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Preface

The Theory of Quaternions is due to Sir William Rowan Hamilton, Royal
Astronomer of Ireland, who presented his first paper on the subject to the
Royal Irish Academy in 1843. His Lectures on Quaternions were published
in 1853, and his Elements, in 1866, shortly after his death. The Elements of
Quaternions by Tait is the accepted text-book for advanced students.

The following development of the theory is prepared for average students
with a thorough knowledge of the elements of algebra and geometry, and
is believed to be a simple and elementary treatment founded directly upon
the fundamental ideas of the subject. This theory is applied in the more
advanced examples to develop the principal formulas of trigonometry and
solid analytical geometry, and the general properties and classification of
surfaces of second order.

In the endeavour to bring out the number idea of Quaternions, and at
the same time retain the established nomenclature of the analysis, I have
found it necessary to abandon the term “vector” for a directed length. I
adopt instead Clifford’s suggestive name of “step,” leaving to “vector” the
sole meaning of “right quaternion.” This brings out clearly the relations of
this number and line, and emphasizes the fact that Quaternions is a natural
extension of our fundamental ideas of number, that is subject to ordinary
principles of geometric representation, rather than an artificial species of
geometrical algebra.

The physical conceptions and the breadth of idea that the subject of
Quaternions will develop are, of themselves, sufficient reward for its study.
At the same time, the power, directness, and simplicity of its analysis cannot
fail to prove useful in all physical and geometrical investigations, to those
who have thoroughly grasped its principles.

On account of the universal use of analytical geometry, many examples
have been given to show that Quaternions in its semi-cartesian form is a
direct development of that subject. In fact, the present work is the outcome
of lectures that I have given to my classes for a number of years past as
the equivalent of the usual instruction in the analytical geometry of space.
The main features of this primer were therefore developed in the laboratory
of the class-room, and I desire to express my thanks to the members of my
classes, wherever they may be, for the interest that they have shown, and
the readiness with which they have expressed their difficulties, as it has been
a constant source of encouragement and assistance in my work.
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I am also otherwise indebted to two of my students,—to Mr. H. B. Stilz
for the accurate construction of the diagrams, and to Mr. G. Willius for the
plan (upon the cover) of the plagiograph or mechanical quaternion multiplier
which was made by him while taking this subject. The theory of this instru-
ment is contained in the step proportions that are given with the diagram.1

ARTHUR S. HATHAWAY.

1See Example 19, Chapter I.
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Chapter 1

Steps

1. Definition. A step is a given length measured in a given direction.

E.g., 3 feet east, 3 feet north, 3 feet up, 3 feet north-east, 3 feet north-
east-up, are steps.

2. Definition. Two steps are equal when, and only when, they have the
same lengths and the same directions.

E.g., 3 feet east, and 3 feet north, are not equal steps, because they
differ in direction, although their lengths are the same; and 3 feet east,
5 feet east, are not equal steps, because their lengths differ, although
their directions are the same; but all steps of 3 feet east are equal steps,
whatever the points of departure.

3. We shall use bold-faced AB to denote the step whose length is AB,
and whose direction is from A towards B.

Two steps AB, CD, are obviously equal when, and only when, ABDC
is a parallelogram.
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4. Definition. If several steps be taken in succession, so that each step
begins where the preceding step ends, the step from the beginning of the
first to the end of the last step is the sum of those steps.

E.g., 3 feet east + 3 feet north = 3
√

2 feet north-east = 3 feet north +
3 feet east. Also AB + BC = AC, whatever points A, B, C, may be.
Observe that this equality between steps is not a length equality, and
therefore does not contradict the inequality AB +BC > AC, just as 5
dollars credit + 2 dollars debit = 3 dollars credit does not contradict
the inequality 5 dollars + 2 dollars > 3 dollars.
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5. If equal steps be added to equal steps, the sums are equal steps.

Thus if AB = A′B′, and BC = B′C′, then AC = A′C′, since the tri-
angles ABC, A′B′C ′ must be equal triangles with the corresponding
sides in the same direction.

6. A sum of steps is commutative (i.e., the components of the sum may
be added in any order without changing the value of the sum).

For, in the sum AB + BC + CD + DE + · · ·, let BC′ = CD; then
since BCDC ′ is a parallelogram, therefore C′D = BC, and the sum
with BC, CD, interchanged is AB + BC′ + C′D + DE + · · ·, which
has the same value as before. By such interchanges, the sum can be
brought to any order of adding.

7. A sum of steps is associative (i.e., any number of consecutive terms of
the sum may be replaced by their sum without changing the value of
the whole sum).

For, in the sum AB + BC + CD + DE + · · ·, let BC, CD, be replaced
by their sum BD; then the new sum is AB + BD + DE + · · ·, whose
value is the same as before; and similarly for other consecutive terms.

8. The product of a step by a positive number is that step lengthened by
the multiplier without change of direction.

3



E.g., 2AB = AB + AB, which is AB doubled in length without
change of direction; similarly 1

2
AB =(step that doubled gives AB)

= (AB halved in length without change of direction). In general,
mAB = m lengths AB measured in the direction AB; 1

n
AB = 1

n
th of

length AB measured in the direction AB; etc.

9. The negative of a step is that step reversed in direction without change
of length.

For the negative of a quantity is that quantity which added to it gives
zero; and since AB + BA = AA = 0, therefore BA is the negative of
AB, or BA = −AB.

• Cor. 1. The product of a step by a negative number is that step
lengthened by the number and reversed in direction.

For −nAB is the negative of nAB.

• Cor. 2. A step is subtracted by reversing its direction and adding
it.

For the result of subtracting is the result of adding the negative
quantity. E.g., AB−CB = AB + BC = AC.

10. A sum of steps is multiplied by a given number by multiplying the com-
ponents of the sum by the number and adding the products.

Let n ·AB = A′B′, n · BC = BC′; then ABC,A′B′C ′ are similar tri-
angles, since the sides about B, B′ are proportional, and in the same
or opposite directions, according as n is positive or negative; therefore
AC, A′C ′ are in the same or opposite directions and in the same ratio;
i.e., nAC = A′C′, which is the same as n(AB + BC) = nAB+nBC.

This result may also be stated in the form: a multiplier is distributive
over a sum.
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11. Any step may be resolved into a multiple of a given step parallel to it;
and into a sum of multiples of two given steps in the same plane with
it that are not parallel; and into a sum of multiples of three given steps
that are not parallel to one plane.

12. It is obvious that if the sum of two finite steps is zero, then the two
steps must be parallel; in fact, if one step is AB, then the other must
be equal to BA. Also, if the sum of three finite steps is zero, then the
three steps must be parallel to one plane; in fact, if the first is AB,
and the second is BC, then the third must be equal to CA. Hence,
if a sum of steps on two lines that are not parallel (or on three lines
that are not parallel to one plane) is zero, then the sum of the steps on
each line is zero, since, as just shown, the sum of the steps on each line
cannot be finite and satisfy the condition that their sum is zero. We
thus see that an equation between steps of one plane can be separated
into two equations by resolving each step parallel to two intersecting
lines of that plane, and that an equation between steps in space can
be separated into three equations by resolving each step parallel to
three lines of space that are not parallel to one plane. We proceed to
give some applications of this and other principles of step analysis in
locating a point or a locus of points with respect to given data (Arts.
13-20).

Centre of Gravity

13. The point P that satisfies the condition lAP+mBP = 0 lies upon the
line AB and divides AB in the inverse ratio of l : m (i.e., P is the
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centre of gravity of a mass l at A and a mass m at B).

The equation gives lAP = mPB; hence:

AP, PB are parallel; P lies on the line AB; and AP : PB = m : l =
inverse of l : m.

If l : m is positive, then AP, PB are in the same direction, so that P
must lie between A and B; and if l : m is negative, then P must lie on
the line AB produced. If l = m, then P is the middle point of AB; if
l = −m, then there is no finite point P that satisfies the condition, but
P satisfies it more nearly, the farther away it lies upon AB produced,
and this fact is expressed by saying that “P is the point at infinity on
the line AB.”

14. By substituting AO + OP for AP and BO + OP for BP in lAP +
mBP = 0, and transposing known steps to the second member, we find
the point P with respect to any given origin O, viz.,

(a) (l+m)OP = lOA+mOB, where P divides AB inversely as l : m.

• Cor. If OC = lOA + mOB, then OC, produced if necessary,
cuts AB in the inverse ratio of l : m, and OC is (l + m) times
the step from O to the point of division.

For, if P divide AB inversely as l : m, then by (a) and the given
equation, we have

OC = (l +m)OP.
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15. The point P that satisfies the condition lAP + mBP + nCP = 0 lies
in the plane of the triangle ABC; AP (produced) cuts BC at a point
D that divides BC inversely as m : n, and P divides AD inversely as
l : m+n (i.e., P is the center of gravity of a mass l at A, a mass m at
B, and a mass n at C). Also the triangles PBC, PCA, PAB, ABC,
are proportional to l, m, n, l +m+ n.

The three steps lAP, mBP, nCP must be parallel to one plane, since
their sum is zero, and hence P must lie in the plane of ABC. Since
BP = BD + DP, CP = CD + DP, the equation becomes, by making
these substitutions, lAP + (m + n)DP + mBD + nCD = 0. This is
an equation between steps on the two intersecting lines, AD, BC, and
hence the resultant step along each line is zero; i.e., mBD + nCD = 0
(or D divides BC inversely as m : n), and

(a) lAP + (m+ n)DP = 0

(or P divides AD inversely as l : m + n). Also, we have, by adding
lPD + lDP = 0 to (a),

lAD + (l +m+ n)DP = 0.

Hence
l : l +m+ n = PD : AD = PBC : ABC,

7



since the triangles PBC, ABC have a common base BC, (We must
take the ratio of these triangles as positive or negative according as the
vertices P , A lie on the same or opposite sides of the base BC, since
the ratio PD : AD is positive or negative under those circumstances.)
Similarly,

PCA : ABC = m : l +m+ n,

and

PAB : ABC = n : l +m+ n.

Hence, we have,

PBC : PCA : PAB : ABC = l : m : n : l +m+ n.

16. By introducing in lAP +mBP + nCP = 0 an origin O, as in Art. 14,
we find

(a) (l + m + n)OP = lOA + mOB + nOC, where P divides ABC in
the ratio l : m : n.

Note. As an exercise, extend this formula for the center of gravity P , of

masses l, m, n, at A, B, C, to four or more masses.

Curve Tracing. Tangents.

17. To draw the locus of a point P that varies according to the law OP =
tOA + 1

2
t2OB, where t is a variable number. (E.g., t = number of

seconds from a given epoch.)

Take t = −2, and P is at D′, where

OD′ = −2OA + 2OB.

Take t = −1, and P is at C ′, where

OC′ = −OA +
1

2
OB

8



Take t = 0, and P is at O. Take t = 1, and P is at C, where OC =
OA + 1

2
OB. Take t = 2, and P is at D, where OD = 2OA + 2OB.

It is thus seen that when t varies from -2 to 2, then P traces a curve
D′C ′OCD. To draw the curve as accurately as possible, we find the
tangents at the points already found. The method that we employ is
perfectly general and applicable to any locus.

(a) To find the direction of the tangent to the locus at the point P
corresponding to any value of t.

Let P , Q be two points of the locus that correspond to the values t,
t+ h of the variable number. We have

OP = tOA +
1

2
t2OB,

OQ = (t+ h)OA +
1

2
(t+ h)2OB,

and therefore

PQ = OQ−OP = h

[
OA + (t+

1

2
h)OB

]
.
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Hence (dropping the factor h) we see that OA+ (t+ 1
2
h)OB is always

parallel to the chord PQ. Make h approach 0, and then Q approaches
P , and the (indefinitely extended) chord PQ approaches coincidence
with the tangent at P . Hence making h = 0, in the step that is parallel
to the chord, we find that OA + tOB is parallel to the tangent at P .

Apply this result to the special positions of P already found, and we
have: D′A′ = OA− 2OB = tangent at D′; C′S = OA−OB = tan-
gent at C ′; OA = OA + 0 ·OB = tangent at O; SO = OA + OB =
tangent at C; AD = OA + 2OB = tangent at D.

This is the curve described by a heavy particle thrown from O with
velocity represented by OA on the same scale in which OB represents
an acceleration of 32 feet per second per second downwards. For, after
t seconds the particle will be displaced a step t ·OA due to its initial
velocity, and a step 1

2
t2 · OB due to the acceleration downwards, so

that P is actually the step OP = tOA + 1
2
t2 ·OB from O at time t.

Similarly, since the velocity of P is increased by a velocity represented
by OB in every second of time, therefore P is moving at time t with
velocity represented by OA + tOB, so that this step must be parallel
to the tangent at P .

18. To draw the locus of a point P that varies according to the law

OP = cos(nt+ e) ·OA + sin(nt+ e) ·OB,

where OA,OB are steps of equal length and perpendicular to each
other, and t is any variable number.

