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SOME FAMOUS PROBLEMS OF

THE THEORY OF NUMBERS.

It is expected that a professor who delivers an inaugural lecture
should choose a subject of wider interest than those which he ex-
pounds to his ordinary classes. This custom is entirely reasonable;
but it leaves a pure mathematician faced by a very awkward dilemma.
There are subjects in which only what is trivial is easily and gener-
ally comprehensible. Pure mathematics, I am afraid, is one of them;
indeed it is more: it is perhaps the one subject in the world of which
it is true, not only that it is genuinely difficult to understand, not
only that no one is ashamed of inability to understand it, but even
that most men are more ready to exaggerate than to dissemble their
lack of understanding.

There is one method of meeting such a situation which is some-
times adopted with considerable success. The lecturer may set out
to justify his existence by enlarging upon the overwhelming impor-
tance, both to his University and to the community in general, of
the particular studies on which he is engaged. He may point out
how ridiculously inadequate is the recognition at present afforded to
them; how urgent it is in the national interest that they should be
largely and immediately re-endowed; and how immensely all of us
would benefit were we to entrust him and his colleagues with a pre-
dominant voice in all questions of educational administration. I have
observed friends of my own, promoted to chairs of various subjects in
various Universities, addressing themselves to this task with an elo-
quence and courage which it would be impertinent in me to praise.
For my own part, I trust that I am not lacking in respect either for
my subject or myself. But, if I am asked to explain how, and why,
the solution of the problems which occupy the best energies of my life
is of importance in the general life of the community, I must decline
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the unequal contest: I have not the effrontery to develop a thesis so
palpably untrue. I must leave it to the engineers and the chemists
to expound, with justly prophetic fervour, the benefits conferred on
civilization by gas-engines, oil, and explosives. If I could attain ev-
ery scientific ambition of my life, the frontiers of the Empire would
not be advanced, not even a black man would be blown to pieces,
no one’s fortune would be made, and least of all my own. A pure
mathematician must leave to happier colleagues the great task of
alleviating the sufferings of humanity.

I suppose that every mathematician is sometimes depressed, as
certainly I often am myself, by this feeling of helplessness and fu-
tility. I do not profess to have any very satisfactory consolation to
offer. It is possible that the life of a mathematician is one which no
perfectly reasonable man would elect to live. There are, however, one
or two reflections from which I have sometimes found it possible to
extract a certain amount of comfort. In the first place, the study of
mathematics is, if an unprofitable, a perfectly harmless and innocent
occupation, and we have learnt that it is something to be able to say
that at any rate we do no harm. Secondly, the scale of the universe is
large, and, if we are wasting our time, the waste of the lives of a few
university dons is no such overwhelming catastrophe. Thirdly, what
we do may be small, but it has a certain character of permanence;
and to have produced anything of the slightest permanent interest,
whether it be a copy of verses or a geometrical theorem, is to have
done something utterly beyond the powers of the vast majority of
men. And, finally, the history of our subject does seem to show
conclusively that it is no such mean study after all. The mathemati-
cians of the past have not been neglected or despised; they have been
rewarded in a manner, undiscriminating perhaps, but certainly not
ungenerous. At all events we can claim that, if we are foolish in the
object of our devotion, we are only in our small way aping the folly of
a long line of famous men, and that, in these days of conflict between
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ancient and modern studies, there must surely be something to be
said for a study which did not begin with Pythagoras, and will not
end with Einstein, but is the oldest and the youngest of all.

It seemed to me for a moment, when I was considering what sub-
ject I should choose, that there was perhaps one which might, in a
philosophic University like this, be of wider interest than ordinary
technical mathematics. If modern pure mathematics has any impor-
tant applications, they are the applications to philosophy made by
the mathematical logicians of the last thirty years. In the sphere
of philosophy we mathematicians put forward a strictly limited but
absolutely definite claim. We do not claim that we hold in our hands
the key to all the riddles of existence, or that our mathematics gives
us a vision of reality to which the less fortunate philosopher cannot
attain; but we do claim that there are a number of puzzles, of an ab-
stract and elusive kind, with which the philosophers of the past have
struggled ineffectually, and of which we now can give a quite definite
and explicit solution. There is a certain region of philosophical ter-
ritory which it is our intention to annex. It is a strictly demarcated
region, but it has suffered under the misrule of philosophers for gen-
erations, and it is ours by right; we propose to accept the mandate
for it, and to offer it the opportunity of self-determination under the
mathematical flag. Such at any rate is the thesis which I hope it may
before long be my privilege to defend.

It seemed to me, however, when I considered the matter further,
that there are two fatal objections to mathematical philosophy as
a subject for an inaugural address. In the first place the subject is
one which requires a certain amount of application and preliminary
study. It is not that it is a subject, now that the foundations have
been laid, of any extraordinary difficulty or obscurity; nor that it
demands any wide knowledge of ordinary mathematics. But there
are certain things that it does demand; a little thought and patience,
a little respect for mathematics, and a little of the mathematical
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habit of mind which comes fully only after long years spent in the
company of mathematical ideas. Something, in short, may be learnt
in a term, but hardly in a casual hour.

In the second place, I think that a professor should choose, for
his inaugural lecture, a subject, if such a subject exists, to which he
has made himself some contribution of substance and about which
he has something new to say. And about mathematical philosophy
I have nothing new to say; I can only repeat what has been said
by the men, Cantor and Frege in Germany, Peano in Italy, Russell
and Whitehead in England, who have originated the subject and
moulded it now into something like a definite form. It would be an
insult to my new University to offer it a watered synopsis of some one
else’s work. I have therefore finally decided, after much hesitation,
to take a subject which is quite frankly mathematical, and to give a
summary account of the results of some researches which, whether
or no they contain anything of any interest or importance, have at
any rate the merit that they represent the best that I can do.

