-system 1(y1):

subperiods is 1: 18 of 22 (81.8182%) comparisons support the conclusion.

OS(1): period-1,rel.tol=0.01.

***Checking sub-system 2(y2):

subperiods is 1: 17 of 21 (80.9524%) comparisons support the conclusion.

OS(1): period-1,rel.tol=0.01.

Could not determine the lag[0] => IH?

#0) Systems lag = -1

========

DYNAMICS:

OS-1(T=8.322)/OP(-1T)/IH(bg=3.43325,ag=1.99052)

T-system has checked the first sub-system (on the variable y1) and re-
ported about OS-1 regime found. Similarly, for the second sub-systems (y2).
Finally, the lag between the two sub-systems could not be found due to the
inhomogeneity of the two. Thus, the system lag is set to be -1 as a convention
for the not-found lag.

Additionally, in-homogeneous oscillatory solutions cannot be determined
to have a phase shift one from another. Hence, the T-system uses conven-
tionally the negative number (usually close to -1) for the phase shift of such
dynamical behaviors. However, the base and amplitude gains can be well
determined and they are reported.

46

6.5 Three coupled Brusselators

(NOTE: the three coupled Brusselators system is defined in bruss3.ode file
of the package and can be found in ode/ folder.)

Here we consider another example of coupled Brusselators, where the
coupling is carried out through the common media via the slow variable yi
and three oscillators are coupled. In general, this type of the system does not
differ from the previously considered 2 Brusselators, except for the number
of them, since the system (12) can be brought to the form of the following
system:

dxi
dt

= A− (B + 1)xi + x2i yi

dyi
dt

= Bxi − x2i yi +D(
1

N

N
∑

j=1

yj − yi)
(13)

Eq. (13) represents the dynamical system of a single i-th oscillator, where
the total number of oscillators N = 3. This system is known to have so called
“wave” solution where the trajectory is a period-2 oscillation for each of the
oscillators and the phase shift between the oscillators is T/3 (Fig. 17).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

Time

Y1 Y2 Y3

Figure 17: The so called ”wave” solution to the eq. (13). Parameters used:
A = 1, B = 15.4, D = 0.046.

T-system reports on the “wave” solution (as shown in Fig. 17, but with
time 1000):

***Checking sub-system 1(y1):

subperiods is 2: 42 of 49 (85.7143%) comparisons support the conclusion.

OS(2): period-2,rel.tol=0.01.

***Checking sub-system 2(y2):

subperiods is 2: 42 of 49 (85.7143%) comparisons support the conclusion.

47

OS(2): period-2,rel.tol=0.01.

***Checking sub-system 3(y3):

subperiods is 2: 46 of 49 (93.8776%) comparisons support the conclusion.

OS(2): period-2,rel.tol=0.01.

period 1: 76.766 = 25.38 + 51.386

period 2: 76.889 = 25.43 + 51.459

period 3: 76.848 = 51.445 + 25.403

phase shift 1: 0.334341

phase shift 2: 0.332856

phase shift 3: 0.667018

========

DYNAMICS:

OS-2(T=76.766)/OP(0.666662T)/H(bg=1.00006,ag=1.00007)

The report above reads as follows. Each sub-system was determined to
have OS-2 periodic trajectory. Periods of each of the sub-system were about
76.8, divided into two subperiods: 25.4 and 51.4. Phase shifts were 0.33,
0.33 and 0.67. The first two are expected phase shifts as was noted above
for the “wave” trajectory, however, 0.67 phase shift is also reported, for the
mutual comparison is carried out between all possible pairs of oscillators,
and, of course, there is a pair of oscillators that has a phase shift of double
of the minimal one 0.33.

In general, this is the case for N oscillators’ system with equal phase shift
between the “closest” oscillators, i.e. system is symmetric with regards to
the phase shift. The minimal phase shift is going to represent this “closest”
components and there will be also phase shifts of i× minimal-phase-shift,
where i runs from 1 to N − 1.

Another example of the phase symmetric oscillations but with different
periodicity inside each oscillator is shown in Fig. 18.

The shown in Fig. 18 regime is OS-3 oscillations as T-system reports:

***Checking sub-system 1(y1):

subperiods is 3: 24 of 29 (82.7586%) comparisons support the conclusion.

OS(3): period-3,rel.tol=0.01.

***Checking sub-system 2(y2):

subperiods is 3: 24 of 29 (82.7586%) comparisons support the conclusion.

OS(3): period-3,rel.tol=0.01.