With centre O and radius OA draw the circle ABA′B′. Take arc AE =
e radians in the direction of the quadrant AB (i.e. an arc of e radii
of the circle in length in the direction of AB or AB′ according as e
is positive or negative). Corresponding to any value of t, lay off arc
EP = nt radians in the direction of the quadrant AB. Then arc
AP = nt + e radians. Draw LP perpendicular to OA at L. Then
according to the definitions of the trigonometric functions of an angle
we have,

cos(nt+ e) = OL/OP, sin(nt+ e) = LP/OP.1

1Observe the distinctions: OL, a step; OL, a positive or negative length of a directed
axis; OL, a length.
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Hence we have for all values of t,

OL = cos(nt+ e)OA, LP = sin(nt+ e)OB,

and adding these equations, we find that

OP = cos(nt+ e)OA + sin(nt+ e)OB.

Hence, the locus of the required point P is the circle on OA,OB as
radii.

Let t be the number of seconds that have elapsed since epoch. Then, at
epoch, t = 0, and P is at E; and since in t seconds P has moved through
an arc EP of nt radians, therefore P moves uniformly round the circle
at the rate of n radians per second. Its velocity at time t is therefore
represented by n times that radius of the circle which is perpendicular
to OP in the direction of its motion, or by OP′ = nOQ, where arc
PQ = π

2
radians. Hence, since arc AQ = (nt+e+ π

2
) radians, therefore

OP′ = n
[
cos
(
nt+ e+ π

2

)
·OA + sin

(
nt+ e+ π

2

)
·OB

]
. The point

P ′ also moves uniformly in a circle, and this circle is the hodograph of
the motion. The velocity in the hodograph (or the acceleration of P )
is similarly OP′′ = n2PO.

11



Parallel Projection

19. If OP = xOA + yOB, OP′ = xOA + yOB′, where x, y vary with the
arbitrary number t according to any given law so that P , P ′ describe
definite loci (and have definite motions when t denotes time), then the
two loci (and motions) are parallel projections of each other by rays
that are parallel to BB′,

For, by subtracting the two equations we find PP′ = yBB′, so that
PP ′ is always parallel to BB′; and as P moves in the plane AOB
and P ′ moves in the plane AOB′, therefore their loci (and motions)
are parallel projections of each other by rays parallel to BB′. The
parallel projection is definite when the two planes coincide, and may
be regarded as a projection between two planes AOB, AOB′, that make
an indefinitely small angle with each other.

20. The motion of P that is determined by

OP = cos(nt+ e)OA + sin(nt+ e)OB

is the parallel projection of uniform circular motion.

For, draw a step OB′ perpendicular to OA and equal to it in length.
Then, by Art. 18, the motion of P ′ determined by

OP′ = cos(nt+ e)OA + sin(nt+ e)OB′

12



is a uniform motion in a circle on OA, OB′ as radii; and by Art. 19
this is in parallel perspective with the motion of P .

Step Proportion

21. Definition. Four steps AC, AB, A′C′, A′B′ are in proportion when
the first is to the second in respect to both relative length and relative
direction as the third is to the fourth in the same respects.

This requires, first, that the lengths of the steps are in proportion or

AC : AB = A′C ′ : A′B′;

and secondly, that AC deviates from AB by the same plane angle in
direction and magnitude that A′C′ deviates from A′B′.

Hence, first, the triangles ABC, A′B′C ′ are similar, since the angles
A, A′ are equal and the sides about those angles are proportional; and
secondly, one triangle may be turned in its plane into a position in
which its sides lie in the same directions as the corresponding sides

13



of the other triangle. Two such triangles will be called similar and
congruent triangles, and corresponding angles will be called congruent
angles.

22. We give the final propositions of Euclid, Book V., as exercises in step
proportion.

• (xi.) If four steps are proportionals, they are also proportionals
when taken alternately.

• (xii.) If any number of steps are proportionals, then as one of the
antecedents is to its consequent, so is the sum of the antecedents
to the sum of the consequents.

• (xiii.) If four steps are proportionals, the sum (or difference) of
the first and second is to the second as the sum (or difference) of
the third and fourth is to the fourth.

• (xiv.) If OA : OB = OP : OQ and OB : OC = OQ : OR,
then OA : OC = OP : OR.

• (xv.) If OA : OB = OC : OD and OE : OB = OF : OD,
then OA + OE : OB = OC + OF : OD.

• (xvi.) If OA : OB = OB : OX = OC : OD = OD : OY,
then OA : OX = OC : IO.

Examples

We shall use i, j, k, as symbols for unit length east, unit length north, and unit
length up, respectively.

1. Mark the points whose steps from a given point are i + 2j, −3i − j. Show
that the step from the first point to the second is −4i − 3j, and that the
length is 5.

2. Show that the four points whose steps from a given point are 2i+ j, 5i+ 4j,
4i+7j, i+4j are the angular points of a parallelogram. Also determine their
centre of gravity, with weights 1, 1, 1, 1; also with weights 1, 2, 3, 4; also with
weights 1,−2, 3,−4.

3. If OA = i+ 2j, OB = 4i+ 3j, OC = 2i+ 3j, OD = 4i+ j, find CD as sums
of multiples of CA, CB, and show that CD bisects AB.

14



4. If OP = xi + yj, OP′ = x′i + y′j, then PP′ = (x′ − x)i + (y′ − y)j and

PP ′
2

= (x′ − x)2 + (y′ − y)2.

5. Show that AB is bisected by OC = OA + OB, and trisected by
OD = 2OA + OB, OE = OA + 2OB, and divided inversely as 2 : 3 by
OF = 2OA + 3OB.

6. Show that AA′ + BB′ = 2MM′, where MM ′ are the middle points of AB,
A′B′, respectively.

7. Show that 2AA′ + 3BB′ = (2 + 3)CC′, where C, C ′ are the points that
divide AB, A′B′, inversely as 2 : 3. Similarly, when 2, 3 are replaced by l,
m.

8. Show that the point that divides a triangle into three equal triangles is the
intersection of the medial lines of the triangle.

9. Show that the points which divide a triangle into triangles of equal mag-
nitude, one of which is negative (the given triangle being positive), are the
vertices of the circumscribing triangle with sides parallel to the given trian-
gle.

10. If a, b, c are the lengths of the sides BC, CA, AB of a triangle, show that
1
bAC± 1

cAB (drawn from A) are interior and exterior bisectors of the angle
A; and that when produced they cut the opposite side BC in the ratio of
the adjacent sides.

11. The

{
lines

points
that join the

{
vertices

sides
of a triangle ABC to any

{
point P
line p

in its plane divide the sides BC, CA, AB in ratios whose product is{
+1
−1

; and conversely

{
lines from
points on

the

{
vertices

sides
that so divide the sides{

meet in a point.
lie in a line.

12. Prove by Exs. 10, 11, that the three interior bisectors of the angles of a
triangle (also an interior and two exterior bisectors) meet in a point; and
that the three exterior bisectors (also an exterior and two interior bisectors)
meet the sides in colinear points.

13. Determine the locus (and motion) of P , given by OP = OA+ tOB; also of
OP = (1 + 2t)i + (3t− 2)j.
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14. Compare the loci of P determined by the following pairs of step and length
equations:

AP = 2 east, AP = 2; AP = 2BP, AP = 2BP ;

AP + BP = CD, AP +BP = CD

15. Draw, by points and tangents, the locus of P determined by each of the
following values of OP, in which x is any number:

xi +
1

2
x2j; xi +

2

x
j; xi +

1

3
x3j; xi + (

1

3
x3 − x2 + 2)j;

xi +
8

x2 + 4
j; xi +

√
4− x2j; xi +

1

2

√
4− x2j.

16. Take three equal lengths making angles 120◦ with each other as projections
of i, j, k, and construct by points the projection of the locus of P , where
OP = 2(cosx·i+sinx·j)+x·k, x varying from 0 to 2π. Show that this curve
is one turn of a helix round a vertical cylinder of altitude 2π, the base being
a horizontal circle of radius 2 round O as centre.

17. A circle rolls inside a fixed circle of twice its diameter; show that any point
of the plane of the rolling circle traces a parallel projection of a circle.

18. A plane carries two pins that slide in two fixed rectangular grooves; show
that any point of the sliding plane traces a parallel projection of a circle.

19. OACB is a parallelogram whose sides are rigid and jointed so as to turn
round the vertices of the parallelogram; APC, BCQ are rigid similar and
congruent triangles. Show that AC : AP = BQ : BC = OQ : OP, and that
therefore P , Q trace similar congruent figures when O remains stationary
(21, 22, xii.). [See cover of book.]

20. If the plane pencil OA, OB, OC, OD is cut by any straight line in the points
P , Q, B, S, show that the cross-ratio (PR : RQ) : (PS : SQ) is constant
for all positions of the line.

[OC = lOA +mOB = lxOP +myOQ gives PR : RQ = my : lx].

21. Two roads run north, and east, intersecting at O. A is 60 feet south of O,
walking 3 feet per second north, B is 60 feet west of O, walking 4 feet per
second east. When are A, B nearest together, and what is B’s apparent
motion as seen by A?
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22. What is B’s motion relative to A in Ex. 21 if B is accelerating his walk at
the rate of 3 inches per second per second?

23. In Ex. 21, let the east road be 20 feet above the level of the north road; and
similarly in Ex. 22.

24. A massless ring P is attached to several elastic strings that pass respectively
through smooth rings at A, B, C, · · · and are attached to fixed points A′,
B′, C ′, · · · such that A′A, B′B, C ′C, · · · are the natural lengths of the
strings. The first string has a tension l per unit of length that it is stretched
(Hooke’s law), the second a tension m, the third a tension n, etc. Find the
resultant force on P and its position of equilibrium.

25. The same as Ex. 24, except that the ring has a mass w.
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Chapter 2

Rotations. Turns. Arc Steps

23. Definitions of Rotation

A step is rotated when it is revolved about an axis through its initial
point as a rigid length rigidly attached to the axis. The step describes
a conical angle about the axis except when it is perpendicular to the
axis.

If a rotation through a diedral angle of given magnitude and direction
in space be applied to the radii of a sphere of unit radius and centre
O, the sphere is rotated as a rigid body about a certain diameter PP ′

as axis, and a plane through O perpendicular to the axis intersects the
sphere in the equator of the rotation.
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Either of the two directed arcs of the equator from the initial position
A to the final position A′ of a point of the rotated sphere that lies on
the equator is the arc of the rotation. If these two arcs he bisected at

L, M respectively, then the two arcs are 2
_

AL, 2
_

AM respectively, and
_

AL,
_

AM are supplementary arcs in opposite directions, each less than
a semicircle. When these half-arcs are 0◦ and 180◦ respectively, they
represent a rotation of the sphere into its original position, whose axis
and equator are indeterminate, so that such arcs may be measured
on any great circle of the sphere without altering the corresponding
rotation.

24. A rotation is determined by the position into which it rotates two given
non-parallel steps.

For let the radii OB, OC rotate into the radii OB′, OC′. Any axis
round which OB rotates into OB′ must be equally inclined to these
radii; i.e., it is a diameter of the great circle PKL that bisects the great

arc
_

BB′ at right angles.

E.g., OK, OL, OP , · · · are such axes. Similarly, the axis that rotates
OC into OC′ must be a diameter of the great circle PN that bisects

the great arc
_

CC ′ at right angles. Hence there is but one axis round
which OB, OC rotate into OB′, OC′; viz., the intersection OP of the
planes of these two bisecting great circles: the equator is the great circle
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whose plane is perpendicular to this axis, and the arcs of the rotation
are the intercepts on the equator by the planes through the axis and
either B, B′ or C, C ′. [When the two bisecting great circles coincide
(as when C, C ′ lie on BP , B′P ), then their plane bisects the diedral
angle BC −O −B′C ′, whose edge OP is the only axis of rotation.]

Note. Since
_
BC,

_

B′C ′ may be any two positions of a marked arc on the

surface of the sphere, we see that any two positions of the sphere with

centre fixed determine a definite rotation of the sphere from one position to

the other.

25. A marked arc of a great circle of a rotating sphere makes a constant
angle with the equator of the rotation.

For the plane of the great arc makes a constant angle both with the
axis and with the equator of the rotation.

26. If the sphere O be given a rotation 2
_

A0C followed by a rotation 2
_

CB0,

the resultant rotation of the sphere is 2
_

A0B0.