My own favourite subject has certain redeeming advantages. It is
a subject, in the first place, in which a large proportion of the most
remarkable results are by no means beyond popular comprehension.
There is nothing in the least popular about its methods; as to its
votaries it is the most beautiful, so by common consent it is the
most difficult of all branches of a difficult science; but many of the
actual results are such as can be stated in a simple and striking form.
The subject has also a considerable historical connexion with this
particular chair. I do not wish to exaggerate this connexion. It must
be admitted that the contributions of English mathematicians to the
Theory of Numbers have been, in the aggregate, comparatively slight.
Fermat was not an Englishman, nor Euler, nor Gauss, nor Dirichlet,
nor Riemann; and it is not Oxford or Cambridge, but Göttingen, that
is the centre of arithmetical research to-day. Still, there has been an
English connexion, and it has been for the most part a connexion
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with Oxford and with the Savilian chair.
The connexion of Oxford with the theory of numbers is in the

main a nineteenth-century connexion, and centres naturally in the
names of Sylvester and Henry Smith. There is a more ancient, if in-
direct, connexion which I ought not altogether to forget. The theory
of numbers, more than any other branch of pure mathematics, has
begun by being an empirical science. Its most famous theorems have
all been conjectured, sometimes a hundred years or more before they
have been proved; and they have been suggested by the evidence of
a mass of computation. Even now there is a considerable part to be
played by the computer; and a man who has to undertake laborious
arithmetical computations is hardly likely to forget what he owes to
Briggs. However, this is ancient history, and it is with Sylvester and
Smith that I am concerned to-day, and more particularly with Smith.

Henry Smith was very many things, but above all things a most
brilliant arithmetician. Three-quarters of the first volume of his
memoirs is occupied with the theory of numbers, and Dr. Glaisher,
his mathematical biographer, has observed very justly that, even
when he is primarily concerned with other matters, the most strik-
ing feature of his work is the strongly arithmetical spirit which per-
vades the whole. His most remarkable contributions to the theory are
contained in his memoirs on the arithmetical theory of forms, and in
particular in the famous memoir on the representation of numbers by
sums of five squares, crowned by the Paris Academy and published
only after his death. This memoir is peculiarly interesting to me, for
the problem is precisely one of those of which I propose to speak to-
day; and I may perhaps add one comment on the surprising history
set out in Dr. Glaisher’s introduction. The name of Minkowski is fa-
miliar to-day to many, even in Oxford, who have certainly never read
a line of Smith. It is curious to contemplate at a distance the storm
of indignation which convulsed the mathematical circles of England
when Smith, bracketed after his death with the then unknown Ger-
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man mathematician, received a greater honour than any that had
been paid to him in life.

The particular problems with which I am concerned belong to
what is called the ‘additive’ side of higher arithmetic. The general
problem may be stated as follows.

Suppose that n is any positive integer, and

α1, α2, α3, . . .

positive integers of some special kind, squares, for example, or cubes,
or perfect kth powers, or primes. We consider all possible expressions
of n in the form

n = α1 + α2 + · · ·+ αs,

where s may be fixed or unrestricted, the α’s may or may not be
necessarily distinct, and order may or may not be relevant, according
to the particular problem on which we are engaged. We denote by

r(n)

the number of representations which satisfy the conditions of the
problem. Then what can we say about r(n)? Can we find an exact
formula for r(n), or an approximate formula valid for large values
of n? In particular, is r(n) always positive? Is it always possible,
that is to say, to find at least one representation of n of the type
required? Or, if this is not so, is it at any rate always possible when
n is sufficiently large?

I can illustrate the nature of the general problem most simply
by considering for a moment an entirely trivial case. Let us suppose
that there are three different α’s only, viz. the numbers 1, 2, 3; that
repetitions of the same α are permissible; that the order of the α’s is
irrelevant; and that s, the number of the α’s, is unrestricted. Then it
is easy to see that r(n), the number of representations, is the number
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of solutions of the equation

n = x+ 2y + 3z

in positive integers, including zero.
There are various ways of solving this extremely simple problem.

The most interesting for our present purpose is that which rests on
an analytical foundation, and uses the idea of the generating function

f(x) = 1 +
∞∑
1

r(n)xn,

in which the coefficients are the values of the arithmetical func-
tion r(n). It follows immediately from the definition of r(n) that

f(x) = (1 + x+ x2 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . )

=
1

(1− x)(1− x2)(1− x3)
;

and, in order to determine the coefficients in the expansion, nothing
more than a little elementary algebra is required. We find, by the
ordinary theory of partial fractions, that

f(x) =
1

6(1− x)3
+

1
4(1− x)2

+
17

72(1− x)
+

1
8(1 + x)

+
1

9(1− ωx)
+

1
9(1− ω2x)

,

where ω and ω2 denote as usual the two complex cube roots of unity.
Expanding the fractions, and picking out the coefficient of xn, we
obtain

r(n) =
(n+ 3)2

12
− 7

72
+

(−1)n

8
+

2
9

cos
2nπ

3
.
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It is easily verified that the sum of the last three terms can never be
as great as 1

2 , so that r(n) is the integer nearest to

(n+ 3)2

12
.

The problem is, as I said, quite trivial, but it is interesting none
the less. A great deal of work has been done on problems similar
in kind, though naturally far more complex and difficult in detail,
by Cayley and Sylvester, for example, in the last century, and by
Glaisher, and above all by MacMahon, in this. And even this prob-
lem, simple as it is, has sufficient content to bring out clearly certain
principles of cardinal importance.

In particular, the solution of the problem shows quite clearly that,
if we are to attack these ‘additive’ problems by analytic methods, it
is in the theory of integral power series∑

anx
n

that the necessary machinery must be found. It is this character-
istic which distinguishes this theory sharply from the other great
side of the analytic theory of numbers, the ‘multiplicative’ theory,
in which the fundamental idea is that of the resolution of a number
into primes. In the latter theory the right weapon is generally not
a power series, but what is called a Dirichlet’s series, a series of the
type ∑

ann
−s.