***Checking sub-system 3(y3):

subperiods is 3: 24 of 29 (82.7586%) comparisons support the conclusion.

OS(3): period-3,rel.tol=0.01.

48

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180 200

Time

Y1 Y2 Y3

Figure 18: The OS-3 solution with T/3 phase shift. Parameters: A = 1,
B = 6, D = 0.234

period 1: 37.493 = 12.498 + 13.05 + 11.945

period 2: 37.498 = 11.946 + 12.497 + 13.055

period 3: 37.493 = 13.055 + 11.94 + 12.498

phase shift 1: 0.333342

phase shift 2: 0.666569

phase shift 3: 0.333476

========

DYNAMICS:

OS-3(T=37.493)/OP(0.666569T)/H(bg=1.00001,ag=1.00008)

Again, one can see the 0.33 to be the minimal phase shift between the
oscillators, but the period is now composed of 3 subperiods, which is reliably
determined for each of the sub-systems.

All regimes demonstrated in this section are homogeneous.

6.6 Two coupled genetic Repressilators

(NOTE: the two coupled Repressilators system can be found in repB2.ode

under the ode/ directory of the package.)
Recent example of the genetic dynamical system possessing a multitude

of dynamical behaviors has been reported in [9]. The system is a further
development of the original Repressilator system (see eq. (11) and [5]) and

49

contains the following equations [9, 10, 11]:

dai
dt

=
α

1 + Cn
i

− ai
dAi

dt
= βa(ai −Ai)

dbi
dt

=
α

1 +An
i

− bi
dBi

dt
= βb(bi −Bi)

dci
dt

=
α

1 +Bn
i

− ci + κ
Si

1 + Si

dCi

dt
= βc(ci − Ci)

(14)

dSi

dt
= −ks0Si + ks1Bi − η(Si −QS̄) ,

where S̄ =
1

N

N
∑

j=1

Sj (N is the number of oscillators).

The system (14) has the original Repressilator’s three genes augmented
with a small diffusive molecule carrying out the coupling function. The
molecule is represented by the term Si and affects the expression rate of
the mRNA ci. The coupling itself is realized through the diffusion of Si.
Furthermore, the contribution of all Repressilator cells is represented by
the average concentration of Si molecules S̄ in all cells, thus, having an
assumption of fast mixing of S molecules in the media. Since the mechanism
is borrowed from a clear natural example of so called quorum sensing found
in bacteria, the average concentration of S molecules is further multiplied
with the quorum sensing coefficient Q that takes the values from the interval
[0, 1]. The Q parameter determines how close the cells are in the media. For
example, if Q = 1 all cells are tightly connected and once S molecule is
produced in cell i it is immediately available to all other cells. On the
contrary, Q = 0 indicates the full dilution of S molecules in the media, i.e.
cells are far away from each other. For further details, see [10].

There is a whole set of the dynamical behaviors the model demonstrates,
e.g. as the quorum sensing parameter Q varies. We will follow the results
reported in [10]. Until a further notice made, the default parameter set we
use is: N = 2, α = 216, n = 2.6, βa = 0.85, βb = 0.1, βc = 0.1, κ = 25,
ks0 = 1, ks1 = 0.01, η = 2 and we vary Q in the range [0, 1].

Anti-phase oscillations. The only pure oscillatory regime the system (14)
has is the anti-phase oscillations, i.e. oscillations with phase shift of half a
period. So, given the default parameter set and Q = 0.1 we observe the
anti-phase kinetics (Fig. 19).

The T-system being run on the results shown in Fig. 19 reports:

***Checking sub-system 1(a1):

subperiods is 1: 16 of 17 (94.1176%) comparisons support the conclusion.

OS(1): period-1,rel.tol=0.01.

50

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450 500

Time

a1 a2

Figure 19: The anti-phase solution of the system (14). The default param-
eter set and Q = 0.1.

***Checking sub-system 2(a2):

subperiods is 1: 15 of 16 (93.75%) comparisons support the conclusion.

OS(1): period-1,rel.tol=0.01.

DYNAMICS:

OS-1(T=51.08)/OP(0.5T)/H(bg=1,ag=1)

The above report shows the homogeneous oscillations with phase shift
of 0.5 of the period, that is 51.08. Both sub-systems are reported to have
OS-1 regime.

Oscillations co-exist with homogeneous steady state. If we set Q =
0.2 the dynamical picture of the system changes and new dynamics emerge.
Namely, the stable homogeneous steady state solution in addition to the
oscillatory anti-phase solution.