For produce the arcs
_

A0C,
_

B0C to A1, B
′ respectively, making

_

CA1 =
_

A0C,
_

B′C =
_

CB0. Then the spherical triangles A0B0C, A1B
′C are

equal, since the corresponding sides about the equal vertical angles
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at C are by construction equal. Therefore the sides
_

A0B0,
_

B′A1 are
equal in length, and the corresponding angles A0, A1 and B0, B

′ are

equal. Therefore, by Art. 25, if a marked arc
_

AB of the sphere coincide

initially with
_

A0B0, the first rotation 2
_

A0C =
_

A0A1 will bring
_

AB

into the position
_

A1B1 on
_

B′A1 produced, and the second rotation

2
_

CB0 =
_

B′B1 will bring
_

AB into the position
_

A2B2 on
_

A0B0 produced,

where
_

B0A2 =
_

A0B0. Hence the resultant rotation of the sphere is

2
_

A0B0 =
_

A0A2.

Note. This theorem enables one to find the resultant of any number of

successive rotations, by replacing any two successive rotations by their re-

sultant, and so on until a single resultant is found.

27. Definitions of Turn

A step is turned when it is made to describe a plane angle round its
initial point as centre.

If a turn through a plane angle of given magnitude and direction in
space be applied to the radii of the sphere O, it turns the great circle
that is parallel to the given plane angle as a rigid circle, and does not
affect the other radii of the sphere. E.g., only horizontal radii can be
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turned through a horizontal plane angle. The circle that is so turned
is the great circle of the turn.

A directed arc of the great circle of a turn from the initial position A
to the final position B of a point on the great circle, and less than a
semi-circumference, is the arc of the turn. When this arc is 0◦ or 180◦,
it represents a turn that brings a step back to its original position or
that reverses it; and since such turns may take place in any plane with
the same results, therefore such arcs may be measured on any great
circle of the sphere without altering their corresponding turns.

The axis of a turn is that radius of the sphere O which is perpendicular
to its great circle and lies on that side of the great circle from which
the arc of the turn appears counter-clockwise.

28. A turn is determined by the position into which it displaces any given
step.

For, let the radius OA turn into the radius OB. Then, the great circle

O − AB must be the great circle of the turn, and
_

AB, the arc of the
turn.

29. Definitions. The resultant of two successive turns
_

AB,
_

BC is the

turn
_

AC.
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When the arc of the turns are not given with the first ending where the
second begins, each arc may be moved as a rigid arc round its great cir-
cle until they do so end and begin, without altering their turning value.
When the two great circles are not the same, then the common point
of the two arcs must be one or the other point of intersection (B,B′)
of the two great circles. The figure shows that the same resultant is
found from either of these points.

ARC STEPS

We may call the great arc
_

AB the arc step from A to B on the surface
of the sphere; and call two arc steps equal when they are arcs of the

same great circle of the same length and direction; and call
_

AC the sum

of
_

AB,
_

BC or the sum of any arc steps equal to these. The half-arc of
a resultant rotation is thus the sum of the half-arcs of its components,
and the arc of a resultant turn is the sum of the arcs of the components.
The sum of several arcs is found by replacing any two successive arcs
of the sum by their sum, and so on, until a single sum is found. An arc
of 0◦ or 180◦ may be measured on any great circle without altering its
value as the representative of a half-rotation, a turn, or an arc step.

30. The resultant of two successive rotations or turns (i.e., the sum of two
arc steps) is commutative only when the arcs are cocircular.

For let the half-arcs of the rotations, or the arcs of the turns, be
_

AB =
_

BA′, and
_

C ′B =
_

BC; then the sums
_

AB+
_

BC,
_

C ′B+
_

BA′ in opposite

orders are respectively
_

AC,
_

C ′A′; and from the figure those arcs are
equal when, and only when, the given arcs are cocircular.
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• Cor. 1. An arc of 0◦ or 180◦ is commutative with any other arc.

For it may be taken cocircular with the other arc.

• Cor. 2. The magnitudes of the sums of two arcs in opposite
orders are equal.

For ABC, A′BC ′ are equal spherical triangles by construction,

and therefore
_

AC,
_

C ′A′ are equal in length.

31. A sum of successive arc steps is associative.
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For, consider first three arcs upon the great circles LQ′, Q′R, RL. If
the arcs are such as to begin and end successively, the proof is the same

as for step addition, e.g., in the sum
_

AQ′ +
_

Q′R+
_

RB =
_

AB, the first

two may be replaced by their sum
_

AR, or the second and third by their

sum
_

Q′B without altering the whole sum. In the more general case
when the three arcs are

_

AQ′ =
_

S ′P ′,
_

Q′Q =
_

R′R,
_

RB =
_

PT ,

the sum of the first two is
_

AQ =
_

SP , whose sum with the third is
_

ST ;

and the sum of the second and third is
_

R′B =
_

P ′T ′, whose sum with

the first is
_

S ′T ′; and we must prove that
_

ST ,
_

S ′T ′ are equal arcs of the
same great circle in the same direction.

[Observe that in the construction P is determined as the intersection
of QA and RB, and P ′ as the intersection of Q′A and R′B.]

Let the three given arcs be the half-arcs of successive rotations of the

sphere O. Then by Art. 26, the rotation 2
_

AQ = 2
_

SP gives the sphere

the same displacement as the first and second rotations, so that 2
_

ST
gives the sphere the same displacement as the three rotations. Similarly,
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the rotation 2
_

R′B = 2
_

P ′T gives the sphere the same displacement

as the second and third rotations, so that 2
_

S ′T ′ gives the sphere the

same displacement as the three rotations. Hence
_

ST ,
_

S ′T ′ are arcs of
the same great circle, and either equal (and in the same direction) or
supplementary (and in opposite directions), since they are half-arcs of
the same rotation. This is true wherever Q may be. Suppose that Q

is slightly displaced towards R; then
_

ST ,
_

S ′T ′ are slightly displaced,
and if equal at first, they must remain equal, since a slight change in
each of two equal arcs could not change them to supplementary arcs in
opposite directions.1 Hence by moving Q continuously towards R and

finding how the arcs
_

ST ,
_

S ′T ′ are related when Q reaches R, we find
how they are related for any position of Q, since there is no change in
the relation when Q is moved continuously. But when Q is at R, it was

shown above that both arcs were equal; therefore
_

ST ,
_

S ′T ′ are always
equal.

So, in general, for a sum of any number of successive arcs, any way of
forming the sum by replacing any two successive terms by their sum
and so on, must give a half-arc of the resultant of the rotations through
double each of the given arcs. Hence any two such sums are either equal
or opposite supplementary arcs of the same great circle; and since by
continuous changes of the component arcs, they may be brought so
that each begins where the preceding arc ends, in which position the
two sums are equal, therefore they are always equal.

• Cor. 1. An arc of 0◦ or 180◦ may have any position in a sum.
[Art. 30, Cor. 1.]

• Cor. 2. The magnitude of a sum of arcs is not changed by a
cyclic change in the order of its terms.

For (
_

AB +
_

CD + · · · ) +
_

HK and
_

HK + (
_

AB +
_

CD + · · · ) have
equal magnitudes. [Art. 30, Cor. 2.]

1When both arcs are nearly 90◦, a slight change in each could change them from equals
to supplements in the same direction.
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EXAMPLES

1. Show that 2(
_
AB +

_
BC) and 2

_
AB + 2

_
BC are in general unequal.

2. If (2, 30◦) denote a turn of 30◦ counter-clockwise in the plane of the paper
and a doubling, and (3, −60◦) denote a turn of 60◦ clockwise in the plane
of the paper and a trebling, express the resultant of these two compound
operations (versi-tensors) in the same notation.

3. Find the resultant of (2, 30◦), (3, 60◦), (4, −120◦), (1, 180◦).

4. Show that either (2, −60◦) or (2, 120◦) taken twice have the resultant (4,
−120◦).

5. Would you consider the resultants of versi-tensors as their sums or their
products, and why?

6. Let the base QR of a spherical triangle PQR slide as a rigid arc round its
fixed great circle, and let the great circles QP , RP , always pass through
fixed points A, B respectively. Show that if points S, T lie on the great

circles QP , RP so as always to keep
_
PS =

_
QA and

_
PT =

_
RB, then the arc

_
ST is an arc of fixed length and direction that slides around a fixed great

circle as
_
QR slides round its fixed great circle. [Let P ′, Q′, R′, S′, T ′, be

given positions of P , Q, R, S, T , and use Art. 31 and figure.]

7. Show that the locus of the radius OP in Ex. 6 is an oblique circular cone of
which OA, OB are two elements, and that the fixed great circles QR, ST
are parallel to its circular sections. [Draw a fixed plane parallel to OQR and
cutting the radii OA, OB, in the fixed points A′, B′, and cutting OP in the
variable point P ′, and show that P ′ describes a circle in this plane through
the fixed points A′, B′; similarly, for a fixed plane parallel to OST .]

Note.—The locus of P on the surface of the sphere is called a spherical
conic (the intersection of a sphere about the vertex of a circular cone as
centre with the surface of the cone); and the great circles QR, ST (parallel
to the circular sections of the cone) are the cyclic great circles of the spherical
conic. The above properties of a spherical conic and its cyclic great circles
become properties of a plane conic and its asymptotes when the centre O of
the sphere is taken at an indefinitely great distance.

8. State and prove Ex. 6 for a plane, and construct the locus of P .
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Chapter 3

Quaternions

32. Definitions. A quaternion is a number that alters a step in length
and direction by a given ratio of extension and a given turn. E.g., in
the notation of Ex. 2, II, (2, 30◦), (2, −60◦) are quaternions.

Two quaternions are equal when, and only when, their ratios of ex-
tension are equal and their turns are equal.

A tensor is a quaternion that extends only; i.e., a tensor is an ordinary
positive number. Its turn is 0◦ in any plane.

A versor or unit is a quaternion that turns only. E.g., 1, −1 =
(1, 180◦), (1, 90◦), (1, 30◦), are versors.

A scalar is a quaternion whose product lies on the same line or “scale”
as the multiplicand; i.e., a scalar is an ordinary positive or negative
number. Its turn is 0◦ or 180◦ in any plane.

A vector is a quaternion that turns 90◦. E.g., (2, 90◦), (1,−90◦), are
vectors.

33. Functions of a Quaternion q. The tensor of q, or briefly Tq, is
its ratio of extension. E.g., T2 = 2 = T (−2) = T (2, 30◦).

The versor of q (Uq) is the versor with the same arc of turn as q. E.g.,

U2 = 1, U(−2) = −1, U(2, 30◦) = (1, 30◦).

The arc, angle, axis, great circle, and plane of q, are respectively
the arc, angular magnitude, axis, great circle, and plane of its turn.
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E.g., arc(2, 30◦) is a counter-clockwise arc of 30◦ of unit radius in the
plane of the paper, and arc(2,−30◦) is the same arc oppositely directed;
∠(2, 30◦) = ∠(2,−30◦) = 30◦ = π

6
radians; axis(2, 30◦) is a unit length

perpendicular to the plane of the paper directed towards the reader,
and axis(2,−30◦) is the same length oppositely directed; etc.

If qOA = OB, and if L be the foot of the perpendicular from B
upon the line OA, then OL, LB are called the components of q’s prod-
uct respectively parallel and perpendicular to the multiplicand; also, the
projections of OB parallel and perpendicular to OA.

The scalar of q (Sq) is the scalar whose product equals the component
of q’s product parallel to the multiplicand; viz., Sq ·OA = OL.

E.g., S(2, 30◦) =
√

3, S(2, 150◦) = −
√

3.

The vector of q (V q) is the vector whose product equals the component
of q’s product perpendicular to the multiplicand; viz., V q ·OA = LB.

E.g., V (2, 30◦) = (1, 90◦) = V (2, 150◦), V (2,−60◦) = (
√

3,−90◦).

The reciprocal of q (1/q or q−1) is the quaternion with reciprocal
tensor and reversed turn. E.g., (2, 30◦)−1 = (1

2
,−30◦).

The conjugate of q(Kq) is the quaternion with the same tensor and
reversed turn. E.g.,

K(2, 30◦) = (2,−30◦).

34. From the above diagram and the definitions of the cosine and sine of
an angle, we have

Sq =
OL

OA
=
OL

OA
=
OB

OA
· OL
OB

= Tq · cos∠q(a)

TV q =
LB

OA
=
OB

OA
· LB
OB

= Tq · sin∠q(b)
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Note. Arc V q is a quadrant on the great circle of q in the direction of arc

q.

Examples

1. If equal numbers multiply equal steps, the products are equal; and if they
multiply unequal steps, the products are unequal.

2. If the products of two steps by equal numbers are equal, then the two steps
are equal; and if the products of two equal steps by two numbers are equal,
then the numbers are equal.

3. If several steps be multiplied by equal numbers, then any product is to its
multiplicand as any other product is to its multiplicand.

4. If two steps be multiplied by reciprocal numbers, then corresponding prod-
ucts and multiplicands are reciprocally proportional.

5. Construct the following products, where OA is a unit step to the right in
the plane of the paper, and determine the functions of each multiplier that
are defined in Art. 33.