It is easy to see this by considering a simple example. One of the
most interesting functions of the multiplicative theory is d(n), the
number of divisors of n. The associated power series∑

d(n)xn
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is easily transformed into the series∑ xn

1− xn
,

called Lambert’s series. The function is an interesting one, but some-
what unmanageable, and certainly not one of the fundamental func-
tions of analysis. The corresponding Dirichlet’s series is far more
fundamental; it is in fact∑ d(n)

ns
=
(∑ 1

ns

)2

=
(
ζ(s)

)2
,

the square of the famous Zeta function of Riemann.
The underlying reason for this distinction is fairly obvious. It is

natural to multiply primes and unnatural to add them. Now

m−s × n−s = (mn)−s,

so that, in the theory of Dirichlet’s series, the terms combine natu-
rally with one another in a ‘multiplicative’ manner. But

xm × xn = xm+n,

so that the multiplication of two terms of a power series involves an
additive operation on their ranks. It is thus that the Dirichlet’s series
rather than the power series proves to be the proper weapon in the
theory of primes.

It would be difficult for anybody to be more profoundly interested
in anything than I am in the theory of primes; but it is not of this
theory that I propose to speak to-day, and we must return to our
general additive problem. As soon as we try to specialize the problem
in some more interesting manner, two problems stand out as calling
for research. Each of them, naturally, is only the representative of a
class.
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The first of these problems is the problem of partitions. Let us
suppose now that the α’s are any positive integers, and that (as in
the trivial problem) repetitions are allowed, order is irrelevant, and
s is unrestricted. The problem is then that of expressing n in any
manner as a sum of integral parts, or of solving the equation

n = x+ 2y + 3z + 4u+ 5v + . . . ,

and r(n) or, as it is now more naturally written, p(n), is the number
of unrestricted partitions of n. Thus

5 = 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 2
= 1 + 2 + 2 = 1 + 1 + 3 = 2 + 3 = 1 + 4 = 5,

so that p(5) = 7. The generating function in this case was found by
Euler, and is

f(x) = 1 +
∞∑
1

p(n)xn =
1

(1− x)(1− x2)(1− x3) . . .
.

I do not wish to discuss this problem in any detail now, but the
form of the generating function calls for one or two general remarks.
In the trivial problem the generating function was rational, with a
finite number of poles all situated upon the unit circle. Here also
we are led to a power series, or infinite product, convergent inside
the unit circle; but there the resemblance ends. This function will be
recognized by any one familiar with the theory of elliptic functions; it
is an elliptic modular function; and, like all such functions, it has the
unit circle as a continuous line of singularities and does not exist at
all outside. It is easy to imagine the immensely increased difficulties
of any analytic solution of the problem.

It was conjectured by a very brilliant Hungarian mathematician,
Mr. G. Pólya, five or six years ago, that any function represented by
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a power series whose coefficients are integers, and which is conver-
gent inside the unit circle, must behave, in this respect, like one or
other of the two generating functions which we have considered. Ei-
ther such a function is a rational function, that is to say, completely
elementary; or else the unit circle is a line of essential singularities.
I believe that a proof of this theorem has now been found by Mr. F.
Carlson of Upsala, and is to be published shortly in the Mathema-
tische Zeitschrift. It is difficult for me to give reasoned praise to a
memoir which I have not seen, but I can recommend the theorem to
your attention with confidence as one of the most beautiful of recent
years.

The problem of partitions is one to which, in collaboration with
the Indian mathematician, Mr. S. Ramanujan, I have myself devoted
a great deal of work. The principal result of our work has been the
discovery of an approximate formula for p(n) in which the leading
term is

1
2π
√

2
d

dn

e
2π√

6

√
n− 1

24√
n− 1

24

,

and which enables us to approximate to p(n) with an accuracy which
is almost uncanny. We are able, for example, by using 8 terms of our
formula, to calculate p(200), a number of 13 figures, with an error
of .004. I have set out the details of the calculation in Table I. The
value of p(200) was subsequently verified by Major MacMahon, by a
direct computation which occupied over a month.

The formulae connected with this problem are very elaborate,
and except on the purely numerical side, where the results of the
theory are compared with those of computation, it is not very well
suited for a hasty exposition; and I therefore pass on at once to
the principal object of my lecture, the very famous problem known,
after a Cambridge professor of the eighteenth century, as Waring’s
Problem.
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TABLE I.

p(200)
3, 972, 998, 993, 185.896

36, 282.978
− 87.555
+ 5.147
+ 1.424
+ 0.071
+ 0.000
+ 0.043

3, 972, 999, 029, 388.004

We suppose now that every α is a perfect k-th power mk, k being
fixed in each case of the problem which we consider; m may be of
either sign if k is even, but must be positive if k is odd. In either
case we allow m to be zero. Repetitions are permitted, as in our
previous problems; but it is more convenient now to take account of
the order of the α’s; and s, which was formerly unrestricted, is now
fixed in each case of the problem, like k. The problem is therefore
that of determining the number of representations of a number n as
the sum of s positive k-th powers. Thus Henry Smith’s problem, the
problem of five squares, is the particular case of Waring’s problem
in which k is 2 and s is 5. The problem has a long history, which
centres round this simplest case of squares; a history which began, I
suppose, with the right-angled triangles of Pythagoras, and has been
continued by a long succession of mathematicians, including Fermat,
Euler, Lagrange, and Jacobi, down to the present day. I will begin by
a summary of what is known in the simplest case, where the solution
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is practically complete.
A number n is the sum of two squares if and only if it is of the

form
n = M2P,

where P is a product of primes, all different and all of the form 4k+1.
In particular, a prime number of the form 4k + 1 can be expressed
as the sum of two squares, and substantially in only one way. Thus
5 = 12 + 22, and there is no other solution except the solutions
(±1)2 + (±2)2, (±2)2 + (±1)2, which are not essentially different,
although it is convenient to count them as distinct. The number of
numbers less than x, and expressible as the sum of two squares, is
approximately

Cx√
log x

,

where C is a certain constant. The last result was proved by Landau
in 1908; all the rest belong to the classical theory.