Let us try to identify the solution using the random initial conditions.
In the following we opted to have 300 randomly thrown initial points for
simulations:

Abs.tol = 0.001, rel.tol = 0.01

Regimes statistics:

Number of regimes: 300

Steady States: 298 (99.3333%)

Oscillatory: 2 (0.666667%)

Periodicity (unique): 1

Homogeneous steady state: 298 (99.3333%)

51

In-homogeneous steady state: 0 (0%)

Homogeneous oscillatory: 2 (0.666667%, 0.666667% of homogeneous)

In-homogeneous oscillatory: 0 (0%, NAN% of in-homogeneous)

In-phase oscillatory: 0 (0%, 0% of oscillatory)

Out-of-phase oscillatory: 2 (0.666667%, 100% of oscillatory)

Mixed: 0 (0%)

Undetermined: 0 (0%)

So the homogeneous steady state is a dominant regime (with the throw-
ing radius of 200) with 298 appearances, whereas the anti-phase solution
appeared only twice. The report also specified the solutions found:

...

#228) SS(0)/H(bg=1,ag=1)

#229) OS-1(T=49.381)/OP(0.500142T)/H(bg=1.00007,ag=1)

...

Thus, the same OS-1 solution found as in the previous section, but with
slightly smaller period, and the steady state solution.

Three co-existing solutions. If we increase Q even further up to 0.3, we
can reach the state of three different dynamical solutions co-existing with
each other. Namely, these are anti-phase oscillations, homogeneous steady
state and in-homogeneous limit cycle as reported in [10].

Again, using the random initial conditions we can find the aforemen-
tioned regimes. As shown below, the homogeneous steady state is dominat-
ing over other two dynamical behaviors and the in-homogeneous limit cycle
appears in the test 28 times vs. 1000 random runs. Finally, there is only
one initial condition led to the homogeneous anti-phase solution.

Abs.tol = 0.001, rel.tol = 0.01

Regimes statistics:

Number of regimes: 1000

Steady States: 971 (97.1%)

Oscillatory: 29 (2.9%)

Periodicity (unique): 0 1

Homogeneous steady state: 971 (97.1%)

In-homogeneous steady state: 0 (0%)

Homogeneous oscillatory: 1 (0.1%, 0.102881% of homogeneous)

In-homogeneous oscillatory: 28 (2.8%, 100% of in-homogeneous)

In-phase oscillatory: 0 (0%, 0% of oscillatory)

Out-of-phase oscillatory: 1 (0.1%, 3.44828% of oscillatory)

Mixed: 0 (0%)

Undetermined: 0 (0%)

52

The solutions found were determined with the following characteristics:

...

#4) OS-1(T=47.778)/OP(0.5T)/H(bg=1,ag=1)

#5) SS(0)/H(bg=1,ag=NAN)

...

#25) OS-1(T=33.743)/IH(bg=4.0355,ag=2805.98)

...

As one can see, there is again the dominating homogeneous steady state
solution. The anti-phase solution is characterized with further decreased
period. The new in-homogeneous oscillatory solution is characterized with
period around 33.7 and large amplitude and base gains. This solution of
the system is manifested with one system fully oscillating, while the other
is oscillating with very small amplitude, resembling a steady state (this is
why the amplitude gain is so big). This solution is shown in Fig. 20.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 100 200 300 400 500

P
ro

te
in

s
A

i

Time

A1
A2

Figure 20: The in-homogeneous limit cycle oscillations.

In-homogeneous steady state appears. For Q = 0.5 the system has
three solutions, but instead of in-homogeneous limit cycle there appears
in-homogeneous steady state.

Thousand randomly thrown initial conditions give the following output:

Abs.tol = 0.001, rel.tol = 0.01

Regimes statistics:

Number of regimes: 1000

Steady States: 999 (99.9%)

53

Oscillatory: 1 (0.1%)

Periodicity (unique): 1

Homogeneous steady state: 995 (99.5%)

In-homogeneous steady state: 4 (0.4%)

Homogeneous oscillatory: 1 (0.1%, 0.100402% of homogeneous)

In-homogeneous oscillatory: 0 (0%, 0% of in-homogeneous)

In-phase oscillatory: 0 (0%, 0% of oscillatory)

Out-of-phase oscillatory: 1 (0.1%, 100% of oscillatory)

Mixed: 0 (0%)

Undetermined: 0 (0%)

There are 999 steady states, among which 995 are homogeneous and 4
are in-homogeneous. There is 1 anti-phase homogeneous oscillatory solution
found. The found solutions are further explained in detail:

...