(a) 2 ·OA = OL, (4, 60◦) ·OA = OB, (4,−60◦) ·OA = OB′,
(2
√

3, 90◦) ·OA = OM, (2
√

3,−90◦) ·OA = OM′,
(1, 60◦) ·OA = OB1, (1,−60◦) ·OA = OB′1,
(1, 90◦) ·OA = OM1, (1,−90◦) ·OA = OM′1.

(b) The same as (a) with 120◦ in the place of 60◦.

6. Show that SSq = Sq, SV q = 0, V Sq = 0, V V q = V q,
SKq = KSq = Sq, V Kq = KV q, USq = ±1, UTq = 1 = TUq.

Multiplication

35. Definition. The product of two or more numbers is that number
whose extension and turn are the resultants of the successive extensions
and turns of the factors (beginning with the right-hand factor).

E.g., if rOA = OB, qOB = OC, pOC = OD, then we have pqr·OA =
pqOB = pOC = OD.
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36. The product is, however, independent of whether a step OA can be
found or not, such that each factor operates upon the product of the
preceding factor; i.e., we have by definition,

(a) T (· · · pqr) = · · ·Tp · Tq · Tr.
(b) arc (· · · pqr) = arc r + arc q + arc p+ · · · .

37. The product of a tensor and a versor is a number with that tensor and
versor; and conversely, a number is the product of its tensor and its
versor.

For if n be a tensor, and q′ a versor, then nq′ turns by the factor q′

and extends by the factor n, and vice versa for q′n; hence either of
the products, nq′, q′n, is a quaternion with tensor n and versor q′.
Similarly,

q = Tq · Uq = Uq · Tq.

38. Any successive factors of a product may be replaced by their product
without altering the value of the whole product; but in general such
factors can be changed in order without altering the value of the product
only when those factors are cocircular.

For replacing successive factors by their product does not alter the
tensor of the whole product by Art. 36(a), nor the arc of the product
by Art. 31, 36(b); but by Art. 30 the arc of the product is altered if
two factors be interchanged except when those factors are cocircular.

• Cor. 1. A scalar factor may have any position in the product
without altering the value of the product. [Art. 31, Cor. 1.]

• Cor. 2. The angle of a product is not altered by a cyclic change
in the order of the factors. [Art. 31, Cor. 2.]

• Cor. 3. The scalar, and the tensor of the vector, of a product are
not altered by a cyclic change in the order of the factors. [Art. 34,
a, b.]

39. The product of two numbers with opposite turns equals the product of
the tensors of the numbers; and conversely if the product of two numbers
is a tensor, then the turns of the factors are opposites. [36 a, b.]
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• Cor. 1. The product of two conjugate numbers equals the square
of their tensor; and if the product of two numbers with equal ten-
sors is a tensor, then the two numbers are conjugates.

• Cor. 2. The conjugate of a product equals the product of the
conjugates of the factors in reverse order.

For (pqr)(Kr ·Kq ·Kp) = (Tp)2 · (Tq)2 · (Tr)2 since rKr = (Tr)2,
may have any place in the product, and may be put first; and then
(qKq) = (Tq)2, may be put second, and then (pKp) = (Tp)2.
[Cor. 1, 38 Cor. 1.]

Hence, K(pqr) = Kr ·Kq ·Kp. [Cor. 1.]

• Cor. 3. The product of two reciprocal numbers is unity; and
conversely, if the product of two numbers with reciprocal tensors
is unity, then the numbers are reciprocals.

• Cor. 4. The reciprocal of a product equals the product of the
reciprocals of the factors in reverse order.

For (pqr)(r−1q−1p−1) = 1.

40. The square of a vector is −1 times the square of its tensor; and con-
versely, if the square of a number is a negative scalar, then the number
is a vector. [36, a, b.]

• Cor. 1. The conjugate of a vector is the negative vector. [39 Cor.
1.]

• Cor. 2. The conjugate of a product of two vectors is the product
of the same vectors in reverse order. [Art. 39, Cor. 2.]

• Cor. 3. The conjugate of a product of three vectors is the negative
of the product of the same vectors in reverse order. [Art. 39, Cor.
2.]

The Rotator q()q−1

41. We may consider the ratio of two steps as determining a number, the an-
tecedent being the product and the consequent the multiplicand of the
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number; viz., OB/OA determines the number r such that rOA = OB.
By Art. 21, equal step ratios determine equal numbers.

If the several pairs of steps that are in a given ratio r be given a rotation
whose equatorial arc is 2 arc q, they are still equal ratios in their new
positions and determine a new number r′ that is called the number r
rotated through 2 arc q. In other words, the rotation of r produces a
number with the same tensor as r, and whose great circle and arc are
the rotated great circle and arc of r.

42. The number r rotated through 2 arc q is the number qrq−1.

For, 1st, Tqrq−1 = Tq · Tr(Tq)−1 = Tr.

2d, let A be an intersection of the great circle of r with the great circle
of q and construct

_

AB =
_

BA′ = arc q,
_

AC = arc r,

and

_

C ′B =
_

BC = arc rq−1;

then

_

C ′A′ =
_

A′C ′′ = arc qrq−1.
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But by construction, the spherical triangles ABC, A′BC ′ are equal,

and therefore
_

AC and
_

C ′A′(=
_

A′C ′′) are arcs of equal length, and the

corresponding angles at A, A′ are equal. Hence, when arc r(=
_

AC) is

rotated through 2 arc q(=
_

AA′), it becomes arc qrq−1(=
_

A′C ′′).

Powers and Roots

43. An integral power, qn = q · q · q · · · to n factors, is determined by the
equations,

(a) T · qn = Tq · Tq · Tq · · · = (Tq)n.

(b) arc qn = arc q+arc q+arc q · · · = n arc q±(whole circumferences).

To find q
1
n , the number whose nth power is q, we have, by replacing

q by q
1
n in (a), (b),

(c) Tq = (T · q 1
n )n or T · q 1

n = (Tq)
1
n

(d) Arc q = n arc q
1
n± whole circumferences, or, arc q

1
n = 1

n
(arc

q± whole circumferences) = 1
n

arc q + m
n

circumferences ± whole
circumferences), where m = 0, 1, 2, 3, · · · n− 1, successively.

There are therefore n nth roots of q whose tensors are all equal and
whose arcs lie on the great circle of q.

When the base is a scalar, its great circle may be any great circle, so
that there are an infinite number of quaternion nth roots of a scalar.
On this account, the roots as well as the powers of a scalar are limited
to scalars. By ordinary algebra, there are n such nth roots, real and
imaginary. There are also imaginary nth roots of q besides the n real
roots found above; i.e., roots of the form a+ b

√
−1, where a, b are real

quaternions.

Representation of Vectors

44. Bold-face letters will be used as symbols of vectors only. In particular,
i, j, k will denote unit vectors whose axes are respectively a unit length
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east, a unit length north, and a unit length up. More generally we shall
use the step AB to denote the vector whose axis is a unit length in
the direction of AB, and whose tensor is the numerical length of AB
(= AB: unit length).

This use of a step AB as the symbol of a vector is analogous to the use
of AB to represent a tensor (AB: unit length), or of AB to represent
a positive or negative scalar, according as it is measured in or against
the direction of its axis of measurement. In none of these cases is the
concrete quantity an absolute number; i.e., the value of the number that
it represents varies with the assumed unit of length. When desirable,
we distinguish between the vector OA and the step OA by enclosing
the vector in a parenthesis.

45. If q(OA) = (OB), then q ·OA = OB, and conversely.

The tensor of q in either equation is OB : OA. It is therefore only
necessary to show that the arc of q in one equation equals the arc of
q in the other equation in order to identify the two numbers that are
determined by these two equations as one and the same number.

Draw the sphere of unit radius and centre O, cutting OA, OB in

A′, B′; then
_

A′B′ is the arc of q in the second equation. Draw the
radius OL perpendicular to the plane OA′B′ on the counter-clockwise

side of
_

A′B′, and draw counter-clockwise round OA′, OB′ as axes the

quadrants
_

LM ,
_

LN respectively; then these are the arcs of (OA), (OB)
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respectively, and since
_

LM +
_

MN =
_

LN , therefore
_

MN is the arc of q

in the first equation. But since
_

LM ,
_

LN are quadrants, therefore the
plane OMN is perpendicular to OL, and must therefore coincide with
the plane OA′B′, which is by construction also perpendicular to OL.

Hence
_

MN lies on the great circle of
_

A′B′, and by the construction of
the figure, it must, when advanced 90◦ on that great circle, coincide

with
_

A′B′. Hence the theorem.

Note. This theorem shows that a number extends and turns vectors into

vectors in the same way that it extends and turns steps into steps. Moreover,

when the vector is not perpendicular to the axis of the multiplier, there is

no resulting vector, since in the case of the corresponding step there is no

resulting step. In the case of a vector multiplicand, that is oblique to the

axis of q, the product is an actual quaternion that is not a vector, while in

the case of the corresponding step multiplicand the product belongs to that

class of products in which the multiplicand does not admit of the operation

of the multiplier, as in
√

2 universities, -2 countries, etc.

• Cor. 1. The product of two vectors is a vector when, and only
when, the factors are perpendicular to each other; the product is
perpendicular to both factors; and its length (its tensor) is equal
to the area of the rectangle on the lengths of the factors.

Note. The direction of the product OA · OB = OC is obtained by

turning OB about OA as axis through a counter-clockwise right angle;

thus OC lies on that side of the plane OAB from which the right angle

AOB appears counter-clockwise.

• Cor. 2. The product of two perpendicular vectors changes sign
when the factors are interchanged. (OB ·OA = OC′ = −OC.)

36



• Cor. 3. The condition that α is perpendicular to β is that αβ =
vector, or Sαβ = 0.

46. If AB, CD are parallel, then AB ·CD = CD ·AB = −AB · CD, a
scalar; and conversely, the product of two vectors is a scalar only when
they are parallel.

Since the axes of the vectors AB, CD are parallel, therefore their
product is commutative. When the vectors are in the same direction,
then each turns 90◦ in the same direction, the resultant turn is 180◦, and
the product is negative; and when the vectors are in opposite direction,
their turns are in opposite directions, the resultant turn is 0◦, and the
product is positive. This is just the opposite of the product of the
corresponding scalars AB, CD, which is positive when the scalars are
in the same direction (or both of the same sign), and negative when
the scalars are in opposite directions; i.e., AB·CD = −AB · CD.

Conversely, the product AB, CD can be a scalar only when the resul-
tant of their two turns of 90◦ each is a turn of 0◦ or 180◦; i.e., only
when the turns are cocircular, and therefore their axes parallel.

• Cor. The condition that α is parallel to β is αβ = scalar, or
V αβ = 0.

Examples

1. Prove by diagram that (pq)2 and p2q2 are in general unequal.

2. Find the 2d, 3d, 4th, 5th, 6th powers of (2, 90◦), (2,−60◦).

3. Find the square roots and cube roots of (4, 30◦), (8,−120◦).

(a) Find the values of [(2, 50◦)6]
1
3 , [(2, 50◦)

1
3 ]6, and (2, 50◦)

6
3 .

4. What numbers are represented by 2 feet, 2 feet east, the unit of length being
a foot, a yard, an inch?

5. Show that i2 = j2 = k2 = ijk = −1; jk = i = −kj; ki = j = −ik; ij = k = −ji.
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6. Let e(AB) denote the versor that turns counter-clockwise round the axis AB
through an arc that is formed by bending the length AB into an arc of unit
radius. Show that if facing the west, and holding the paper in a north and
south vertical plane, then ei, e2i, · · ·e−i, e−2i, turn respectively 1, 2, · · ·
radians counter-clockwise, and 1, 2, · · · radians clockwise in the plane of
the paper. Also show that e±

π
2
i = ±i, e±πi = −1 e2nπi = 1, where n is any

integer.

7. Show by diagram that Seθi = cos θ, V eθi = i sin θ, where θ is any positive
or negative number and the unit of angle is a radian.

8. Show that if OA rotate into OB through 2 arc q, then (OB) = q(OA)q−1.

9. Show that if α be a vector in the plane of q, then Kq = αqα−1 = α−1qα.

10. Show that pq rotates into qp, and determine two such rotations.

11. Show that SKq = Sq, V Kq = −V q.

12. Show that Kαβ = βα, Sαβ = Sβα, V αβ = −V βα.

13. Show that Kαβγ = −γβα; V αβγ = V γβα; Sαβγ = Sβγα = Sγαβ =
−Sγβα = −Sβαγ = −Sαγβ. (a) Determine the conjugate of a product of
n vectors.

14. Prove by diagram that Kpq = Kq ·Kp.

Addition

47. Definition. The sum (p+ q) is the number determined by the condi-
tion that its product is the sum of the products of p and q.
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Thus let OA be any step that is multiplied by both p and q, and
let pOA = OB, qOA = OC, and OB + OC = OD, then (p +
q)OA = OD. It is obvious that any change in OA alters OB, OC,
OD, proportionally, so that the value of the sum p + q(= OD : OA)
is the same for all possible values of OA.