A number is the sum of three squares unless it is of the form

4α(8k + 7),

when it is not so expressible. Every number may be expressed by
four squares, and a fortiori by five or more. It is this last theorem
of Lagrange that I would ask you particularly to bear in mind.

If s, the number of squares, is even and less than 10, the number
of representations may be expressed in a very simple form by means
of the divisors of n. Thus the number of representations by 4 squares,
when n is odd, is 8 times the sum of the divisors of n; when n is even,
it is 24 times the sum of the odd divisors; and there are similar results
for 2 squares, or 6, or 8.

When s is 3, 5, or 7, the number of representations can also be
found in a simple form, though one of a very different character.
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Suppose, for example, that s is 3. The problem is in this case essen-
tially the same as that of determining the number of classes of binary
arithmetical forms of determinant −n; and the solution depends on
certain finite sums of the form∑

β,
∑

γ,

extended over quadratic residues β or non-residues γ of n.
When s, whether even or odd, is greater than 8, the solution is

decidedly more difficult, and it is only very recently that a uniform
method of solution, for which I must refer you to some recent memoirs
of Mr. L. J. Mordell and myself, has been discovered. For the moment
I wish to concentrate your attention on two points: the first, that
an expression by 4 squares is always possible, while one by 3 is not ;
and the second, that the existence of numbers not expressible by
3 squares is revealed at once by the quite trivial observation that no
number so expressible can be congruent to 7 to modulus 8.

It is plain, when we proceed to the general case, that any num-
ber n can be expressed as a sum of k-th powers; we have only to
take, for example, the sum of n ones. And, when n is given, there
is a minimum number of k-th powers in terms of which n can be
expressed; thus

23 = 2 · 23 + 7 · 13

is the sum of 9 cubes and of no smaller number. But it is not at
all plain (and this is the point) that this minimum number cannot
tend to infinity with n. It does not when k = 2; for then it cannot
exceed 4. And Waring’s Problem (in the restricted sense in which
the name has commonly been used) is the problem of proving that
the minimum number is similarly bounded in the general case. It is
not an easy problem; its difficulty may be judged from the fact that
it took 127 years to solve.



THE THEORY OF NUMBERS 15

We may state the problem more formally as follows. Let k be
given. Then there may or may not exist a number m, the same for
all values of n, and such that n can always be expressed as the sum
of m k-th powers or less. If any number m possesses this property, all
larger numbers plainly possess it too; and among these numbers we
may select the least. This least number, which will plainly depend
on k, we call g(k); thus g(k) is, by definition, the least number, if
such a number exists, for which it is true that

‘every number is the sum of g(k) k-th powers or less’.

We have seen already that g(2) exists and has the value 4.
In the third edition of his Meditationes Algebraicae, published

in Cambridge in 1782, Waring asserted that every number is the
sum of not more than 4 squares, not more than 9 cubes, not more
than 19 fourth powers, et sic deinceps. A little more precision would
perhaps have been desirable; but it has generally been held, and
I do not question that it is true, that what Waring is asserting is
precisely the existence of g(k). He implies, moreover, that g(2) = 4
and g(3) = 9; and both of these assertions are correct, though in the
first he had been anticipated by Lagrange. Whether g(4) is or is not
equal to 19 is not known to-day.

Waring advanced no argument of any kind in support of his asser-
tion, and it is in the highest degree unlikely that he was in possession
of any sort of proof. I have no desire to detract from the reputation
of a man who was a very good mathematician if not a great one,
and who held a very honourable position in a University which not
even Oxford has persuaded me entirely to forget. But there is a ten-
dency to exaggerate the profundity implied by the enunciation of a
theorem of this particular kind. We have seen this even in the case
of Fermat, a mathematician of a class to which Waring had not the
slightest pretensions to belong, whose notorious assertion concern-
ing ‘Mersenne’s numbers’ has been exploded, after the lapse of over
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250 years, by the calculations of the American computer Mr. Powers.
No very laborious computations would be necessary to lead Waring
to a highly plausible speculation, which is all I take his contribution
to the theory to be; and in the Theory of Numbers it is singularly
easy to speculate, though often terribly difficult to prove; and it is
only proof that counts.

The next advance towards the solution of the problem was made
by Liouville, who established the existence of g(4). Liouville’s proof,
which was first published in 1859, is quite simple and, as the simplest
example of an important type of argument, is worth reproducing
here. It may be verified immediately that

6X2 = 6(x2 + y2 + z2 + t2)2

= (x+ y)4 + (x− y)4 + (z + t)4 + (z − t)4

+ (x+ z)4 + (x− z)4 + (t+ y)4 + (t− y)4

+ (x+ t)4 + (x− t)4 + (y + z)4 + (y − z)4;

and since, by Lagrange’s theorem, any number X is the sum of
4 squares, it follows that any number of the form 6X2 is the sum of
12 biquadrates. Hence any number of the form 6(X2 +Y 2 +Z2 +T 2)
or, what is the same thing, any number of the form 6m, is the sum
of 48 biquadrates. But any number n is of the form 6m + r, where
r is 0, 1, 2, 3, 4, or 5. And therefore n is, at worst, the sum of
53 biquadrates. That is to say, g(4) exists, and does not exceed 53.
Subsequent investigators, refining upon this argument, have been
able to reduce this number to 37; the final proof that g(4) 5 37, the
most that is known at present, was given by Wieferich in 1909. The
number

79 = 4 · 24 + 15 · 14

needs 19 biquadrates, and no number is known which needs more.
There is therefore still a wide margin of uncertainty as to the actual
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value of g(4).
The case of cubes is a little more difficult, and the existence

of g(3) was not established until 1895, when Maillet proved that
g(3) 5 17. The proof then given by Maillet rests upon the identity

6x(x2 + y2 + z2 + t2)

= (x+ y)3 + (x− y)3 + (x+ z)3 + (x− z)3 + (x+ t)3 + (x− t)3,

and the known results concerning the expression of a number by
3 squares. It has not the striking simplicity of Liouville’s proof; but
it has enabled successive investigators to reduce the number of cubes,
until finally Wieferich, in 1909, proved that g(3) 5 9. As 23 and 239
require 9 cubes, the value of g(3) is in fact exactly 9. It is only for
k = 2 and k = 3 that the actual value of g(k) has been determined.
But similar existence proofs were found, and upper bounds for g(k)
determined, by various writers, in the cases k = 5, 6, 7, 8, and 10.