#399) OS-1(T=44.611)/OP(0.499989T)/H(bg=1,ag=1)

#400) SS(0)/H(bg=1,ag=NAN)

...

#792) SS(0)/IH(bg=8.66739,ag=INF)

...

The period of the anti-phase is further decreased to 44.6. In-homogeneous
steady state is around 8.7 times higher in one cell as compared to the other.

Chaos regime. According to the study performed in [10] there is an in-
terval of parameter Q values, where the anti-phase becomes a chaotic dy-
namical regime. This regime cannot be found using the slope algorithm of
the T-system, since there is no stable pattern in the time series, when the
system is on the chaotic attractor. This regime, however, will be determined
as either Mixed or Undetermined under the T-system checking.

We put Q = 0.7, simulate and check the dynamics for 10000 randomly
set initial conditions. The output is the following:

Abs.tol = 0.001, rel.tol = 0.01

Regimes statistics:

Number of regimes: 10000

Steady States: 9989 (99.89%)

Oscillatory: 0 (0%)

Periodicity (unique):

Homogeneous steady state: 9989 (99.89%)

In-homogeneous steady state: 0 (0%)

Homogeneous oscillatory: 0 (0%, 0% of homogeneous)

54

In-homogeneous oscillatory: 0 (0%, 0% of in-homogeneous)

Mixed: 11 (0.11%)

Undetermined: 0 (0%)

The system detected 11 mixed regime trajectories (this indicates pres-
ence of both stationary and non-stationary dynamics according to the T-
system). One of the mixed regimes found is depicted in Fig. 21, which
is referred to as chaos in dynamical studies. Another possibility for the
chaotic regime to be detected as Undetermined. In general, there is no
way to detect chaos with the T-system.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 400 800 1200 1600

P
ro

te
in

 A
i

Time

A1
A2

Figure 21: The chaotic regime.

55

References

[1] B. Kernighan and D. Ritchie. C programming language. Prentice Hall,
2nd ed. edition, 1988.

[2] D. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comp. Phys., 22:403–
434, 1976.

[3] XPPAUT by bard ermentrout. http://www.math.pitt.edu/~bard/xpp/xpp.html.

[4] GSL – GNU Scientific Library. http://www.gnu.org/software/gsl/.

[5] M. Elowitz and S. Leibler. A synthetic oscillatory network of transcrip-
tional regulators. Nature, 403:335, 2000.

[6] WikiPedia page of the repressilator model.
http://en.wikipedia.org/wiki/Repressilator.

[7] BioModels description of the repressilator model.
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000012.

[8] E. Volkov and V. Romanov. Bifurcations in the system of two identical
diffusively coupled brusselators. Physica Scripta, 51:19–28, 1995.

[9] E. Ullner, A. Zaikin, E. I. Volkov, and J. Garćıa-Ojalvo. Multistability
and clustering in a population of synthetic genetic oscillators via phase-
repulsive cell-to-cell communication. Phys. Rev. Lett., 99(14):148103,
2007.

[10] E. Ullner, A. Koseska, J. Kurths, E. Volkov, H. Kantz, and J. Garćıa-
Ojalvo. Multistability of synthetic genetic networks with repressive
cell-to-cell communication. Phys. Rev. E, 78, 2008.

[11] J. Garćıa-Ojalvo, M. Elowitz, and S. Strogatz. Modeling a synthetic
multicellular clock: Repressilators coupled by quorum sensing. Proc.

Natl. Acad. Sci. U.S.A., 101:10955, 2004.

56

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.gnu.org/software/gsl/
http://en.wikipedia.org/wiki/Repressilator
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000012

	Introduction
	Interface
	Disclaimer
	Where To Get
	Acknowledgements
	Installation
	Prerequisites
	Main Steps of Installation Process
	Important to Know Before Configuring the Package

	Running DINAMICA

	Input Files
	ODE Files
	Two Start-off Examples
	The Syntax in Details

	Simulation Methods
	Deterministic Methods
	Stochastic Methods
	Complex Method

	Trajectory System
	The Slope Concept
	1D Dynamical Analysis
	Dynamical Regimes of 1D Systems
	The slope algorithm
	General Comments on Slope Algorithm

	ND Dynamical Analysis
	System lag
	Phase test
	Homogeneity test
	Report on the Overall Dynamics

	Other Dynamical Analysis Methods
	Examples
	Single Gene Expression
	Brusselator
	Repressilator
	Two coupled Brusselators
	Three coupled Brusselators
	Two coupled genetic Repressilators