Similarly, any quaternion, r, may be added to the sum p+q, giving the
sum (p+q)+r; and we may form other sums such as p+(q+r), (q+r)+p,
etc. It will be shown later that all such sums of the same numbers are
equal, or that quaternion addition is associative and commutative.

48. The sum of a scalar and a vector is a quaternion with that scalar and
that vector, and conversely, a quaternion is the sum of its scalar and
its vector.
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For let w be any scalar, and ρ any vector, and let wOA = OL,
ρOA = OM, then completing the rectangle OLBM, we have
(w + ρ)OA = OB, and the scalar of w + ρ is w, and its vector is ρ,
since OL, OM are the components of OB parallel and perpendicular
to OA. Similarly,

q = Sq + V q.

49. The scalar, vector, and conjugate, of any sum equals the like sum of
the scalars, vectors, and conjugates of the terms of the sum. [I.e., S,
V , K, are distributive over a sum.]
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For let

pOA = OB, qOA = OC,

(p+ q)OA = OB + OC = OD.

Then the components of OD parallel and perpendicular to OA are, by
the figure, the sums of the like components of OB, OC; i.e., S(p+ q) ·
OA = Sp ·OA+Sq ·OA, or S(p+ q) = Sp+Sq; and V (p+ q) ·OA =
V p ·OA + V q ·OA, or V (p+ q) = V p+ V q.

Also, if OB′D′C ′ be the parallelogram that is symmetric to the par-
allelogram OBDC with reference to OA as axis of symmetry, then
Kp ·OA = OB′, Kq ·OA = OC′, and K(p+q) ·OA = OD′, and since
OB′ + OC′ = OD′, therefore K(p+ q) = Kp+Kq.

These results extend to any given sum; e.g., V [(p + q) + r] = V (p +
q) + V r = (V p+ V q) + V r, etc.

50. If (OA) + (OB) = (OC), then OA + OB = OC, and conversely.
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For erect a pin OD of unit length perpendicular to the plane of the
angle AOB on its counter-clockwise side; and turn AOB round OD as
axis through a clockwise right angle as seen from D into the position
A′OB′. Then since (OA) is the vector that turns through a counter-
clockwise right angle round OA as axis, and extends unit length into
OA = OA′, therefore (OA)OD = OA′, and similarly (OB)OD = OB′,
and therefore (OC)OD = OA′ +OB′ = OC ′, where OA′C ′B′ is a par-
allelogram. Hence the step OC of proper length and direction to give
the tensor and axis of the vector (OC) must be the diagonal of the
parallelogram on OA, OB as sides; and therefore OA+OB = OC.
Conversely, if OA+OB = OC, then turning the parallelogram OACB
into the position OA′C ′B′, we have, since OA′ +OB′ = OC ′, that
(OA) + (OB) = (OC).

• Cor. 1. Vectors add in the same way as their corresponding steps,
and all the laws of addition and resolution of steps extend at once
to vectors.

• Cor. 2. A sum of quaternions is associative and commutative.

For since by Cor. 1 a sum of vectors is independent of the way in
which its terms are added, and since we know that a sum of scalars
(i.e., ordinary numbers) is independent of the way in which its terms
are added, therefore by Art. 49 the scalar and the vector of a sum are
independent of the way in which the sum is added. Hence the sum is
independent of the way in which it is added, since it is equal to the
sum of its scalar and its vector.

51. Lemma. If p, q be any quaternions, then (1 + p)q = q + pq.
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For take OB in the intersection of the planes of p, q and draw OA, OC
such that q ·OA = OB, pOB = OC; then (1+p)q ·OA = (1+p)OB =
OB + OC = qOA + pqOA. Hence,

(1 + p)q = q + pq.

52. If p, q, r be any quaternions, then (p+ q)r = pr + qr.

For we have, (1 + qp−1)p · r = (1 + qp−1) · pr, and expanding each
member by the preceding lemma, we have, (p+ q)r = pr + qr.

This result extends to any sum; e.g.,

(p+q+r+s)t = [(p+q)+(r+s)]t = (p+q)t+(r+s)t = pt+qt+rt+st.

• Cor. 1. r(p+ q) = rp+ rq.

For let p′, q′, r′ be the conjugates of p, q, r. Then from (p′+q′)r′ =
p′r′ + q′r′, we have, by taking the conjugates of each member,
r(p+ q) = rp+ rq. [Art. 39, Cor. 2; Art. 49.]

• Cor. 2. A product of sums equals the sum of all partial products
that may be formed from the given product by multiplying together,
in the order in which they stand, a term from each factor of the
product.

E.g., (p+ q)(r + s) = pr + ps+ qr + qs.
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Note.—This rule should be used even when the factors are commutative,

as it prevents all danger of taking out the same partial product twice; e.g.,

from taking both pr and rp from the above product. To be sure that all the

partial products are found, some system of arrangement should be adopted;

also the total number of partial products should be determined.

E.g., (p+ q)(p+ q)(p+ q) may be arranged according to the degrees of
the terms in p, and there are 2× 2× 2 = 8 terms. This product is then
easily seen to be

p3 + (p2q + pqp+ qp2) + (pq2 + qpq + q2p) + q3,

when p, q are not commutative, and

p3 + 3p2q + 3pq2 + q3,

when p, q are commutative.

Formulas. For Exercise and Reference

53. (a) q = Tq · Uq = Uq · Tq.
(b) q = Sq + V q; Kq = Sq − V q.
(c) Sq = Tq cos∠q,= r cos θ, say; TV q = Tq sin∠q = r sin θ.

(d) V q = TV q · UV q = r sin θε where ε = UV q.

(e) q = r(cos θ + ε · sin θ) = reθε, Kq = r(cos θ − ε sin sin θ) = re−θε

(f) eθε · eθ′ε = e(θ+θ
′)ε.

(g) Sq = 1
2
(q +Kq); V q = 1

2
(q −Kq).

(h) Tq2 = qKq = Kq · q = (Sq)2 − (V q)2 = (Sq)2 + (TV q)2.

(i) q−1 = Kq/Tq2.

As a further exercise find the T , U , S, V , K of the T , U , S, V , K of
q, in terms of r, θ, ε.

54. (a) T (· · · pqr) = · · ·Tp · Tq · Tr.
(b) U(· · · pqr) = · · ·Up · Uq · Ur.
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(c) ∠(· · · pqr) = ∠(r · · · pq) = ∠(qr · · · p), etc.

(d) S(· · · pqr) = S(r · · · pq) = S(qr · · · p), etc.

(e) TV (· · · pqr) = TV (r · · · pq) = TV (qr · · · p), etc.

(f) arc (· · · pqr) = arc r + arc q + arc p+ · · · .
(g) (· · · pqr)−1 = r−1q−1p−1 · · · .
(h) K(· · · pqr) = Kr ·Kq ·Kp · · · .
(i) S(xp+yq+zr) = xSp+ySq+zSr, [x, y, z, scalars ] and similarly

for V or K instead of S.

55. (a) Kα = −α; Tα2 = −α2; Sα = 0; V α = α.

(b) Kαβ = βα; Sαβ = Sβα; V αβ = −V βα.

(c) αβ + βα = 2Sαβ, αβ − βα = 2V αβ.

(d) (α± β)2 = α2 ± 2Sαβ + β2.

(e) V (xα + yβ)(x′α + y′β) = (xy′ − x′y)V αβ =

∣∣∣∣x y
x′ y′

∣∣∣∣V aβ, say. [x,

y, x′, y′, scalars.]

(f) V (xα+ yβ + zγ)(x′α+ y′β + z′γ) =

∣∣∣∣y z
y′ z′

∣∣∣∣V βγ +

∣∣∣∣z x
z′ x′

∣∣∣∣V γα+∣∣∣∣x y
x′ y′

∣∣∣∣V αβ. [x, y, z, x′, y′, z′, scalars.]

56. (a) Kαβγ = −γβα.

(b) αβγ − γβα = 2Sαβγ = −2Sγβα.

Hence the scalars of the six products of α, β, γ are equal to one of
two negative numbers according to the cyclic order of the product;
and an interchange in two factors (which changes the cyclic order)
changes the sign of the scalar of the product. When two of the
three factors are equal, the scalar of their product must therefore
be zero, since an interchange of the equal factors changes the sign
without changing the value.

(c) S · (xα + yβ + zγ)(x′α + y′β + z′γ)(x′′α + y′′β + z′′γ)

=
{
x

∣∣∣∣y′ z′

y′′ z′′

∣∣∣∣+ y

∣∣∣∣z′ x′

z′′ x′′

∣∣∣∣+ z

∣∣∣∣x′ y′

x′′ y′′

∣∣∣∣}Sαβγ
=

∣∣∣∣∣∣
x y z
x′ y′ z′

x′′ y′′ z′′

∣∣∣∣∣∣Sαβγ, say. [x, y, z, etc., scalars.]

45



(d) Sαβγ = SαV βγ = SβV γα = SγV αβ.

[Replace βγ by Sβγ + V βγ, expand by 54 (i), and note that
S · αSβγ = 0.]

(e) αβγ + γβα = 2V αβγ = 2V γβα.

Note.—Insert between the two terms of the first member of (e), the

null term (αγβ − αγβ − γαβ + γαβ), and it becomes α(βγ + γβ) −
(αγ + γα)β + γ(αβ + βα). Hence, using (55 c), we have (f ).

(f) V αβγ = αSβγ − βSγα + γSαβ.

Transpose the first term of the second member of (f ) to the first
member, noting that αSβγ = V · αSβγ, and βγ − Sβγ = V βγ,
and we have

(g) V αV βγ = −βSγα + γSαβ;

(g′) V · (V βγ)α = βSγα− γSαβ.
(h)

V · (V αβ)V γδ = −γSαβδ + δSαβγ[(g), (d)]

= αSβγδ − βSαγδ.[(g′), (d)]

(i)

[(h)] δSαβγ = αSβγδ + βSγαδ + γSαβδ.

Replace α, β, γ, by V βγ, V γα, V γβ, noting that V ·(V γα ·V αβ) =
−αSαβγ, etc., and that S(V βγ · V γα · V αβ) = −(Sαβγ)2, and
we have

(j) δSαβγ = V βγSαδ + V γαSβδ + V αβSγδ.

Note.—(i), (j ) may be obtained directly by putting δ = xα+ yβ+ zγ

or xV βγ + yV γα + zV αβ, and finding x, y, z, by multiplying in the

first case by βγ, γα, αβ, and in the second case by α, β, γ, and taking

the scalars of the several products.

57. (a) i2 = j2 = k2 = ijk = −1; jk = i = −kj; ki = j = −ik, ij = k =
−ji.

(b) ρ = iSiρ− jSjρ− kSkρ. [56 (i) or (j ) or directly as in note.]

Let ρ = xi+yj+zk, ρ′ = x′i+y′j+z′k, etc. [x, y, z, etc. scalars.]

Then, prove by direct multiplication,
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(c) −ρ2 = x2 + y2 + z2 = Tρ2.

(d) −Sρρ′ = xx′ + yy′ + zz′ = −sρ′ρ.

(e) vρρ′ =

∣∣∣∣y z
y′ z′

∣∣∣∣ i +

∣∣∣∣z x
z′ x′

∣∣∣∣ j +

∣∣∣∣x y
x′ y′

∣∣∣∣k = −V ρ′ρ.

(f) −Sρρ′ρ′′ =

∣∣∣∣∣∣
x y z
x′ y′ z′

x′′ y′′ z′′

∣∣∣∣∣∣ = −SρV ρ′ρ′′.

Geometric Theorems

58. The angle of αβ equals the supplement of the angle θ between α, β.

For, since αβ ·β−1 = α, therefore αβ turns through the angle from β−1

to α, which is the supplement of the angle θ from α to β.

• Cor. Sαβ = −Tαβ cos θ, TV αβ = Tαβ sin θ. [Sq = Tq cos∠q,
etc.]
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59. The scalar of αβ equals the product of α and the projection of β upon
it; the vector of αβ equals the product of α and the projection of β
perpendicular to it, and V αβ is a vector perpendicular to α, β on their
counter-clockwise side whose length equals the area of the parallelogram
on α, β as sides.

Let β1, β2 be the components of β parallel and perpendicular to α, then
β = β1 + β2 and αβ = αβ1 + αβ2 = scalar + vector . Hence

Sαβ = αβ1, as stated; and V αβ = αβ2,

which is β2 turned a counter-clockwise right angle round α and length-
ened by Tα. Hence V αβ is perpendicular to α, β on their counterclock-
wise side (towards the reader in the figure), and its length is Tα ·Tβ2 =
area parallelogram on α, β, as sides.1

• Cor. 1. The projections of β parallel and perpendicular to α equal
α−1Sαβ and α−1V αβ.