Before leaving the problem of the cubes I must call your attention
to another very beautiful theorem of a slightly different character.
The numbers 23 and 239 require 9 cubes, and it appears, from the
results of a survey of all numbers up to 40, 000, that no other number
requires so many. It is true that this has not actually been proved;
but it has been proved (and this is of course the essential point) that
the number of numbers which require as many cubes as 9 is finite.

This singularly beautiful theorem, which is due to my friend Pro-
fessor Landau of Göttingen, and is to me as fascinating as anything
in the theory, also dates from 1909, a year which stands out for many
reasons in the history of the problem. It is of exceptional interest
not only in itself but also on account of the method by which it was
proved, which utilizes some of the deepest results in the modern the-
ory of the asymptotic distribution of primes, and made it, until very
recently, the only theorem of its kind erected upon a genuinely tran-
scendental foundation. To me it has a personal interest also, as being
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the only theorem of the kind which, up to the present, defeats the
new analytic method by which Mr. Littlewood and I have recently
studied the problem.

Landau’s theorem suggests the introduction of another function
of k, which I will call G(k), of the same general character as g(k), but
I think probably more fundamental. This number G(k) is defined as
being the least number for which it is true that

‘every number from a certain point onwards is
the sum of G(k) k-th powers or less.’

It is obvious that the existence of g(k) involves that of G(k), and
that G(k) 5 g(k). When k = 2, both numbers are 4; but G(3) 5 8,
by Landau’s theorem, while g(3) = 9; and doubtless G(k) < g(k) in
general. It is important also to observe that, conversely, the existence
of G(k) involves that of g(k). For, if G(k) exists, all numbers beyond
a certain limit γ are sums of G(k) k-th powers or less. But all
numbers less than γ are sums of γ ones or less, and therefore g(k)
certainly cannot exceed the greater of G(k) and γ.

I said that G(k) seemed to me the more fundamental of these
numbers, and it is easy to see why. Let us assume (as is no doubt
true) that the only numbers which require 9 cubes for their expres-
sion are 23 and 239. This is a very curious fact which should be
interesting to any genuine arithmetician; for it ought to be true of an
arithmetician that, as has been said of Mr. Ramanujan, and in his
case at any rate with absolute truth, that ‘every positive integer is
one of his personal friends’. But it would be absurd to pretend that
it is one of the profounder truths of higher arithmetic: it is nothing
more than an entertaining arithmetical fluke. It is Landau’s 8 and
not Wieferich’s 9 that is the profoundly interesting number.

The real value of G(3) is still unknown. It cannot be less than 4;
for every number is congruent to 0, or 1, or −1 to modulus 3, and it
is an elementary deduction that every cube is congruent to 0, or 1,
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or −1 to modulus 9. From this it follows that the sum of three cubes
cannot be of the form 9m + 4 or 9m + 5: for such numbers at least
4 cubes are necessary, so that G(3) = 4. But whether G(3) is 4, 5,
6, 7, or 8 is one of the deepest mysteries of arithmetic.

It is worth while to glance at the evidence of computation. Dase,
at the instance of Jacobi, tabulated the minimum number of cubes
for values of n from 1 to 12, 000, and Daublensky von Sterneck has
extended the table to 40, 000. Some of the results are shown in
Table II. In each row I have shown a typical thousand numbers,

TABLE II.

1 2 3 4 5 6 7 8 9
1– 1000 10 41 122 242 293 202 73 15 2

1000– 2000 2 27 113 283 358 194 23 — —
9000–10000 1 17 121 377 401 83 — — —

19000–20000 1 12 100 400 426 61 — — —
29000–30000 1 11 105 448 388 47 — — —
39000–40000 1 13 117 457 384 28 — — —

classified according to the minimum number of cubes by which they
can be expressed. There are 15 numbers only for which 8 are needed,
the largest being 454. There are 121 for which 7 are needed, the two
largest being 5818 and 8042; the distribution of these 121 numbers
in the first 9 thousands is

73, 23, 7, 6, 7, 4, 0, 0, 1.

If empirical evidence means anything, it seems clear that G(3) 5 6.
I am sure that Professor Townsend and Professor Lindemann have
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made countless generalizations on evidence far less substantial.
It is also clear that, throughout von Sterneck’s tables, there is a

fairly steady, though latterly very slow, decrease in the proportion
of numbers for which even 6 cubes are required; but that the table
is not sufficiently extensive to give any very decisive indication as
to whether these numbers disappear or not. It seemed to me this
was a case in which further evidence would be worth having. To
calculate a systematic table on the scale required would be a work
of years. It is possible, however, to obtain some indication of the
probable truth, without any superhuman patience, by exploring a
selected stratum of much larger numbers. Dr. Ruckle of Göttingen
recently undertook this task at my request, and I am glad to be able
to tell you his results. He found, for the 2, 000 numbers immediately
below 1, 000, 000, the following distribution.