• Cor. 2. The scalar measure of the projection of β upon α is −Sαβ
Tα

,
and the tensor measure of the projection of β perpendicular to α
is TV αβ

Tα
. [Also from 58, Cor.]

1The parallelogram on α, β may be considered as bounded by the path of a point that
receives the displacement α, then the displacement β, then the displacement −α, then the
displacement−β. This area is therefore bounded counter-clockwise round V αβ as axis; and
V αβ may therefore be called the vector measure of the area of this directed parallelogram
or of any parallel plane area of the same magnitude and direction of boundary.
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• Cor. 3. If θ be the angle between α, β, then cos θ = −Sαβ
Tαβ

,

sin θ = TV αβ
Tαβ

. [Also from 58, Cor.]

60. The volume of a parallelepiped on α, β, γ as edges is −Sαβγ (the
volume being positive or negative according as α lies on the counter-
clockwise or clockwise side of β, γ).

For let α1 be the projection of α upon V βγ; then taking the face β, γ
of the parallelepiped as the base, we have by Art. 59 that TV βγ is the
area of the base; also Tα1 is the altitude. Hence numerical volume

= Tα1 · TV βγ = ∓α1V βγ[Art. 46.]

= ∓SαV βγ = ∓Sαβγ.[59, 56, d.]

The upper or lower sign must be taken according as α1, V βγ are in the
same or opposite directions. This numerical result must be multiplied
by -1 when α lies on the clockwise side of β, γ; i.e., when α1, V βγ
are opposites (since V βγ lies on the counter-clockwise side of β, γ).
Hence—Sαβγ is the required algebraic volume.

• Cor. The condition that α, β, γ are coplanar vectors is that
Sαβγ = 0 (or αβγ = a vector).
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Examples

1. Expand (p+q+r)2, (α+β+γ)2, (p+q)(p−q), (p−q)(p+q), (p+q)K(p+q).
Show that T (p+ q)2 = Tp2 + 2SpKq + Tq2.

2. Solve q2+4kq−8 = 0 for q. [q must be cocircular with k. Hence q = −2k±2
are the real solutions.]

3. Find the tensor, versor, scalar, vector, and angle of each of the numbers: 2,
−3, 3i, 2 + 3i, i + j, 3i + 4j, 5e

π
3
i, (2i + 3j + 6k)2.

4. Show that the three quaternion cube roots of −1, with horizontal great
circle, are −1, 1

2 ±
1
2

√
3k.

5. Show geometrically that eθε + e−θε = 2 cos θ, εθε − e−θε = 2ε sin θ.

6. The numbers eα and

1 + α+
α2

2!
+
α3

3!
+
α4

4!
+ · · ·

are equal. Verify this approximately by geometric construction when Tα =
1, and when Tα = 2. [For the series, construct OA, AB = αOA, BC =
1
2αAB, CD = 1

3αBC, DE = 1
4αCD, etc.]

7. In the plane triangle ABC, whose sides opposite A, B, C, are a, b, c, show
by squaring BC = AC−AB, that as a2 = b2 + c2 − 2bc cosA; also from

VBCCA = VCAAB = VABBC

show that a : b : c = sinA : sinB : sinC.

8. From eθε = cos θ + ε sin θ, eθε · eθ′ε = e(θ+θ
′)ε, show that

cos(θ + θ′) = cos θ cos θ′ − sin θ sin θ′,

sin(θ + θ′) = sin θ cos θ′ + cos θ sin θ′.

9. Show that (cos θ + ε sin θ)n = cosnθ + ε sinnθ.

10. Show that Spq = SpSq + S(V p · V q), and hence that cos∠pq = cos∠p ·
cos∠q + sin∠p · sin∠q · cos∠(V p · V q).

11. If arc q =
_
BA, arc p =

_
AC, show that the last equation of Ex. 10 is the

property
cos a = cos b cos c+ sin b sin c cosA

of the spherical triangle ABC. [Draw
_

B′A = arc V q,
_

AC ′ = arc V p.]
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12. If α, β, γ, α′, β′, γ′ are vectors from O to the vertices A, B, C, A′, B′, C ′ of
two spherical triangles on the unit sphere O, where α′ = UV βγ, β′ = UV γα,
γ′ = UV (αβ); then α = UV β′γ′, β = UV γ′α′, γ = UV α′β′, and the two
triangles are polar triangles.

13. In Ex. 12 show that cosα = −Sβγ, sinα = TV βγ, etc.; cosA = S(UV γα ·
UV αβ) = Sβ′γ′ = − cosα′, etc. Hence ∠A, ∠α′ are supplements, etc.

14. Show that the equation of Ex. 11 follows from the identity, −Sβγ = S(βγ ·
γα) = Sβγ · Sγα+ S(V γα · V αβ).

15. From V (V γα · V αβ) = −αSαβγ, and the similar equations found by ad-
vancing the cyclic order α, β, γ, show that we have in the spherical triangle
ABC,

sin a : sin b : sin c = sinA : sinB : sinC.

16. Show that if α, β, γ are coplanar unit vectors, then αβγ = −αβ−1 · γ =
(γ turned through the angle from β to α and reversed) = (β rotated 180◦

about the exterior bisector of the angle between α, γ) = (α− γ)β(α− γ)−1.

17. Show that (VABCD)−1SACVABCD is the shortest vector from the line
AB to the line CD. [Project AC upon the common perpendicular to AB,
CD.]

18. If α, β, γ be the vector edges about a vertex of an equilateral pyramid
(whose edges are unit lengths), then β − γ, γ − α, α− β, are the remaining
vector edges. Hence show that Sβγ = Sγα = Sαβ = −1

2 , and V αV βγ =
(−β)Sγα+ γSαβ = 1

2(β − γ). Also show that:

(a) The face angles are 60◦, the area of a face is 1
4

√
3, and its altitude is

1
2

√
3.

(b) Opposite edges are perpendicular, and their shortest distance is 1
2

√
2.

(c) The angle between a face and an edge is cos−1 1
3

√
3.

(d) The angle between two adjacent faces is sin−1 2
3

√
2.

(e) The volume and altitude of the pyramid are 1
12

√
2, 1

3

√
3.

19. The cosines of the angles that a vector makes with i, j, k, are called its
direction cosines. Find the lengths and direction cosines of

2i− 3j + 6k, i + 2j− 2k, xi + yj + zk.
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20. Show that the sum of the squares of the direction cosines of a line equals 1.

21. If (l,m, n), (l′,m′, n′) are the direction cosines of two lines, show that li +
mj + nk, l′i +m′j + n′k, are unit vectors in the directions of the lines, and
that if θ be the angle between the lines, then cos θ = ll′ + mm′ + nn′; also

that sin2 θ =

∣∣∣∣m n
m′ n′

∣∣∣∣2 +

∣∣∣∣n l
n′ l′

∣∣∣∣2 +

∣∣∣∣ l m
l′ m′

∣∣∣∣2, and that the three terms of

the second member, respectively divided by sin2 θ, are the squares of the
direction cosines of a line that is perpendicular to the given lines. [Art. 57.]

22. If O be a given origin, then the vector OP = ρ = xi + yj + zk say, is called
the vector of P with reference to the given origin. If OX, OY , OZ be axes
in the directions of i, j, k, the scalar values of the projections of OP upon
these axes, i.e., (x, y, z), are called the coördinates of P with reference to
the given axes. Let the coördinates of the vertices of the pyramid ABCD
be, respectively, (8,2,7), (10,6,3), (1,6,3), (9,10,11). Draw this pyramid with
reference to a perspective of i, j, k, showing coördinates and vectors. Also:

(a) Find the vectors and coördinates of the middle points of the edges.
[OM = 1

2(OA + OB), etc.]

(b) Find the lengths and direction cosines of the edges. [−AB2 = AB2,
etc.]

(c) Find vectors that bisect the face angles. [UAC±UAD bisects ∠CAD.]

(d) Find altitudes of the faces and the vectors of their feet. [If L be the
foot of the perpendicular from B on AC, then AL = AB−1SABAC,
etc.]

(e) Find the areas of the faces.

(f) Find the volume and altitudes of the pyramid.

(g) Find the angles between opposite edges, and their (shortest) distance
apart. [Ex. 17.]

(h) Find the angle between two adjacent faces.
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Chapter 4

Equations of First Degree

61. The general equation of first degree in an unknown vector ρ is of the
form,

(a) q1ρr1 + q2ρr2 + · · · = q,

where q, q1, r1, q2, r2, · · · are known numbers.

This equation may be resolved into two equations by taking the scalar
and the vector of each member; and we shall consider these equations
separately.

62. Taking the scalar of (a), Art. 61, the term Sq1ρr1 becomes, by a cyclic
change in the factors, S · r1q1ρ, and this becomes [by dropping the
vector (Sr1q1)ρ, since its scalar is zero] S(V r1q1 · ρ); and similarly for
the other terms. Hence if we put V r1q1 + V r2q2 + · · · = δ, and Sq = d,
the general scalar equation of first degree in ρ becomes,

(a) Sδρ = d or Sδ(ρ− dδ−1) = 0.

One solution of this equation is obviously ρ = dδ−1. This is not the only
solution, since by Art. 45, Cor. 3, the second factor may be any vector
that is perpendicular to δ. Hence the general solution is ρ = dδ−1+V σδ,
where σ is an arbitrary vector.

63. Hence, draw OD = δ, take N on the line OD so that ON = dδ−1, and
draw any vector NP = V σδ that is perpendicular to the line OD; then
ρ = OP is a solution of the equation Sδρ = d.
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The locus of P is therefore a plane perpendicular to OD at the point
N ; and this plane is called the locus of the equation Sδρ = d, with
respect to the origin O. [The locus is the assemblage of all points that
satisfy the equation.]

64. The vector perpendicular distance from the plane Sδρ − d = 0 to the
point P ′ (whose vector is ρ′) is δ−1(Sδρ′ − d), and the corresponding
scalar distance measured upon δ is

−(Sδρ′ − d)

Tδ
.

For the perpendicular distance of P ′ is the projection of NP′ = (ρ′ −
dδ−1), upon OD = δ.

65. The locus of the simultaneous equations Saρ = a, Sβρ = b is a straight
line, viz., the intersection of the two plane loci of these equations taken
separately.

For in order that ρ = OP may satisfy both equations, P must lie in
both planes, and its locus is therefore the intersection, of those planes.

66. The equation V δρ = δ′, or

V δ(ρ− δ−1δ′) = 0,

is a consistent equation only when δ′ is perpendicular to δ, since V δρ
is always perpendicular to δ. When δ′ is perpendicular to δ, then δ−1δ′
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is a vector (Art. 45, Cor. 1), and the general solution of this equation
is ρ = δ−1δ′+ xδ, where x is an arbitrary scalar (Art. 46, Cor.). Hence
draw ON = δ−1δ′, and NP = xδ (any vector parallel to δ), and then
ρ = OP is a solution of the given equation. The locus of P is therefore
the straight line through N parallel to δ, and ON is the perpendicular
from the origin upon the line. The equations of Art. 65 take this
form by multiplying the first by β, the second by α, and subtracting,
remembering that

V (V αβ · ρ) = αSβρ− βSαρ.

67. The vector perpendicular distance from the line V δρ − δ′ = 0 to the
point P′ is δ−1(V δρ′ − δ′), where ρ′ = OP′.

For the required perpendicular distance of P ′ is the projection of NP′,
= (ρ′ − δ−1δ′), perpendicular to δ.

68. The point of intersection of the three planes Sαρ = a, Sβρ = b, Sγρ = c
is

[Art. 56, (j ).] ρ =
(aV βγ + bV γα + cV αβ)

Sαβγ
.

Examples

1. Find the equation of the locus of a point that moves so that its numerical
distances from two fixed points are equal.

2. A point moves so that its scalar distances from two fixed planes are equal;
show that its locus is a plane bisector of the diedral angle of the given planes.
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3. A point moves so that the sum or difference of its scalar distances from two
fixed planes is constant; show that its locus is a plane parallel to the interior
or exterior bisector of the diedral angle of the given planes.

4. A point moves so that the ratio of its scalar distances from two fixed planes
is constant; show that its locus is a plane.

5. A point moves so that its numerical distances from two intersecting lines are
equal; find its locus. [Take the point of intersection as origin.]

6. A point moves so that its numerical distances from three fixed points are
equal; find its locus.

(a) The same with coplanar lines instead of points. [Four straight lines
perpendicular to the plane of the lines.]

7. Find the vector of the centre of the sphere whose surface passes through four
given points.

8. A point moves so that its tangential distances from two given spheres are
numerically equal; find its locus.

9. On the chord OQ of a given sphere a point P is taken so that OP ·OQ =
−a2; when Q moves round the sphere find the locus of P . [A plane perpen-
dicular to the diameter OD.]