1 2 3 4 5 6 7
998000–999000 0 1 98 640 262 1 0
999000–1000000 1 1 94 614 289 1 0

You will observe that the 6-cube numbers have all but disappeared,
and that there is a quite marked turnover from 5 to 4. Conjecture in
such a matter is extremely rash, but I am on the whole disposed to
predict with some confidence that G(3) 5 5. If I were asked to choose
between 5 and 4, all I could say would be this. That G(3) should
be 4 would harmonize admirably, so far as we can see at present,
with the general trend of Mr. Littlewood’s and my researches. But
it is plain that, if the 5-cube numbers too do ultimately disappear,
it can only be among numbers the writing of which would tax the
resources of the decimal notation; and at present we cannot prove
even that G(3) 5 7, though here success seems not impossible.

With the fourth powers or biquadrates we have been very much
more successful. I have explained that g(4) lies between 19 and 37.
As regards G(4), we have here no numerical evidence on the same
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scale as for cubes. Any fourth power is congruent to 0 or 1 to mod-
ulus 16, and from this it follows that no number congruent to 15
to modulus 16 can be the sum of less than 15 fourth powers. Thus
G(4) = 15; and Kempner, by a slight elaboration of this simple ar-
gument, has proved that G(4) = 16. No better upper bound was
known before than the 37 of Wieferich, but here Mr. Littlewood and
I have been able to make a very substantial improvement, first to 33
and finally to 21. Thus G(4) lies between 16 and 21, and the margin
is comparatively small.

I turn now to the general case. In the years up to 1909, the
existence proof was effected, and upper bounds for g(k) determined,
for the values of k from 2 to 8 inclusive and for k = 10. These upper
bounds are shown in the first row of Table III; that for 10, which
is not included, is somewhere in the neighbourhood of 140, 000. In

TABLE III.

2 3 4 5 6 7 8
g(k) 5 4 9 37 58 478 3806 31353

g(k) =
[(

3
2

)k]
+ 2k − 2 = 4 9 19 37 73 143 279

G(k) 5 4 [8] 37 58 478 3806 31353
G(k) 5 (k − 2)2k−1 + 5 = (5) (9) 21 53 133 325 773
G(k) = k + 1, 4k 4 4 16 6 7 8 32

the second row I have shown the best known lower bounds, which
are given by the simple general formula which stands to the left, in
which

[(
3
2

)k] denotes the integral part of
(

3
2

)k. It is easily verified,



SOME FAMOUS PROBLEMS OF 22

in fact, that the number([(
3
2

)k]− 1
)

2k + 2k − 1,

which is less than 3k, requires the number of k-th powers stated.1 It
will be observed that the first three numbers are those which occur
in Waring’s enunciation.

Waring’s problem, as I have defined it—the problem, that is
to say, of finding a general existence proof for g(k), and a fortiori
for G(k)—was ultimately solved by Hilbert, once more in 1909. I
wish that I had time to give a proper account of his justly famous
memoir, which raised the whole discussion at once on to an altogether
higher level. As it is, I must confine myself to one or two extremely
inadequate remarks. The proof falls into two parts. The first part is
what I may call semi-transcendental. It is not fully transcendental
in the sense in which, for example, the classical proofs in the theory
of the distribution of primes are transcendental, for it does not make
use of the machinery of the theory of analytic functions of a com-
plex variable; but it uses the methods of the integral calculus, and is
therefore not fully elementary. Hilbert set out with what would ap-
pear at first sight to be the singularly ill-adapted weapon of a volume
integral in space of 25 dimensions, a number which he was afterwards
able to reduce to 5. The formula which he ultimately used is

(x2
1 + x2

2 + x2
3 + x2

4 + x2
5)k

= C

∫ ∫ ∫ ∫ ∫
(x1t1 + x2t2 + x3t3 + x4t4 + x5t5)2k dt1 . . . dt5,

where C is a certain constant, viz.

(2k + 1)(2k + 3)(2k + 5)
8π2

,

1This observation was made by Bretschneider in 1853.
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and the integration is effected over the interior of the hypersphere

t21 + t22 + t23 + t24 + t25 = 1.

Starting from this formula he was able, by an exceedingly in-
genious process based upon the definition of a definite integral as
the limit of a finite sum, to prove the existence in the general case
of algebraical identities analogous to that used by Liouville and his
followers when k is 4. It should be observed that Hilbert’s proof
is essentially an existence proof ; his method is not effective for the
actual determination of these identities even in the simplest cases.
The identities which are known for special values of k have been ob-
tained by common algebra, and are, after the first few values of k,
excessively complicated. The simplest known identity for k = 10, for
instance, is

22680(x2
1 + x2

2 + x2
3 + x2

4)5

= 9
(8)∑

(x1 ± x2 ± x3 ± x4)10 +
(48)∑

(2x1 ± x2 ± x3)10

+ 180
(12)∑

(x1 ± x2)10 + 9
(4)∑

(2x1)10,

where the figures in brackets show the number of terms under the
signs of summation. However, the identities exist; and it should be
clear to you, after our discussion of the case k = 4, that they enable
us at once to obtain a proof in succession for k = 2, 4, 8, 16, . . . and
generally whenever k is a power of 2. This concludes the first and
most characteristic part of Hilbert’s argument. The second part,
in which the conclusion is extended to every value of k, is purely
algebraical.

Hilbert’s work has been reconsidered and simplified by a number
of writers, most notably by Dr. Stridsberg of Stockholm, and the
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ultimate result of their work has been to eliminate the transcendental
elements from the proof entirely. The proof, as they have left it, is
fully elementary; it does not involve any reference to integrals, or
to any kind of limiting process, but depends simply on an ingenious
system of equations derived by the processes of finite algebra. It
remains a pure existence proof, and throws no light on the value
of g(k).