10. The locus of the point P whose coördinates (x, y, z) satisfy lx+my+nz+d =
0 is a plane perpendicular to the vector li + mj + nk, at a distance from
the origin of −d/

√
l2 +m2 + n2, measured in the direction of this vector.

(a) Show that the equation of this plane may be put in the form x cosα +
y cosβ + z cos γ − p = 0, where p is the perpendicular distance from O to
the plane and the cosines are the direction cosines of this perpendicular.

11. Find the perpendicular distance of P ′ = (x′, y′, z′), from the plane of Ex. 10,

[x′ cosα+ y′ cosβ + z′ cos γ − p].

12. The locus of the point P whose coördinates (x, y, z) satisfy (x−a)
l = (y−b)

m =
(z−c)
n is a line parallel to the vector li +mj + nk through the point (a, b, c).

If P satisfy the first two of these three equations, its locus is a plane through
the line, perpendicular to the plane of XOY . [If t be the common value of
the three ratios, then ρ = ai + bj + ck + t(li +mj + nk).]
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13. Find the perpendicular distance of P ′ = (x′, y′, z′) from the line of Ex. 12.

In the following examples A, B, C, D, P are points whose coördinates are
(8, 2, 7), (10, 6, 3), (1, 6, 3), (9, 10, 11), (x, y, z).

14. The equation of the plane through A perpendicular to OD is SODAP = 0,
or 9x+ 10y + 11z = 169.

15. The equation of the plane through AB parallel to CD is S·APVABCD = 0,
or 2x− 2y − z = 5.

16. The equation of the plane ABC is S ·APVABAC = 0 or y + z = 9.

17. Find the perpendicular distance of D from the planes in Exs. 14, 15, 16.

18. The equation of the plane through AB that contains the common perpen-
dicular to AB, CD is

S ·APV (ABVABCD) = 0, or 2x+ y + 2z = 32.

19. The equation of the line through A parallel to OD is VODAP = 0 or
AP = tOD, or (x−8)

9 = (y−2)
10 = (z−7)

11 .

20. The equation of the line AB is VABAP = 0, or AP = tAB or (x−8)
2 =

(y−2)
4 = (z−7)

−4 .

21. The equation of the common perpendicular to AB, CD is the equation of
Ex. 18 and x+ 2y − 2z = 7.

22. Find the distance of D from the lines in Exs. 19, 20, 21.

23. Find OD in the form lOA+mOB+nOC, and find the ratios in which OD
cuts the triangle ABC.

Nonions

69. The vector equation of first degree is

(a) V q1ρr1 + V q2ρr2 + · · · = V q.

To solve this equation we resolve it along i, j,k, by multiplying it by
these vectors and taking the scalars of the products. We thus find three
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scalar equations of first degree from which ρ may be immediately found
as in Art. 68. Hence (a) has in general one, and only one, solution which
corresponds to the intersection of three given planes. [See further Art.
81.]

70. The first member of Art. 69 (a) is a linear, homogeneous vector function
of ρ; i.e., it is of first degree in ρ, every term is of the same degree in
ρ, and it is a vector.

We may denote the operator

V q1()r1 + V q2()r2 + · · ·

by a single letter, φ, so that φρ, φσ, · · · denote the vectors that result
from putting ρ, σ, · · · in the places occupied by the parenthesis.

71. The operator φ is distributive over a sum and commutative with scalars;
i.e.,

φ(xρ+ yσ) = xφρ+ yφσ.

This is immediately verified by putting xρ+ yσ in the places occupied
by the parentheses of φ and expanding the several terms.

72. We have ρ = xα+yβ+zγ, where α, β, γ are given non-coplanar vectors,
and x, y, z, are scalars, each of first degree in ρ, as shown in 56(i) with
ρ in the place of δ; hence,

(a) φρ = xφα + yφβ + zφγ.

The complete operation of φ is therefore determined when the three
vectors φα, φβ, φγ are known. Since each of these vectors involves three
scalar constants (e.g., the multiples of the given non-coplanar vectors
α, β, γ, that express it), therefore the value of φ depends upon nine
scalar constants. The operator φ may therefore be called a nonion.
Scalars and rotators are particular forms of nonions.

Note.—It is readily shown that nonions have the same laws of addition
and multiplication among themselves as quaternions. Products are not in
general commutative. A product

(φ− g1)(φ− g2)(φ− g3),
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where g1, g2, g3 are scalars, is commutative, since φ is commutative with
scalars by Art. 71. Hence this product multiplies out as if φ were a scalar,
and is

φ3 − (g1 + g2 + g3)φ
2 + (g2g3 + g3g1 + g1g2)φ− g1g2g3.

Linear Homogeneous Strain

73. An elastic solid is subjected to the strain φ with respect to an origin O,
when all its particles, A, B, C, etc., are displaced to positions A′, B′, C ′,
etc., that are determined by OA′ = φOA, OB′ = φOB, OC′ = φOC,
etc. In general, any particle P whose vector is OP = ρ occupies after
the strain the position P ′, whose vector is OP′ = φρ. The particle at
O is not moved, since its vector after strain is φOO = φ0 = 0.

(a) We have, also, φAP = A′P′, etc.

For,

A′P′ = OP′ −OA′ = φOP− φOA

= φ(OP−OA) = φAP, etc.
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74. A straight line of particles parallel to α is homogeneously stretched and
turned by the strain φ into a straight line of particles parallel to φα,
and the ratio of extension and turning is φα/α.

For let AP be a line parallel to α, and let A, P strain into A′, P ′.
Then, since AP = xα, therefore, by 73a, A′P′ = xφα, and the ratio of
extension and turning is A′P′/AP = φα/α.

Note.—This property that parallel lengths of the substance strain into

parallel lengths and are stretched proportionally, is the physical definition

of linear homogeneous strain.

75. A plane of particles parallel to α, β is homogeneously spread and turned
by the strain φ into a plane of particles parallel to φα, φβ, and the ratio
of extension and turning is V φαφβ/V αβ.

For let APQ be a plane parallel to α, β, and let A, P , Q strain into
A′, P ′, Q′. Then, since AP = xα + yβ, AQ = x′α + y′β, therefore

A′P′ = xφα + yφβ, A′Q′ = x′φα + y′φβ.

By Arts. 59, 55, (e), the directed area of the triangle APQ is 1
2
V ·AP ·

AQ = 1
2
(xy′ − x′y)V αβ, and the directed area of the triangle A′P ′Q′

is the same multiple of V φαφβ. Hence the ratio of the extension and
turning of directed area is V φαφβ/V αβ.

76. A volume of particles is homogeneously dilated by the strain φ in the
ratio

Sφαφβφγ/Sαβγ,

where α, β, γ are any given non-coplanar vectors.

For let the pyramid APQR strain into the pyramid A′P ′Q′R′. Then
since

AP = xα + yβ + zγ, AQ = x′α + y′β + z′γ,

AR = x′′α + y′′β + z′′γ, therefore A′P′, A′Q′, A′R′ have these values
with φα, φβ, φγ instead of α, β, γ. The volume of the pyramid APQR
relative to the order AP , AQ, AR of its edges is, by Arts. 60, 56, (c),

−1

6
SAPAQAR = −1

6

∣∣∣∣∣∣
x y z
x′ y′ z′

x′′ y′′ z′′

∣∣∣∣∣∣Sαβγ,
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while that of the strained pyramid is the same multiple of Sφαφβφγ.
Hence the ratio of dilation of volume is Sφαφβφγ/Sαβγ.

77. The ratio of dilation of φ is called its modulus.

(a) It is obvious from the signification of the modulus that the modulus
of a product of nonions equals the product of the moduli of the
factors; e.g., mod φψ = mod φ ·mod ψ.

When mod φ is positive, the parts of the volume are in the same order
before and after strain. When mod φ is negative, the order of the parts
is reversed by the strain; i.e., if AP lie on the counter-clockwise side of
the plane AQR, then A′P ′ lies on the clockwise side of A′Q′R′, so that
the particles along AP have been strained through the particles of the
plane AQR. Such a strain is obviously not a physical possibility.

Finite and Null Strains

78. If an elastic solid which fills all space be subjected to a strain φ, the
strained solid fills all space if mod φ be finite, and it fills only an indef-
inite plane or line through the origin or reduces to the origin if mod φ
be zero.

For if Sφαφβφγ be finite, then φα, φβ, φγ are non-coplanar vectors,
so that

φρ(= xφα + yφβ + zφγ)

may be made any vector by properly choosing ρ(= xα + yβ + zγ).
But if Sφαφβφγ = 0, then φα, φβ, φγ are coplanar vectors or colinear
vectors or each zero, so that φρ will be a vector in a given plane or line
through O or the vector of O, whatever value be given to ρ.

When mod φ is zero, φ is called a null nonion; and it is called singly
or doubly or triply null, according as it strains a solid into a plane or a
line or a point. If φα = 0, then α is called a null direction of φ.

79. Null strains, and only null strains, can have null directions; a singly
null strain has only one null direction; a doubly null strain has a plane
of null directions only; a triply null strain has all directions null.

61



For when mod φ = 0, then φα, φβ, φγ are coplanar or colinear vectors,
and we have a relation lφα + mφβ + nφγ = 0, i.e., lα + mβ + nγ is a
null direction of φ. Conversely, if φ have a null direction, take one of
the three non-coplanar vectors α, β, γ, in that direction, say α, and we
have Sφαφβφγ = 0, since φα = 0, and therefore modφ = 0.

Also, if φ have only one null direction, α, then φβ, φγ, are not parallel,
since φβ = lφγ makes β − lγ a second null direction. Since ρ = xα +
yβ + zγ, therefore φρ = yφβ + zφγ, which is any vector in the plane
through O parallel to φβ, φγ; hence φ is singly null.

But if φ have two null directions, α, β, then φρ = zφγ, which is any
vector in the line through O parallel to φγ, and therefore φ is doubly
null. Also, since φ(xα + yβ) = 0, therefore any direction in the plane
of α, β is a null direction of φ.

If φ have three non-coplanar null directions α, β, γ, then φρ = 0 for all
values of ρ; i.e., a triply null nonion is identically zero.

80. A singly null nonion strains each line in its null direction into a definite
point of its plane; and a doubly null nonion strains each plane that is
parallel to its null plane into a definite point of its line.

For when φ is singly null, say φα = 0, then xφβ + yφγ is the vector of
any point in the plane of φ, and all particles that strain into this point
have the vectors ρ = xα+ yβ + zγ, where x is arbitrary, since φα = 0;
i.e., they are particles of a line parallel to α. So, if φ is doubly null,
say φα = 0, φβ = 0, then any point of the line of φ is zφγ, and the
particles that strain into this point have the vectors

ρ = xα + yβ + zγ,

in which x, y are arbitrary; i.e., they are particles of a plane parallel
to α, β.

Note.—It follows similarly that the strain φ alters the dimensions of a line,

plane, or volume by as many dimensions as the substance strained contains

independent null directions of φ, and no more. Hence, a product φψ has the

null directions of the first factor, and the null directions of the second factor

that lie in the figure into which the first factor strains, and so on; the order

of nullity of a product cannot exceed the sum of the orders of its factors,

and may be less; etc.
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Solution of φρ = δ

81. The solutions of φρ = δ are, by definition of the strain φ, the vectors
of the particles that strain into the position whose vector is δ. Hence:

(a) When φ is finite, there is one, and only one, solution.

(b) When φ is singly null, and δ does not lie in the plane of φ, there
is no finite solution. Divide the equation by Tρ, and make Tρ
infinite, and we find φUρ = 0; i.e., the vector of the point at
infinity in the null direction of φ is a solution.

(c) When φ is singly null, and δ lies in the plane of φ, there are an
infinite number of solutions, viz., the vectors of the particles of a
line that is parallel to the null direction of φ.

(d) When φ is doubly null, and δ does not lie in the line of φ, there
is no finite solution. As in (2) the vectors of the points of the line
at infinity in the null plane of φ are solutions.

(e) When φ is doubly null, and δ lies in the line of φ, there are an
infinite number of solutions, viz., the vectors of the particles of a
plane that is parallel to the null plane of φ.

These results correspond to the intersections of three planes, viz.:

(a) The three planes meet in a point.

(b) The three planes parallel to a line.

(c) The three planes meet in a common line.

(d) The three planes parallel.

(e) The three planes coincide.

Derived Moduli of φ

82. The ratio in which the nonion φ+ g dilates volume is,

mod (φ+ g) = S(φα + gα)(φβ + gβ)(φγ + gγ)/Sαβγ.
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This is independent of the values of the non-coplanar vectors α, β, γ
in terms of which it is expressed. If g is a scalar, this modulus is an
ordinary cubic in g, whose coefficients will therefore depend only upon
φ. The constant term is mod φ, and the coefficients of g, g2, are called
mod1φ, mod2φ, so that,

(a) mod (φ+ g) = g3 + g2mod2φ+ gmod1φ+ mod φ.