It would hardly be possible for me to exaggerate the admira-
tion which I feel for the solution of this historic problem of which
I have been compelled to give so bald and summary a description.
Within the limits which it has set for itself, it is absolutely and tri-
umphantly successful, and it stands with the work of Hadamard and
de la Vallée-Poussin, in the theory of primes, as one of the land-
marks in the modern history of the theory of numbers. But there is
an enormous amount which remains to be done, and it would seem
that, if we are to interpret Waring’s problem in the widest possible
sense, if we are to get into real contact with the actual values of our
numbers g(k) and G(k), still more if we are to attack all the obvious
problems connected with the number of representations, then essen-
tially different and inherently more powerful methods are required.
There is one armoury only in which such more powerful weapons can
be found, that of the modern theory of functions. In short we must
learn how to apply Cauchy’s Theorem to the problem, and that is
what Mr. Littlewood and I have set out to do.

The first step is fairly obvious. The formulae are slightly simpler
when k is even. The number of representations of n as the sum of s
k-th powers, which we may denote in general by

rk,s(n),
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is then the coefficient of xn in the generating function

1 +
∞∑
1

rk,s(n)xn = (f(x))s ,

where
f(x) = 1 + 2x1k + 2x2k + 2x3k + . . . .

This formula involves certain conventions as to the order and sign
of the numbers which occur in the representations which are to be
reckoned as distinct; but the complications so introduced are trivial
and I need not dwell on them. The series is convergent when |x| < 1,
and, by Cauchy’s Theorem, we have

rk,s(n) =
1

2πi

∫
(f(x))s

xn+1
dx,

the path of integration being a circle whose centre is at the origin
and whose radius is less than unity.

All this is simple enough; but the further study of the integral is
very intricate and difficult, and I cannot attempt to do more than to
give a rough idea of the obstacles that have to be surmounted. Let us
contrast the integral for a moment with that which would stand in its
place in the ‘trivial’ problem to which I referred early in my lecture.
There the subject of integration would be a rational function, with a
finite number of poles all situated on the unit circle. We could deform
the contour into one which lies wholly at a considerable distance from
the origin and in which, owing to the factor xn+1 in the denominator,
every element is very small when n is large. We should have, of
course, to introduce corrections corresponding to the residues at the
poles; and it is just these corrections which would give the dominant
terms of an approximate formula by means of which our coefficients
could be studied. In the present case we have no such simple recourse;
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for every point of the unit circle is a singularity of an exceedingly
complicated kind, and the circle as a whole is a barrier across which
it is impossible to deform the contour. It is of course for this reason
that no successful application of the method has been made before.

Our fundamental idea for overcoming the difficulty is as follows.
Among the continuous mass of singularities which covers up the cir-
cle, it is possible to pick out a class which to a certain extent domi-
nates the rest. These special singularities are those associated with
the rational points of the circle, that is to say, the points

x = e2pπi/q,

where p/q is a rational fraction in its lowest terms. This class of
points is indeed an infinite class; but the infinity is, in Cantor’s
phrase, only an enumerable infinity; and the points can therefore be
arranged in a simply infinite series, on the model of the series

0
1 ,

1
2 ,

1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 ,

5
6 ,

1
7 , . . . .

In the neighbourhood of these points the behaviour of the function
is sufficiently complex indeed, but simpler than elsewhere. The func-
tion has, to put the matter in a rough and popular way, a general
tendency to become large in the neighbourhood of the unit circle, but
this tendency is most pronounced near these particular points. They
are not only the simplest but also the heaviest singularities; their
weight is greatest when the denominator q is smallest, decreases as
q increases, and (as a physicist would say) becomes infinitely small
when q is infinitely large. There is, therefore, at any rate, the hope
that we may be able to isolate the contributions of each of these se-
lected points, and obtain, by adding them together, a series which
may give a genuine approximation to our coefficient.

I owe to Professor Harald Bohr of Copenhagen a picturesque
illustration which may help to elucidate the general nature of our



THE THEORY OF NUMBERS 27

argument. Imagine the unit circle as a thin circular rail, to which
are attached an infinite number of small lights of varying intensity,
each illuminating a certain angle immediately in front of it. The
brightest light is at x = 1, corresponding to p = 0, q = 1; the next
brightest at x = −1, corresponding to p = 1, q = 2; the next at
x = e2πi/3 and e4πi/3, and so on. We have to arrange the inner circle,
the circle of integration, in the position of maximum illumination.
If it is too far away the light will not reach it; if too near, the arcs
which fall within the angles of illumination will be too narrow, and
the light will not cover it completely. Is it possible to place it where
it will receive a satisfactorily uniform illumination?

The answer is that this is only possible when k is 2. Our functions
are then elliptic functions; the lights are the formulae of the theory of
linear transformation; and we can find a position of the inner circle in
which it falls entirely under their rays. We are thus led to a solution of
the problem of the squares which is in all essential respects complete.
But when k exceeds 2 the result is less satisfactory. The angle of the
lights is then too narrow; the beams which they emit, instead of
spreading out with reasonable regularity, are shaped like torpedoes
or cigars; however we move our circle a part remains in darkness.
It would seem that this difficulty, which held up our researches for
something like two years, is the really characteristic difficulty of the
general problem. It cannot be solved until we have found some other
source of light.

It was only after the most prolonged and painful efforts that we
were able to discover such another source. It is possible not only to
hang lights upon the rail, but also, to a certain extent, to cause the
rail itself to glow. The illumination which can be induced in this
manner is irritatingly faint, and it is for this reason that our results
are not yet all that we desire; but it is enough to make the dark
places dimly visible and to enable us to prove a great deal more than
has been proved before.
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The actual results which we obtain are these. We find that there
is a certain series, which we call the singular series, which is plainly
the key to the solution. This series is

S =
∑(

Sp,q
q

)s
e2npπi/q,

where

Sp,q =
q−1∑
h=0

e2h
kpπi/q

—a sum which reduces, when k = 2, to one of what are known as
‘Gauss’s sums’—and the summation extends, first to all values of p
less than and prime to q, and secondly to all positive integral values
of q. The genesis of the series is this. We associate with the rational
point x = e2pπi/q an auxiliary power series

fp,q(x) =
∑
n

cp,q,nx
n,

which (a) is as simple and natural as we can make it, and (b) be-
haves perfectly regularly at all points of the unit circle except at the
one point with which we are particularly concerned. We then add
together all these auxiliary functions, and endeavour to approximate
to the coefficient of our original series by summing the auxiliary co-
efficients over all values of p and q. The process is, at bottom, one
of ‘decomposition into simple elements’, applied in an unusual way.