[mod1φ = S(αφβφγ + βφγφα + γφαφβ)/Sαβγ;

mod2φ = S(βγφα + γαφβ + αβφγ)/Sαβγ].

83. The roots g1, g2, g3, of the cubic

mod (φ− g) = 0

are called the latent roots of φ. We have from 82 (a) with −g in the
place of g, and the theory of equations,

mod φ = g1g2g3, mod1φ = g2g3 + g3g1 + g1g2,

mod2φ = g1 + g2 + g3.

(a) The latent roots of φ− g1 are those of φ diminished by g1.

For the roots of mod (φ− g1 − g) = 0, are g = 0, g2 − g1, g3 − g1.
E.g., g = g2 − g1 gives

mod [φ− g1 − (g2 − g1)] = mod (φ− g2) = 0.

(b) The order of nullity of φ cannot exceed the number of its zero
latent roots.

For if φ has one null direction α, then φα = 0 makes mod φ = 0,
so that at least one of the latent roots is zero, say g1; and if φ has
a second null direction β, then φα = 0, φβ = 0, makes mod1φ = 0
or g2g3 = 0, so that another latent root is zero, etc.

(c) The order of nullity of φ− g1 cannot exceed the number of latent
roots of φ that equal g1. [(a), (b)]
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Latent Lines and Planes of φ

84. Those lines and planes that remain unaltered in geometrical position
by the strain φ are called latent lines and planes of φ.

(a) The latent directions of φ are the null directions of φ− g1, φ− g2,
φ− g3, and g1, g2, g3 are the corresponding ratios of extension in
those directions.

For if ρ is any latent direction, and g is the ratio of extension in that
direction, then we have φρ = gρ or (φ− g)ρ = 0. Hence φ− g is a null
nonion, or mod (φ− g) = 0, so that g is a latent root of φ; also ρ is a
null direction of φ− g.

Note.—Since a cubic with real coefficients has at least one real root, there-

fore a real nonion has at least one latent direction. Also if two roots are

imaginary, they are conjugate imaginaries, and the corresponding latent di-

rections must also be conjugate imaginaries.

85. If α, β, γ be the latent directions corresponding to g1, g2, g3, then
(β, γ), (γ, α), (α, β) determine latent planes of φ in which the ratios of
spreading are g2g3, g3g1, g1g2. E.g.,

V φβφγ = V (g2β · g3γ) = g2g3V βγ.

Hence, in the general case when the latent roots are all unequal, the
latent vectors α, β, γ must form a non-coplanar system, since any two
of the latent lines or planes determined by them have unequal ratios of
extension, and cannot, therefore, coincide.

(a) The plane of φ− g1 is the latent plane corresponding to g2, g3.

For (φ−g1)ρ = y(g2−g1)β+z(g3−g1)γ, (= plane of β, γ). [The plane
and null line of φ− g1 may be called corresponding latents of φ.]

The Characteristic Equation of φ

86. We have also,
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(a) (φ − g1)(φ − g2)(φ − g3) = 0. For the first member has the three
non-coplanar null directions α, β, γ. [See 80 note, 72 note.]

Conjugate Nonions

87. Two nonions φ, φ′ are conjugate when

(a) Sρφσ = Sσφ′ρ for all values of ρ, σ.

When φ is known, this determines φ′ without ambiguity. Thus, put
σ = i, j,k, in turn, and we have by Art. 57 (b),

φ′ρ = −iSρφi− jSρφj− kSρφk.

Conversely, this function satisfies (a), for we have Sσφ′ρ = Sρφ(−iSiσ−
jSjσ − kSkσ) = Sρφσ.

88. From this definition of conjugate strains we have

(a) (aφ+ bψ)′ = aφ′ + bψ′; (φψ)′ = ψ′φ′.

(b) (V q()q)′ = V q()p, [αSβ()]′ = βSα().

E.g., Sσ(φψ)′ρ = Sρφψσ = Sρφ(ψσ)

= Sψσφ′ρ = Sσψ′φ′ρ,

and therefore (φψ)′ = ψ′φ′. [If Sσ(α − β) = 0 for all values of σ, then
α − β = 0, since no vector is perpendicular to every vector σ. Hence,
comparing the first and last member of the above equation, we have
(φψ)′ρ = ψ′φ′ρ.]

89. Two conjugate strains have the same latent roots and moduli, and a
latent plane of one is perpendicular to the corresponding latent line of
the other.

For since (φ− g1)α = 0, therefore

0 = Sρ(φ− g1)α = Sα(φ′ − g1)ρ,
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and therefore φ′−g1 is a null nonion whose plane is perpendicular to α.
Hence g1 is a latent root of φ′, and the latent plane of φ′ corresponding
to φ′−g1 is perpendicular to the latent line of φ corresponding to φ−g1.
[Art. 85, (a).]

Self-conjugate Nonions

90. A nonion φ is self-conjugate when φ′ = φ or when Sρφσ = Sσφρ for all
values of ρ, σ. In consequence of this relation a self-conjugate strain
has only six scalar constants, three of the nine being equal to three
others, viz.,

Siφj = Sjφi, Siφk = Skφi, Sjφk = Skφj.

91. A self-conjugate strain has by Art. 88 three mutually perpendicular
latent directions, and conversely, if φ have three mutually perpendicular
latent directions, i, j, k, corresponding to latent roots a, b, c, then

φρ = −aiSiρ− bjSjρ− ckSkρ,

which is self-conjugate. [68 b.]

92. A real self-conjugate strain has real latent roots.

For let α′ = α + β
√
−1, β′ = α − β

√
−1 be latent directions corre-

sponding to conjugate imaginary roots a, b of a real nonion φ; then, if
φ is self-conjugate, we have

Sα′φβ′ = Sβ′φα′ = bSα′β′ = aSα′β′,

or, since a, b are unequal, therefore Sα′β′ = 0; but this is impossible,
since Sα′β′ = α2 + β2, a negative quantity. Therefore φ is not self-
conjugate if it has imaginary latent roots.

93. A nonion φ is negatively self-conjugate when φ′ = −φ, or when Sσφρ =
−Sρφσ. Such a nonion has therefore only three scalar constants, since
Siφi = −Siφi shows that Siφi = 0, and similarly, Sjφj = 0, Skφk = 0,
while the other six constants occur in negative pairs

Siφj = −Sjφi, etc.
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(a) The identity Sρφρ = 0 gives (by putting ρ = xi+yj+zk where x,
y, z are arbitrary) all the above relations between the constants
of φ, and is therefore the sufficient condition that φ is negatively
self-conjugate. It shows that φρ is perpendicular to ρ or that
φρ = V ερ, where ε must be independent of ρ since φρ is linear in
ρ.

94. Any nonion φ may be resolved into a sum of a conjugate and a nega-
tively self-conjugate nonion in only one way.

For if φ = φ+ ψ, where φ′ = φ, ψ′ = −ψ, then φ′ = φ− ψ, and adding
and subtracting, we have φ = 1

2
(φ+ φ′)ψ = 1

2
(φ− φ′), and

(a) φρ =
1

2
(φ+ φ′)ρ+

1

2
(φ− φ′)ρ = φρ+ V ερ.

To find ε in terms of the constants of φ, we have ρ = −iSiρ − jSjρ −
kSkρ, and therefore

φρ = −φiSiρ− etc.

φ′ρ = −iSρφi− etc.[88 b.]

Hence

1

2
(φ− φ′)ρ =

1

2
(iSρφi− φiSiρ) + etc.

=
1

2
V · (V iφi)ρ+ etc. = V ερ,

and therefore

(a) ε =
1

2
V (iφi + jφj + kφk).

Examples

1. Find the equation of a sphere whose centre is A(OA = α) and radius α.

2. Show that the square of the vector tangent from the sphere of Ex. 1 to P ′

is (ρ′ − α)2 + a2.
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3. Find the locus of the point P such that PP ′ is cut in opposite ratios by the
sphere of Ex. 1; show that it is the plane of contact of the tangent cone from
P ′ to the sphere and is perpendicular to AP ′.

4. Let P ′ be any point on the sphere A of Ex. 1, and take P on OP ′ so that
OP ·OP′+ c2 = 0; find the locus of P . [P , P ′ are called inverse points with
respect to O, and the locus of P is the inverse of the given sphere A. It is
a sphere with centre A′ on OA, or a plane perpendicular to OA if the given
sphere A pass through O.]

5. Show that the inverse of a plane is a sphere through O.

6. Show that the general scalar equation of second degree is Sρφρ+2Sδρ+d = 0,
where φ is a self-conjugate nonion.

7. Show that Sρφρ = 0 is the equation of a cone with vertex at O.

8. Show that the line ρ = α+xβ cuts the quadric surface of Ex. 6 in two points;
apply the theory of equations to determine the condition that this line is a
tangent to the surface, or an element of the surface, or that it meets the
surface in one finite point and one point at infinity, or that the point whose
vector is α lies midway between the points of intersection.

9. Show that the solution of φρ + δ = 0 is the vector of a centre of symmetry
of the quadric surface of Ex. 6. Hence classify quadric surfaces as central,
non-central, axial, non-axial, centro-planar.

10. Show that the locus of the middle points of chords parallel to β is a diametric
plane perpendicular to φβ.

11. Show that an axial quadric is a cylinder with elements parallel to the null
direction of its nonion φ.

12. Show that a non-axial quadric is a cylinder with elements parallel to the null
plane of its nonion φ and perpendicular to its vector δ.

13. Show that a centro-planar quadric consists of two planes parallel to the null
plane of its nonion φ.

14. Show that the equation of a central quadric referred to its centre as origin
is Sρφρ + 1 = 0. Show that the latent lines and planes of φ are axes and
planes of symmetry of the quadric; also that φρ is perpendicular to the
tangent plane at the point whose vector is ρ. (a) Show that the axes and
planes of symmetry of the general quadric are parallel to the latent lines and
planes of φ.
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15. Show that if ψ2 = φ, then the equation of the central quadric is (ψρ)2 + 1 =
0; and that therefore the quadric surface when strained by ψ becomes a
spherical surface of unit radius.

16. Show that if g, α are corresponding latent root and direction of φ, then gn,
α are the same for φn. Find the latent lines and planes, the latent roots and
moduli of the following nonions and their powers:

(a) (aαSβγρ+ bβSγαρ+ cγSαβρ)/Sαβγ.

(b) [aαSβγρ+ (aβ + bα)Sγαρ+ (cγSαβρ]/Sαβγ.

(c) [aαSβγρ+ (aβ + bα)Sγαρ+ (aγ + cβ)Sαβρ]/Sαβγ.

(d) V ερ, qρq−1.

17. Show that the latent roots of eρ− fV αρβ (f > 0, Tα = Tβ = 1) are e+ f ,
e+ fSαβ, e− f , corresponding to latent directions α+ β, V αβ, α− β; and
that this is therefore a general form for self-conjugate nonions. Determine
the latent directions and roots in the limiting case when α = β, or −β or
f = 0.

18. Show that the nonion of Ex. 16 takes the form bρ− f(αSβρ+βSαρ), where
b is the mean latent root.

19. Substitute the nonion of Ex. 18 for φ in Ex. 6 and show that the quadric
surface is cut in circles by planes perpendicular to α or β. When is the
surface one of revolution?

20. If the conjugate of a nonion is its reciprocal, and the modulus is positive,
then the nonion is a rotation; and conversely every rotation satisfies this con-
dition. [If R, R−1 are conjugate nonions, then ρ2 = SρR−1Rρ = SRρRρ =
(Rρ)2; i.e., TRρ/ρ = 1. Also Sρσ = SρR−1Rσ = SRρRσ and therefore the
angle between ρ, σ = ∠ between Rρ,Rσ. Therefore R strains a sphere with
centre O into another sphere with centre O in which the angles between cor-
responding radii are equal and their order in space is the same, since mod R
is positive. Hence the strain is a rotation.]

(a) Show that (RφR−1)n = RφnR−1.

21. Show that φ′φ is self-conjugate, and that its latent roots are positive, and
that therefore there are four real values of ψ that satisfy ψ2 = φ′φ, mod ψ =
mod φ. [Let φ′φi = ai; then a = −Siφ′φi = (Tφi)2.]
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22. If φ = Rψ, where ψ is the self-conjugate strain
√
φ′φ, then R is a rotation.

So φ = χR, where χ = RψR−1 =
√
φφ′.

23. Show that φ′ · V φβφγ = V βγ ·mod φ. [56 j.]

24. Show that the strain φρ = ρ − aαSβρ, where α, β, are perpendicular unit
vectors, consists of a shearing of all planes perpendicular to β, the amount
and direction of sliding of each plane being aα per unit distance of the plane
from O.

25. Determine ψ and R of Ex. 22 for the strain of Ex. 24, and find the latent
directions and roots of ψ.
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