Our final formula for the number of representations is

rk,s(n) =

{
2Γ
(

1 +
1
k

)}s
Γ
(

1 +
s

k

) n
s
k
−1S +O(nσ),
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the second term denoting an error less than a constant multiple of nσ,
and σ being a number which is less than

s

k
− 1 at any rate for suf-

ficiently large values of s. The second term is then of lower order
than the first. Further, the first term is real, and it may be shown,
if s surpasses a certain limit, to be positive. If both these conditions
are satisfied, and n is sufficiently large, then rk,s(n) cannot be zero,
and representations of n by s k-th powers certainly exist. The way is
thus open to a proof of the existence of G(k); if G(k) exists, so also
does g(k), and Waring’s problem is solved.

The structure of the dominant term in our general formula is
best realized by considering some special cases. In Table IV I have
written out the leading terms of S, first when k = 2 and s is arbi-
trary, and then for 7 cubes and for 33 and 21 biquadrates. There
are certain characteristics common to all these series. The terms
diminish rapidly; in each case only a very few are of real impor-
tance: and they are oscillatory, with a period which increases as the
amplitude of the oscillations decreases. The series for the cubes is
easily shown to be positive; but we cannot deduce that r3,7(n) is pos-
itive, and draw consequences as to the representation of numbers by
7 cubes, because in this case we cannot dispose satisfactorily of the
error term O(nσ) in the general formula. In the two cases relating
to fourth powers which I have chosen, the discussion of the series
itself is rather more delicate, for there is in each of them one term
which can be negative and greater than 1. But the discussion can
be brought to a satisfactory conclusion, and, as in this case we are
able to prove that the error term is really of lower order, we obtain
what we desire. Every large number is the sum of 21 fourth powers
or less; G(4) 5 21. Further, we have obtained a genuine asymptotic
formula for the number of representations, which can be used for the
study of the representations of numbers of particular forms. We can
show, for example, that a large number of the form 16n+ 10 can be
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TABLE IV.

k = 2.

S = 1 + 0 +
2

3
1
2
s
cos

(
2

3
nπ − 1

2
sπ

)
+

2
1
2
s+1

4
1
2
s

cos

(
1

2
nπ − 1

4
sπ

)
+

2

5
1
2
s

{
cos

2

5
nπ + cos

(
4

5
nπ − sπ

)}
+ 0 + . . . .

k = 3, s = 7.

S = 1 + 0.610 cos 2
9
nπ + 0.130 cos 2

7
nπ + 0.078 cos 6

7
nπ + . . . .

k = 4, s = 33.

S = 1 + 1.054 cos(1
8
nπ − 1

16
π) + 0.147 cos(1

4
nπ − 1

8
π) + . . . .

k = 4, s = 21.

S = 1 + 1.331 cos(1
8
nπ + 11

16
π) + 0.379 cos(1

4
nπ − 5

8
π) + . . . .

expressed by 21 biquadrates in about 200 times more ways than one
of the form 16n+ 2.

If the method of which I have tried to give some general idea
is compared with those which have previously been applied to the
problem, it will be found that it has three very great advantages. In
the first place it is inherently very much more powerful. It brings us
for the first time into relation with the series on which the solution
in the last resort depends, and tells us, approximately but truly,
what the number of representations really is. Secondly, it gives us
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numerical results which, as soon as k exceeds 3, are far in advance
of any known before. These numbers are those in the fourth row of
Table III.2 It will be seen that these numbers conform to a simple
law, and that is the third advantage of the method, that it is not a
mere existence proof, but gives us a definite upper bound for G(k)
for all values of k, viz.

G(k) 5 (k − 2)2k−1 + 5.

In the last row of the table I have shown all that is known
about G(k) on the other side. In all cases G(k) = k + 1, while if
k is a power of 2 we can say more, namely that G(k) = 4k. A
comparison between this row of figures and that above it is enough
to show the room which remains for further research. It is beyond
question that our numbers are still very much too large; and there is
no sort of finality about our researches, for which the best that we
claim is that they embody a method which opens the door for more.

I will conclude by one word as to the application of our method
to another and a still more difficult problem. It was asserted by
Goldbach in 1742 that every even number is the sum of two odd
primes. Goldbach’s assertion remains unproved; it has not even been
proved that every number n is the sum of 10 primes, or of 100, or of
any number independent of n. Our method is applicable in principle
to this problem also. We cannot solve the problem, but we can open
the first serious attack upon it, and bring it into relation with the
established prime number theory. The most which we can accomplish
at present is as follows. We have to assume the truth of the notorious
Riemann hypothesis concerning the zeros of the Zeta-function, and

2The thick type indicates a new result. The (5) and (9) in round brackets
are inferior to results already known. Our method is easily adapted to deal
with the case k = 2 completely; but it will not at present yield Landau’s 8,
which is therefore enclosed in square brackets.
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indeed in a generalized and extended form. If we do this we can
prove, not Goldbach’s Theorem indeed, but the next best theorem
of the kind, viz. that every odd number, at any rate from a certain
point onwards, is the sum of three odd primes. It is an imperfect
and provisional result, but it is the first serious contribution to the
solution of the problem.



POSTSCRIPT

Srinivasa Ramanujan, F.R.S., Fellow of Trinity College, Cambridge,
died in India on April 26, 1920, aged 32.

An account of his life and mathematical activities will be pub-
lished in Vol. 19 of the Proceedings of the London Mathematical So-
ciety.
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